
Notes: These are notes live-tex’d from a graduate

course in Algebraic Curves taught by Pete Clark at

the University of Georgia in Fall 2020. As such, any

errors or inaccuracies are almost certainly my own.

Algebraic Curves
University of Georgia, Fall 2020

D. Zack Garza

D. Zack Garza
University of Georgia
dzackgarza@gmail.com
Last updated: 2021-01-06

1

mailto: dzackgarza@gmail.com


Contents

Table of Contents

Contents

Table of Contents 2

1 References 6
1.1 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Lecture 1: Field Theory Preliminaries 6
2.1 Finite Generation of Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Notion 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Notion 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.3 Notion 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Case Study: The Lüroth Problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Integrals Closures and Constant Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Lecture 1: Discussion and Review 10
3.1 Valuations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Places . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Divisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Lecture 2: Field Theory Preliminaries 12
4.1 Base Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2 When Extensions Preserve Being a Domain . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3 Good Base Change For Function Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.4 Example of a Non-Regular Family of Function Fields . . . . . . . . . . . . . . . . . . . 17

5 Lecture 3: Last of Preliminaries 19
5.1 Polynomials Defining Regular Function Fields . . . . . . . . . . . . . . . . . . . . . . . 19
5.2 Geometric Irreducibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.3 Our Function Fields are Geometrically Irreducible . . . . . . . . . . . . . . . . . . . . . 21

6 Lecture 4: Chapter 1, One Variable Function Fields and Their Valuations 22
6.1 Valuation Rings and Krull Valuations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.2 Group of Divisibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.3 Generalized Valuations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.4 Regular or Centered Valuations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.5 Topological Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.6 Scheme Theory, Resolution of Singularities . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.7 Intermediate Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.8 Valuations of Every Rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

7 Lecture 5: Places 31
7.1 Investigating the Set of Places . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.2 Describing the Missing Place . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Table of Contents 2



Contents

7.3 Finite Generation in Towers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.4 Regularity Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.5 An Inequality on Degrees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.6 Affine Grounding and Residue Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

8 Lecture 6: Affine Domains and Places Σ(K/k) 42
8.1 Holomorphy Rings are Affine Dedekind Domains with Fraction Field K . . . . . . . . 46
8.2 Proof of Main Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

8.2.1 Case 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
8.2.2 Case 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
8.2.3 Case 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

8.3 Case 3: Fixed Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

9 Lecture 7: Riemann-Roch 54
9.1 Divisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
9.2 The Degree of the Divisor of a Rational Function is Zero . . . . . . . . . . . . . . . . . 57

10 Lecture 8: Riemann-Roch Spaces (Part 1) 62
10.1 Setup for the Riemann-Roch Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
10.2 The Riemann-Roch Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
10.3 Working with Divisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
10.4 Subspaces and Dimension of Riemann-Roch Spaces . . . . . . . . . . . . . . . . . . . . 65
10.5 Bounds on Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

11 Lecture 8: Riemann-Roch Spaces (Part 2) 68
11.1 Proof of Upper Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

11.1.1 Step 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
11.1.2 Step 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
11.1.3 Step 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
11.1.4 Step 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

11.2 Genus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

12 Lecture 9 72
12.1 Riemann-Roch Theorem and Applications . . . . . . . . . . . . . . . . . . . . . . . . . . 73
12.2 Applications of Riemann-Roch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

12.2.1 Genus Zero Function Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

13 Lecture 10A (Todo) 76

14 Lecture 10B (Todo) 76

15 Lecture 10C (Todo) 76

16 Lecture 11A: Weil’s Proof of Riemann-Roch 76

17 Lecture 11B: Weil’s Proof of Riemann-Roch (TODO) 80

18 Lecture 11C: Weil’s Proof of Riemann-Roch (TODO) 80

Contents 3



Contents

19 Lecture 12: Chapter 3, Curves Over a Finite Field 80
19.1 Finiteness of Class Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
19.2 Base Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

19.2.1 Splitting of Places . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
19.3 Degree 1 Places and Rational Points on a Curve . . . . . . . . . . . . . . . . . . . . . . 83
19.4 Finiteness of Places and Rational Points . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
19.5 Finiteness of Class Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

20 Lecture 13: Splitting Places 86
20.1 How Places Split . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
20.2 Counting Effective Divisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
20.3 Hasse-Weil Zeta Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
20.4 Proof of Rationality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

21 Lecture 14: The Hasse-Weil Zeta Function 93
21.1 Comparing Zeta Functions After Extending Scalars . . . . . . . . . . . . . . . . . . . . 94
21.2 Proof That δ = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
21.3 The Functional Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
21.4 The L Polynomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

22 Lecture 15: The L-Polynomial 99
22.1 Big List of Important Facts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
22.2 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

22.2.1 The degree of L and L(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
22.2.2 Functional Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
22.2.3 Coefficients aj for j = 0,1,2g and Duality . . . . . . . . . . . . . . . . . . . . . . 102
22.2.4 Absolute Values of Roots / RH . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

22.3 Applications and Corollaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
22.3.1 Counting Rational Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
22.3.2 Relating Rational Points to Coefficients . . . . . . . . . . . . . . . . . . . . . . . 105

23 Lecture 16 107
23.1 Weil Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

24 Lecture 17 (Todo) 113

25 Lecture 18 (Todo) 113

26 Lecture 19 (Todo) 113

27 Lecture 20 (Todo) 113

28 Lecture 21 (Todo) 113

29 Lecture 22 (Todo) 113

30 Lecture 23 (Sketch) 113
30.1 Artin-Schreier Extensions of Function Fields . . . . . . . . . . . . . . . . . . . . . . . . 114

31 Lecture 24: Hermitian Function Fields (Sketch) 115

Contents 4



Contents

32 Lecture 25: Differential Pullback Theorem (Sketch) 117

ToDos 118

Definitions 120

Theorems 122

Exercises 124

Figures 126

Bibliography 127

Contents 5



2 Lecture 1: Field Theory Preliminaries

1 References

E 1.1 References e

• Stichtenoth[1].

