# Lecture 23 (Sketch) \todo[inline]{What is an isogeny?} \todo[inline]{What is an Artin-Schreier extension?} \todo[inline]{What is Kummer theory?} \todo[inline]{What are Weil differentials?} \todo[inline]{What are Kahler differentials?} \todo[inline]{What is the Riemann Hurwitz formula?} :::{.corollary title="?"} Let $k$ be a perfect field of characteristic $p>0$, $d\in \ZZ^{\geq 0}$ with $\gcd(d, p) = 1$, and let $f\in k[x]$ and $L\da K(p^{-1} (f))$. Then $[L:K] = p$ and $L/k$ is a regular function field of genus $g = {1\over 2}(p-1)(d-1)$ that is unramified away from $\infty$. ::: ## Artin-Schreier Extensions of Function Fields :::{.fact} For $k$ a field, $\ch(k) = p > 0$, and $a, b\in k$, TFAE: 1. $k(p^{-1}(a)) = k(p^{-1}(b))$ 2. $a$ and $b$ generate the same cyclic subgroup of $k/p(k)$. In particular, if $K(p^{-1}(u))/k$ is an Artin-Schreier extension, then for all $x\in k$, $k(p^{-1}(u - (x^p - x))) = k(p^{-1}(u))$. ::: :::{.lemma title="?"} Let $k$ a *perfect* field of characteristic $p>0$, $K/k$ a function field, $u\in K$, and $p\in \Sigma(K/k)$. - There exists a $z\in K$ such that $z_v \da v_p(u - (z^p - z))$ satisfies either - $z_v \geq 0$, or - $z_v\leq 0$ and $z_p$ is prime to $p$. - There exists a most one $m\in \ZZ$ that is negative and prime to $p$ such that for some $z\in K$ we have $v_p(u - (z^p - z)) = m$. If such an $m$ exists, it is given by $m = \max\ts{v_p(u - (z^p - z)) \st z\in K }$. - It follows that precisely *one* of the two alternatives in the first statement holds. ::: :::{.theorem title="Genus Formula for Artin-Schreier Extensions"} Let $k$ a *perfect* field of characteristic $p>0$, $K/k$ a function field, $u\in K$, $L\da K(p^{-1}(u))$, $p\in \Sigma(K/k)$, and set \[ M_p \da \begin{cases} \abs{m} & \text{if there exists a $z\in K$ such that } v_p(u - (z^p - z)) = m \\ -1 & \text{if there exists a $z\in K$ such that } v_p(u - (z^p - z)) \geq 0 \\ \end{cases} .\] Then a. If $M_p = -1$, then $p$ is unramified in $L$. b. If $M_p \geq 1$, then $p$ is totally ramified in $L$. Letting $\tilde p$ be the unique place lying over $p$, then \[ d(\tilde p / p) = (p-1)(M_p + 1) && \text{(wild ramification)} .\] c. Suppose there exists a $p$ such that $M_p \geq 1$. Then $[L: K] = p$, $L/k$ is regular, and we have a genus formula \[ g_L = p g_K + \qty{p-1 \over 2} \qty{ -2 + \sum_{p\in \Sigma(K/k)}(M_p+1)\deg p } .\] :::