2 Lecture 1: Field Theory Preliminaries

The main theorems in this course, in order of importance:

• The Riemann-Roch Theorem
• The Riemann-Hurwitz Formula

E 2.1 Finite Generation of Fields e

See Chapter 11 of Field Theory notes.

2.1.1 Notion 1

Definition 2.1.1 (Finitely Generated Field Extension)
A field extension `/k is finitely generated if there exists a finite set x1,⋯, xn ∈ ` such that
` = k(x1,⋯, xn) and ` is the smallest field extension of k.
Concretely, every element of ` is a quotient of the form p(x1,⋯, xn)

q(x1,⋯, xn)
with p, q ∈ k[x1,⋯, xn].

There are three different notions of finite generation for fields, the above is the weakest.

2.1.2 Notion 2

The second is being finitely generated as an algebra:

Definition 2.1.2 (Finitely Generated Algebras)
For R ⊂ S finitely generated algebras, S is finitely generated over R if every element of S is a
polynomial in x1,⋯, xn, with coefficients in R, i.e. S = R[x1,⋯, xn].

References 6



2 Lecture 1: Field Theory Preliminaries

Note that this implies the previous definition, since anything that is a polynomial is also a quotient
of polynomials.

2.1.3 Notion 3

The final notion: `/k is finite (finite degree) if ` is finitely generated as a k-module, i.e. a finite-
dimensional k-vector space.

Definition 2.1.3 (Rational Function Field)
A rational function field is k(t1,⋯, tn) ∶= ff (k[t1,⋯, tn]).

Note that we can make a similar definition for infinitely many generators by taking a direct limit
(here: union), and in fact every element will only involve finitely many generators.

Exercise 2.1.4

a. Show k(t)/k is finitely generated by notion (3) but not by (2).

b. Show that k[t]/k is (2) but not (1).a

c. Show that it is not possible for a field extension to satisfy (2) but not (1).b

d. Show that if `/k is finitely generated by (3) and algebraic, then it satisfies (1).
aNote k[t] is not a field.
bHint: Zariski’s lemma.

Theorem 2.1.5(Field Theory Notes 11.19).
If L/K/F are field extensions, then L/F is finitely generated ⇐⇒ K/F and L/K are finitely
generated.a

aSee Artin-Tate Lemma, this doesn’t necessarily hold for general rings.

Definition 2.1.6 (Algebraically Independent)
For `/k, a subset {xi} ⊂ ` is algebraically independent over k if no finite subset satisfies a
nonzero polynomial with k coefficients.
In this case, k[{xi}]/k is purely transcendental as a rational function field.

Theorem 2.1.7(Existence of transcendence bases).
For `/k a field extension,

a. There exists a subset {xi} ⊂ ` algebraically independent over k such that `/k({xi}) is
algebraic.

b. If {yt} is another set of algebraically independent elements such that `/k({yt}) is algebraic,
then ∣{xi}∣ = ∣{yt}∣.

Thus every field extension is algebraic over a purely transcendental extension. A subset as above is
called a transcendence basis, and every 2 such bases have the same cardinality.

2.1 Finite Generation of Fields 7



2 Lecture 1: Field Theory Preliminaries

We have a notion of generation (similar to “spanning”), independence, and bases, so there are
analogies to linear algebra (e.g. every vector space has a basis, any two have the same cardinality).1

The following notion will be analagous to that of dimension in linear algebra:

Definition 2.1.8 (Transcendence Degree)
The transcendence degree of `/k is the cardinality of any transcendence basis.

Theorem 2.1.9(Transcendence Degree is Additive in Towers).
If L/K/F are fields then trdeg(L/F ) = trdeg(K/F ) + trdeg(L/K).

Theorem 2.1.10(Bounds on Transcendence Degree).
Let K/k be finitely degenerated, so K = k(x1,⋯, xn). Then trdeg(K/k) ≤ n, with equality iff
K/k is purely transcendental.

Proof .
Suppose K is monogenic, i.e. generated by one element. Then trdeg(F (x)/F ) =
1 [x/F is transcendental].
So the degree increases when a transcendental element is added, and doesn’t change when x
is algebraic.
By additivity in towers, we take k ↪ k(x1) ↪ k(x1, x2) ↪ ⋯ ↪ k(x1,⋯, x)n) = K to obtain a
chain of length n. The transcendence degree is thus the number of indices i such that xi is
transcendental over k(x1,⋯, xi−1).a

∎
aThis is similar to checking if a vector is in the span of a collection of previous vectors.

Definition 2.1.11 (Function fields in d variables)
For d ∈ Z≥0, an extension K/k is a function field in d variables (i.e. of dimension d) if K/k is
finitely generated of transcendence degree d.

Remark 2.1.12: The study of such fields is birational geometry over the ground field k. k = C is
of modern interest, things get more difficult in other fields. The case of d = 1 is much easier: the
function field will itself be the geometric object and everything will built from that. Our main tool
will be valuation theory, where valuations will correspond to points on the curve.

E 2.2 Case Study: The Lüroth Problem. e

Question 2.2.1
For which fields k and d ∈ Z≥0 is it true that if k ⊂ ` ⊂ k(t1,⋯, td) with k(t1,⋯, td)/` finite then ` is
purely transcendental?

1There is a common generalization: matroids.

2.2 Case Study: The Lüroth Problem. 8



2 Lecture 1: Field Theory Preliminaries

Answer 2.2.2
It’s complicated, and depends on d and k. We have the following partial results.

Theorem 2.2.3(Lüroth).
True for d = 1: For any k ⊂ ` ⊂ k(t), ` = k(x).

Theorem 2.2.4(Castelnuovo).
Also true for d = 2, k = C.

Theorem 2.2.5(Zariski).
No if d = 2, k = k, and k is positive characteristic. Also no if d = 2, k ≠ k in characteristic zero.

Theorem 2.2.6(Clemens-Griffiths).
No if d ≥ 3 and k = C.

Remark 2.2.7: Note that unirational need not imply rational for varieties.

Exercise 2.2.8
Let k be a field, G a finite group with G ↪ Sn the Cayley embedding. Then Sn acts by
permutation of variables on k(t1,⋯, tn), thus so does G. Set ` ∶= k(t1,⋯, tn)G the fixed field,
then by Artin’s observation in Galois theory: if you have a finite field acting effectively by
automorphisms on a field then taking the fixed field yields a galois extension with automorphism
group G.
So Aut(k(t1,⋯, tn)/`) = G.A

a. Suppose k = Q, and show that an affirmative answer to the Lüroth problem implies an
affirmative answer to the inverse galois problem for Q.

Hint: works for any field for which Hilbert’s Irreducibility Theorem holds.

b. `/Q need not be a rational function field, explore the literature on this: first example
due to Swan with ∣G∣ = 47.

c. Can still give many positive examples using the Shepherd-Todd Theorem.

What’s a global field?

E 2.3 Integrals Closures and Constant Fields e

Definition 2.3.1 (Integral Closure and Field of Constants)
For K/k a field extension, set κ(K) to be the algebraic closure of k in K, i.e. special case of
integral closure. If K/k is finitely generated, then κ(K)/k is finite degree.
Here κ(K) is called the field of constants, and K is also a function field over κ(K).

2.3 Integrals Closures and Constant Fields 9



3 Lecture 1: Discussion and Review

Remark 2.3.2: In practice, we don’t want κ(K) to be a proper extension of k. If this isn’t the
case, we replace considering K/k by K/κ(K). If K/k is finitely generated, then

k κ(K) Kfinite finitely generated

Where we use the fact that from above, κ(K)/k is finitely generated and algebraic and thus finite,
and by a previous theorem, if K/k is transcendental then K/κ(K) is as well, and thus finitely
generated. Thus if you have a function field over k, you can replace k by κ(K) and regard K as a
function field over κ(K) instead.

3 Lecture 1: Discussion and Review

E 3.1 Valuations e

• Transcendence bases
• Lüroth problem

For K/k a one variable function field, if we want a curve C/k, what are the points? We’ll use
valuations, see NT 2.1. See also completions, residue fields. If R ⊂K a field, R is a valuation ring
of K if for all x ∈K×, at least one of x,x−1 ∈ R.

Example 3.1.1: The valuation rings of Q are Z(p) ∶= Z[{1
`

∣ ` ≠ p}] for all primes p.

See also Krull valuations, which take values in some totally ordered commutative group.

Exercise 3.1.2
Show that a valuation ring is a local ring, i.e. it has a unique maximal ideal.

Example 3.1.3: Where does the log come from?

There is a p-adic valuation:

v ∶ Q→ Z(p)
a

b
= pnu

v
↦ n.

Lecture 1: Discussion and Review 10



3 Lecture 1: Discussion and Review

Then we recover

Z(p) = {x ∈ Q× ∣ vp(x) ≥ 0} ∪ {0}

m(p) = {x ∈ Q× ∣ vp(x) > 0} ∪ {0}

.

There is a p-adic norm

∣ ⋅ ∣p ∶ Q→ R
0↦ 0
x↦ p−n = p−vp(x).

Then we get an ultrametric function, a non-archimedean function

dp ∶ Q2 → R
(x, y)↦ ∣x − y∣p.

We then recover vp(x) = − logp ∣x∣p.2

E 3.2 Places e

For A ⊂K a subring of a field, we’ll be interested in the place Σ̃ = {Valuation rings Rv of K} ∣ A ⊂
Rv ⊊K. Thus the valuation takes non-negative values on all elements of K. Can equip this with a
topology (the “Zariski” topology, not the usual one). This is always quasicompact, and called the
Zariski-Riemann space. Can determine a sheaf of rings to make this a locally ringed space.

We can define an equivalence of valuations and define the set of places

Σ(K/k) ∶= {Nontrivial valuations v ∈K ∣ v(x) ≥ 0∀x ∈ k×} ,

which will be the points on the curve. Here the Zariski topology will be the cofinite topology (which
is not Hausdorff). Scheme-theoretically, this is exactly the set of closed points on the curve.

Definition 3.2.1 (Generic Points)
A point p ∈X a topological space is a generic point iff its closure in X is all of X.

Remark 3.2.2: Note we will have unique models for curves, but this won’t be the case for surfaces:
blowing up a point will yield a birational but inequivalent surface.

2See NT 1 notes for more details on valuations.

3.2 Places 11



4 Lecture 2: Field Theory Preliminaries

E 3.3 Divisors e

Definition 3.3.1 (Divisor Group)
The divisor group of K is the free Z-module on Σ(K/k)

Remark 3.3.2: This comes with a degree map

deg ∶ Div(K)→ Z

which need not be surjective.

Definition 3.3.3 (Principal Divisors)
Consider the map

ϕd ∶K× → Div(K)
f ↦ (f).

Then we define imϕd as the subgroup of principal divisors.

Definition 3.3.4 (Class Group)
Define the class group of K as

cl(K) ∶= {Divisors} / {Principal divisors} ∶= Div(K)/ imϕd.

We can define the class group as divisors modulo principle divisors cl(K) = Div(K)/ im(K×)
and the Riemann-Roch space L(D). The Riemann-Roch theorem will then be a statement about
dimL(D).

4 Lecture 2: Field Theory Preliminaries

E 4.1 Base Extension e

Given some object A/k and k ↪ ` is a field extension, we would like some extended object A/`.

Example 4.1.1: An affine variety V /k is given by finitely many polynomials in pi ∈ k[t1,⋯, tn],
and base extension comes from the map k[t1,⋯, tn]↪ `[t1,⋯, tn]. More algebraically, we have the
affine coordinate ring over k given by k[V ] = k[t1,⋯, tn]/ ⟨pi⟩, the ring of polynomial functions on
the zero locus corresponding to this variety. We can similarly replace k be ` in this definition. Here
we can observe that `[V ] ≅ k[V ]⊗k `.

3.3 Divisors 12



4 Lecture 2: Field Theory Preliminaries

In general we have a map

⋅ ⊗k `
{k-vector spaces}→ {`-vector spaces}

{k-algebras}→ {`-algebras} .

This will be an exact functor on the category k-Vect, i.e. ` is a flat module. Here everything is free,
and free Ô⇒ flat, so things work out nicely.

What about for function fields? Since k is a k-algebra, we can consider k⊗k `, however this need not
be a field. Note that tensor products of fields come up very often, but don’t seem to be explicitly
covered in classes! We will broach this subject here.

Exercise 4.1.2
If `/k is algebraic and `⊗k ` is a domain, the ` = k.

Remark 4.1.3: In other words, this is rarely a domain. A hint: start with the monogenic case,
and also reduce to the case where the extension is not just algebraic but finite.

Remark 4.1.4: Tensor products of field extensions are still interesting: if `/k is finite, it is galois
⇐⇒ `⊗k ` ≅ `[`∶k]. So its dimension as an `-algebra is equal to the degree of `/k, so it splits as a
product of copies of `.

We’d like the tensor product of a field to be a field, or at least a domain where we can take the
fraction field and get a field. This hints that we should not be tensoring algebraic extensions, but
rather transcendental ones.

Exercise 4.1.5
For `/k a field extension,

a. Show k(t)⊗k ` is a domain with fraction field `(t).

b. Show it is a field ⇐⇒ `/k is algebraic.

Proposition 4.1.6(FT 12.7, 12.8).
Let k1, k2/k are field extensions, and suppose k1 ⊗k k2 is a domain. Then this is a field ⇐⇒
at least one of k1/k or k2/k is algebraic.a

aReminder: for `/k and α ∈ ` algebraic over k, then k(α) = k[α].

So we’ll concentrate on when K ⊗k ` is a domain.

E
4.2 When Extensions Preserve Being a

Domain
e

4.1 Base Extension 13
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Question 4.2.1
What’s the condition on a function field K/k that guarantees this, i.e. when extending scalars from
k to ` still yields a domain?

Definition 4.2.2 (Base Change)
If this remains a domain, we’ll take the fraction field and call it the base change.

Exercise 4.2.3
If K/k is finitely generated (i.e. a function field) and K ⊗k ` is a domain, then ff(K ⊗k `)/` is
finitely generated.

Remark 4.2.4: The point here is that if taking a function field and extending scalars still results
in a domain, we’ll call the result a function field as well. Most of all, we want to base change to
the algebraic closure. We’ll have issues if the constant field is not just k itself:

Lemma 4.2.5.
If K ⊗k k is a domain, then the constant field κ(K) = k.

Proof .
Use the fact that ⋅ ⊗k V is exact. We then get an injection

κ(K)⊗k κ(K) K ⊗k k

κ(K)⊗k k

Here we use the injections κ(K)↪ k and κ(K)↪K.
We now have an injection of k-algebras, and subrings of domains are domains. So apply the
first exercise: the only way this can happen is if κ(K) = k.

∎

Exercise 4.2.6 (the simplest possible case)
Describe C(t)⊗R C, tensored as R-algebras.

Remark 4.2.7: Won’t be a domain by the lemma, and will instead be some C(t)-algebra of
dimension 2.

E 4.3 Good Base Change For Function Fields e

4.2 When Extensions Preserve Being a Domain 14
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In order to have a good base change for our function fields, we want to constant extension to be
trivial, i.e. κ(K) = k. This requires that the ground field be algebraically closed.

In this case, you might expect that extending scalars to the algebraic closure would yield a field
again. This is true in characteristic zero, but false in positive characteristic.

Question 4.3.1 (a more precise one)
If κ(K) = k, must K ⊗K k be a field?

If that’s true and we’re in positive characteristic, recalling the for an algebraic extension this being
a field is equivalent to it being a domain. But if that’s a domain, the tensor product of every
algebraic extension must be a domain, which is why this is an important case.

If so, then K ⊗k k
1
p is a field, where k

1
p ∶= k ({x

1
p ∣ x ∈ k}) is obtained by adjoining all pth roots

of all elements. This is a purely inseparable extension. The latter condition (this tensor product
being a field) is one of several equivalent conditions for a field to be separable.3

Remark 4.3.2: Recall that K/k is transcendental, and there is an extended notion of separability
for non-algebraic extensions. Another equivalent condition is that every finitely generated subex-
tension is separably generated, i.e. it admits a transcendence basis {xi} such that k ↪ k({xi})↪ F
where F /k({xi}) is algebraic and separable. Such a transcendence basis is called a separating
transcendence basis. Since we’re only looking at finitely generated extensions, we wont’ have to
worry much about the difference between separable and separably generated.

Question 4.3.3
What’s the point? There’s an extra technical condition to ensure the base change is a field: the
function field being separable over the ground field. Is this necessarily the case if κ(K) = k?

Answer 4.3.4
No, for fairly technical reasons.△!

Example 4.3.5: Set k = Fp(a, b) a rational function field in two variables as the ground field. Set

A ∶= k[x, y]/ ⟨axp + b − yb⟩ .

Then A is a domain, so set k = ff(A).

Claim: κ(K) = k, so k is algebraically closed in this extension, but K/k is not separable.

3Note that the frobenius maps k
1
p ↠ k, so this is sort of like inverting this map.

4.3 Good Base Change For Function Fields 15
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How to show: extending scalars to k
1
p does not yield a domain.

Let α,β ∈ k such that αp = a, βb = b, so

axp + b − yb = (αx + β − y)p,

which implies K ⊗k k
1
p is not a domain: k[x, y] is a UFD, so the quotient of a polynomial is a

domain iff the polynomial is irreducible. However, the pth power map is a homomorphism, and this
exhibits the image of the defining polynomial as something non-irreducible.

Remark 4.3.6: Note that f(x, y) = axp + b − yp is the curve in this situation. The one variable
function field is defined by quotienting out a function in two variables and taking the function field.
Every 1-variable function field can be obtained in this way. Therefore this polynomial is irreducible,
but becomes reducible over the algebraic closure. So we’d like the polynomial to be irreducible over
both.

Remark 4.3.7: This is pretty technical, but we won’t have to worry if k = k
1
p . Equivalently,

frobenius is surjective on k, i.e. k is a perfect field.

If k is not perfect, it can happen (famous paper of Tate) making an inseparable base extension can
decrease the genus of the curve.

Recall that the perfect fields are given by:

• Anything characteristic zero, every reducible polynomial is separable.
• Any algebraically closed field
• Finite fields (frobenius is always injective)

Imperfect fields include:

• Function fields in characteristic p
• Complete discretely valued fields k((t)) in characteristic p 4

Theorem 4.3.8(FT 12.20: Regular Field Extensions).
For field extensions K/k, TFAE

1. κ(K) = k and K/k is separable

2. K ⊗k k is a domain, or equivalently a field

3. For all field extensions `/k, K ⊗k ` is a domain.

Remark 4.3.9: Note that this allows making not just an algebraic base change, but a totally
arbitrary one.

4This is a good time to review valuations and uniformizing elements from NTII.

4.3 Good Base Change For Function Fields 16
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Definition 4.3.10 (?)
A field extension satisfying these conditions is called regular.

Remark 4.3.11: Regular corresponds to “nonsingular” in this neck of the woods. The implication
2 Ô⇒ 3 is the interesting one. To prove it, reduces to showing that if k = k and Ri are domains
that are finitely generated as k-algebras, then R1 ⊗k R2 is also a domain. This doesn’t always
happen, e.g. Q(

√
2)⊗Q Q(

√
2) is not a domain. Really need algebraically closed.

This is a result in affine algebraic geometry. An algebra that is a domain and finitely generated
over a field is an affine algebraic variety, more precisely it is integral. The tensor product on the
coordinate ring side corresponds to taking the product of varieties. Thus the fact here is that a
product of integral varieties remains integral, as long as you’re over an algebraically closed field.
Proof uses Hilbert’s Nullstellensatz.

Exercise 4.3.12

a. Show that k(t)/k is regular. a

b. Show every purely transcendental extension is regular.

c. Show that for a field k, every extension is regular ⇐⇒ k = k.

d. Show K/k is regular ⇐⇒ every finitely generated subextension is regular.
aI.e. k(t)⊗k k is a domain.

E
4.4 Example of a Non-Regular Family of

Function Fields
e

Choose an elliptic curve E/Q(t) with j-invariant t. For N ∈ Z+, define K̃N ∶= Q(t)(E[N]) the
N -torsion field of E. Then K̃N/Q(t) is a finite galois extension with galois group isomorphic to the
image of the modular galois representation 5

ρN ∶ g(Q(t))→ GL(2,Z/NZ) (mod N).

Proposition 4.4.1(Some Facts).
ρN is surjective, and

Aut(K̃N/Q(t)) ≅ GL(2,Z/NZ).

detρN = χN (mod N), the cyclotomic character, and therefore χN restricted to g(K̃N) is
trivial, so K̃N ⊃ Q(ζN). For N ≥ 3, Q(ζN) ⊋ Q, so K̃N/Q(t) is a non-regular function field.

5See Cornell-Silverman-Stevens covering the proof of FLT, modular curves from the function field perspective.

4.4 Example of a Non-Regular Family of Function Fields 17
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Remark 4.4.2: Actually K̃N depends on the choice of E: difference choices of nonisomorphic
curves with the same j-invariant differ by a quadratic twist and the ρN differ by a quadratic
character on g(Q(t)). Importantly, this changes the kernel, and thus the field.

To fix this, we look at the reduced galois representation, the following composition:

ρN ∶ g(Q(t))→ GL(2,Z/NZ)↠ GL(2,Z/NZ)/ {±I} .

We obtain a field theory diagram

KN

KN

Q(t)

GL(2,Z/NZ)

{±I}

GL(2,Z/NZ)/{±I}

So if you just take the field fixed by ±I, you get KN . In this case, the reduced galois representation
depends only on the j-invariant, and not on the model chosen. So the function field KN/Q(t) is
the “canonical” choice.

Question 4.4.3
Does this make KN/Q(t) regular?

Answer 4.4.4
No, ρN(g(KN)) = {±I} and det(±I) = 1, so we still have KN ⊃ Q(ζN).

In this course, we’ll identify algebraic curves over k and one-variable function fields K/k. The
function field KN corresponds to an algebraic curve X(N)/Q that is “nicer” over Q(ζN). In fact,
see Rohrlich: κ(KN) = Q(ζN). Our curves will have points (equal to valuations) which will have
degrees. If the constant subfield is not just k, this prevents degree 1 points on the curve. By Galois
theory, for every subgroup H ⊆ GL(2,Z/NZ)/ {±I}, we’ll get a function field Q(H) ∶= HH

N .gg In
this case, Q(H)/Q is regular ⇐⇒ det(H) = (Z/NZ)×.

Later we’ll understand the residues at points as the residue fields of some DVRs, then the residue
field will always contain the field of constants.

4.4 Example of a Non-Regular Family of Function Fields 18
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5 Lecture 3: Last of Preliminaries

Today we’ll be wrapping up the last of the preliminaries. Upcoming: one-variable function fields
and their valuation rings.

E
5.1 Polynomials Defining Regular Function

Fields
e

Question 5.1.1
Where’s the curve in all of this?

Answer 5.1.2
This will come from an equation like f(x, y) = 0.

Exercise 5.1.3
Let R1,R2 be k-algebras that are also domains with fraction fields Ki. Show R1 ⊗k R2 is a
domain ⇐⇒ K1 ⊗k K2 is a domain.a

aHint: use a denominator clearing argument.

E 5.2 Geometric Irreducibility e

Definition 5.2.1 (Geometrically Irreducible Polynomial)
A polynomial of positive degree f ∈ k[t1,⋯, tn] is geometrically irreducible if f ∈ k[t1,⋯, tn]
is irreducible as a polynomial.

Remark 5.2.2: If n = 1 then f is geometrically irreducible ⇐⇒ f is linear, i.e. of degree 1. Let f
be irreducible, then since polynomial rings are UFDs then ⟨f⟩ is a prime ideal (irreducibles generate
principal ideals) and k[t1,⋯, tn]/ ⟨f⟩ is a domain. Let Kf be the fraction field.

Exercise 5.2.3 (an easy one)

a. Above for 1 ≤ i ≤ n let xi be the image of ti in Kf . Show that Kf = k(x1,⋯, xn).

b. Show that if K/k is generated by x1,⋯, xn, then it is the fraction field of k[t1,⋯, tn]/p
for some prime ideal p (equivalently, a height 1 ideal).

Lecture 3: Last of Preliminaries 19
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Proposition 5.2.4(?).
Suppose that f is geometrically irreducible.

a. The function field K/k is regular.

b. For all `/k, f ∈ `[t1,⋯, tn] is irreducible.

Definition 5.2.5 (Absolutely Irreducible Polynomial)
In this case we say f is absolutely irreducible as a synonym for geometrically irreducible.

Proof .
By definition of geometric irreducibility, k[t1,⋯, tn]/ ⟨f⟩ = k[t1,⋯, tn]/ ⟨f⟩ ⊗k k is a domain.
The exercise shows that Kf ⊗k k is a domain, so Kf is regular. It follows that for all `/k,
Kf ⊗k ` is a domain, so `[t1,⋯, tn]/ ⟨f⟩ is a domain.

∎

Slogan 5.2.6
Geometrically irreducible polynomials are good sources of regular function fields.

Exercise 5.2.7
Let k be a field, d ∈ Z+ such that 4 ∤ d and p(x) ∈ k[x] be positive degree. Factor p(x) =
r

∏
i=1

(x − ai)`i in k[x].

a. Suppose that for some i, d ∤ `i. Show that f(x, y) ∶= yd−p(x) ∈ k[x, y] is geometrically ir-
reducible. Conclude that Kf ∶= ff (k[x, y]/ ⟨yd − p(x)⟩) is a regular one-variable function
field over k, and thus elliptic curves yield regular function fields.a

b. What happens when 4 ∣ d?
aReferred to as hyperelliptic or superelliptic function fields. Hint: use FT 9.21 or Lang’s Algebra.

Exercise 5.2.8 (Nice, Recommended)
Assume k is a field, if necessary assuming ch(k) ≠ 2.

a. Let f(x, y) = x2 − y2 − 1 and show Kf is is rational: Kf = k(z).

b. Let f(x, y) = x2 + y2 − 1. Show that Kf is again rational.

c. Let k = C and f(x, y) = x2 + y2 + 1, Kf is rational.

d. Let k = R. For f(x, y) = x2 + y2 + 1, is Kf rational?a

aThis is an example of a non-rational genus zero function field.

Question 5.2.9
Can we always construct regular function fields using geometrically irreducible polynomials?

5.2 Geometric Irreducibility 20
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Answer 5.2.10
In several variables, no, since not every variety is birational to a hypersurface. In one variable, yes,
as the following theorem shows:

E
5.3 Our Function Fields are Geometrically

Irreducible
e

Theorem 5.3.1(Regular Function Fields in One Variable are Geometrically Irre-
ducible).
Let K/k be a one variable function field (finitely generated, transcendence degree one). Then

a. If K/k is separable, then K = k(x, y) for some x, y ∈K.

b. If K/k is regular (separable + constant subfield is k, so stronger) then K ≅ Kf for a
geometrically irreducible f ∈ k[x, y].

Recall separable implies there exists a separating transcendence basis.

Proof (of a).
This means there exists a primitive element x ∈ K such that K/k(x) is finite and separable.
By the Primitive Element Corollary (FT 7.2), there exist a y ∈K such that K = k(x, y).

∎

Proof (of b).
Omitted for now, slightly technical.

∎

Remark 5.3.2: Importance of last result: a regular function field on one variable corresponds to a
nice geometrically irreducible polynomial f .

Remark 5.3.3: Note that the plane curve module may not be smooth, and in fact usually is not
possible. I.e. k[x, y]/ ⟨f⟩ is a one-dimensional noetherian domain, which need not be integrally
closed.

Question 5.3.4
Can every one variable function field be 2-generated?

Answer 5.3.5
Yes, as long as the ground field is perfect. In positive characteristic, the suspicion is no: there exists
finite inseparable extensions `/k that need arbitrarily many generators. However, what if K/k has
constant field k but is not separable? Riemann-Roch may have something to say about this.

5.3 Our Function Fields are Geometrically Irreducible 21
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Example 5.3.6: Example from earlier lecture:

axp + b − yb

Remark 5.3.7: We can find examples of nice function fields by taking irreducible polynomials
in two variables. This will define a one-variable function field. If the polynomial is geometrical
reducible, this produces regular function fields.

6 Lecture 4: Chapter 1, One Variable
Function Fields and Their Valuations

Since we have the field-theoretic preliminaries out of the way, we now start studying one-variable
function fields in earnest. The main technique that we use to extract the geometry will be the
theory of valuations. These may be familiar from NTII, but we will cover them in more generality
here.

E 6.1 Valuation Rings and Krull Valuations e

Recall that NTII approach to valuations:

Definition 6.1.1 (Valuation)
A valuation on a field K is a map v ∶ K → R ∪ {∞} such that v(K×) ⊂ R, v(0) = ∞,
and v is of the form − log(∣ ⋅ ∣) where ∣ ⋅ ∣ ∶ K → [0,∞) is an ultrametric norm.a Recall that
an ultrametric norm satisfies not only the triangle inequality but the ultrametric triangle
inequality, i.e. d(x, z) ≤ max(x, z).

aIn other words, e−v( ⋅ ) is an ultrametric norm.

We now take an algebraic approach to this definition, where we’ll end up replacing R with something
more general.

Definition 6.1.2 (Valuation Ring)
A subring R of a field K is a valuation ring if for all x ∈K×, at least one of x or x−1 is in R.

Remark 6.1.3: This is a “largeness” property. It also implies that K = ff(R).

E 6.2 Group of Divisibility e
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Definition 6.2.1 (Group of Divisibility)
Given any integral domain R with fraction field K, the group of divisibility G(R) is defined
as the partially ordered commutative groupa

G(R) ∶=K×/R×.

We will write the group law here additively. The ordering is given by x ≤ y ⇐⇒ y/x ∈ R.
aThis means that the two structures are compatible.

Remark 6.2.2: Note that the way the partial order is written, it’s a relation on K×, but it is
not quite a partial ordering there. It is reflexive and transitive, but need not be antireflexive: if
x/y, y/x ∈ R then x, y differ by an element of u ∈ R× so that x = uy. In particular, they need not be
equal. This gives a structure of a quasiordering, and if you set x ∼ y ⇐⇒ x ≤ y and y ≤ x, this leads
to an equivalence relation, and modding out by it yields a partial order. Here this is accomplished
by essentially trivializing units.

Another way to think of G(R) is as the nonzero principal fractional ideals of K, since any two
generators of an ideal will differ by a unit.

Remark 6.2.3: Inside this group there is a positive cone G(R)+ of elements that are “nonnegative”:
since we’re in a commutative setting, the zero element is equal to 1, and the positive cone is given
by {y ≥ 0} = {y ∈ R}, and is thus given by the group G(R)+ = (R, ⋅).

This is very general: if you’re studying factorization in integral domains, many properties are
reflected in G(R). E.g. being a UFD (the most important factorization property!) implies that
G(R) is a free commutative group.

Remark 6.2.4: In general this is only a partially ordered group and not totally ordered. For
example, take R = Z and x = 2, y = 3, then neither of 2/3,3/2 are in Z, so x /≤ y and y /≤ x. On
the other hand, if we do have a total order, then either x or x−1 is in the ring, which are exactly
valuation subring of a field.

Claim: R is a valuation ring ⇐⇒ G(R) is totally ordered.

Remark 6.2.5: Note that R is a totally ordered group.

E 6.3 Generalized Valuations e
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This makes G(R) the “target group” of a generalized analytic valuation. Whenever we have a
valuation ring, we have a totally ordered commutative group, and the valuation v ∶K× → G(R) is a
quotient map which we can extend to K by v(0) ∶=∞. This has some familiar properties:

• (VRK1) For all x, y ∈K×,6

v(xy) = v(x) + v(y).

• (VRK2) For all x, y ∈K× such that x + y ≠ 0,

v(x + y) ≥ min(v(x), v(y)).

For ultrametric norms, all triangles are isosceles: is that true for this type of function? The answer
is yes, by the following exercise:

Exercise 6.3.1 (?)
If v(x) ≠ v(y), then v(x + y) = min(v(x), v(y)).

So the properties here are formally identical to the NTII notion of valuation, with (R,+,≤) replaced
by (G(R),+,≤).

Exercise 6.3.2 (?)
Conversely, if v ∶K× → G is a map into a totally ordered commutative group satisfying VRK1
and VRK2a, then

Rv ∶= {x ∈K× ∣ v(x) ≥ 0} ∪ {0}

is a valuation ring.b We can thus extract valuation rings in this situation.
aAny such map satisfying these two properties is a Krull valuation, Krull’s generalization of classical
valuations.

bNote that in a totally ordered group, either v(x) ≥ 0 or −v(x) ≥ 0, so we get the property that either
x,x−1 ∈ Rv.

Exercise 6.3.3 (?)
A valuation ring is local, i.e. there is a unique maximal ideal

mv ∶= {x ∈K× ∣ v(x) > 0} ∪ {0} .

Remark 6.3.4: These two constructions are morally mutually inverse. This doesn’t hold on the
nose, since there is extraneous data in the new analytic valuation. Recall that in NTII we have

6This follows from the fact that the quotient map is a group morphism. Note that the additive notation makes this
more suggestive of what an original valuation satisfied.

6.3 Generalized Valuations 24
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a notion of equivalence of norms, and two distinct norms that are equivalent can give rise to the
same valuation. For example, given a valuation, one can scale it by α ∈ R, and it’s easy to check
that this gives the same valuation. It is possible for the valuation not to surject onto R, but this
doesn’t happen in practice. The image is usually infinite cyclic, what we call a discrete valuation,
and so one is led to the definition of the value group of the valuation as its image. If you have a
notion of equivalence of Krull valuations, you want to allow for isomorphisms of the value group.
The cleanest notion of equivalence is thus the following:

Definition 6.3.5 (Equivalence of Krull valuations)
Two Krull valuations on a field K are equivalent iff their valuation rings are equal.

Remark 6.3.6: Going back to NTII, if you have two nonarchimedean norms on a field, then there
are many equivalent conditions for equivalence, and this is one of them.

Some general valuation theory:

• Every totally ordered commutative group is a group of divisibility.7

• A totally ordered group has rank 1 if it is nontrivial and embeds into R

– If the value group is trivial, R =K

• A Krull valuation of rank at most 1 is the NTII notion of a valuation.

Exercise 6.3.7 (?)
For n ≥ 2, put the lexicographic order on Zn, and show this has rank strictly larger than 1.
Thus Zn ↪ R as a commutative group, but not as a totally ordered commutative group.

Remark 6.3.8: In fact, for any ordered group G, one can attach a rank: a cardinal number r(G).
Here, r((Zn, lex)) = n. This is useful when studying Spec(R) for R a DVR.

A valuation of rank bigger than 1 does not induce a norm on K in the metric sense, although this is
not so important. A closer notion is expanding the notion of a metric space by allowing the metric
to be defined on X as d ∶X ×X → R for some R more general than R, like a totally ordered group
or a nonarchimedean field. This would yield a class of topological spaces that are reminiscent of
metric spaces.

E 6.4 Regular or Centered Valuations e

7Pete’s Commutative Algebra Notes, Ch. 17.10
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Definition 6.4.1 (Important: Regular and Centered)
Let v ∶K× → (G,+) be a Krull valuation and let A ⊂K be a subring of K. Then v is A-regular
or centered in A if A is a subset of some valuation ring Rv. In this case, p ∶= mv∩A ∈ Spec(A)
is denoted the center of v in A.a

aHere mv denotes pulling back the maximal ideal along this morphism of rings.

Remark 6.4.2: The term regularity here arises because we’ll want to think of elements of A as
functions and the valuation as a type of point, then the notion of being a regular function at a
point will carry over. The center is the subset of A with strictly positive valuation. Also recall that
pulling back prime ideals yields prime ideals, and maximal ideals are a special kind of prime ideal,
but in general pulling back a maximal ideal may not result in another maximal ideal. So somehow
the valuation affects every subring on which it is regular.

Definition 6.4.3 (Key: Zariski-Riemann Space)
For A ⊂K, define

Σ(K/A) ∶= {valuation rings A ⊂ R ⊊K ∣ K = ff(R)}

Σ̃(K/A) ∶= {valuation rings A ⊂ R ⊆K ∣ K = ff(R)} .

The set Σ̃(K/A) is the Zariski-Riemann space.

Remark 6.4.4: Note that in this definition, we’re taking all A-regular valuation rings R in K. If
someone says R is a valuation ring of K, they likely mean that K = ff(R). Note that fields are
valuation rings, so otherwise, any subfield of K would also be a valuation ring of K. Here, K itself
plays the role of a generic point. (?) The only difference in these two definitions is that in the first,
the trivial valuation ring is being excluded.

Definition 6.4.5 (Key: Places, Points of a Curve)
If K/k is a one variable function fielda , then Σ(K/k) will be the points of the associated
algebraic curve or places. These can be thought of as valuation rings, or equivalence classes
of Krull valuations, where two valuations are equivalent if they have the same valuation ring.

aFinitely generated field extension of transcendence degree one.

Remark 6.4.6: In terms of scheme theory, these will be the closed points of our algebraic curve.
We will view elements f ∈K as meromorphic functions on Σ(K/k).

E 6.5 Topological Considerations e
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Definition 6.5.1 (Zariski Topology)
The Zariski topology on Σ(K/A) has a sub-base

{U(f) ∣ f ∈K} U(f) ∶= {v ∈ Σ̃(K/A) ∣ v(f) ≥ 0} = Σ̃(K/A[f]).

and we thus take the minimal topology such that all of these sets are open. In other words, every
open set is a finite intersection and/or arbitrary unions, including empty intersections/unions.
The last term is precisely the subring generated by A and f . Thus a base is U(f1,⋯, fn) =
Σ̃(K/A[f1,⋯, fn]). The Zariski topology on Σ(K/A) is defined the same way and/or via the
subspace topology, since this removes a single point.

Remark 6.5.2: We thus get the subrings of K that contain A and are finitely generated as
A-algebras. We’ll be specifically looking at the case where A is a field and K is a one variable
function field.

Theorem 6.5.3(Zariski).
Σ̃(K/A) is quasi-compact.

Proof (?).
See Mazamara (?) in the chapter discussing valuation rings.

∎

Note that by definition, vn /∈ Σ(K/A). In Σ̃(K/A), we have a trivial valuation vn whose value
group is trivial and valuation ring is K itself, and vn is a generic point of Σ(K/A): its closure is
the entire space. In other words, it is in every nonempty open subset. Since we have at least one
generic point, and in general there may be many, if ∣Σ̃(K/A) > 1∣ then this is not a separated (T1)
space since the point is not closed.8 Another example of such a space would be Spec(R) for R a
commutative ring with positive Krull dimension, which will be Kolmogorov (T0) but not separated.
Such a spectrum is the underlying topological space of some affine scheme, and in general, schemes
will have these kinds of properties that are bad (but not too bad).

In our case of interest, when K/k is finitely generated of transcendence degree one, we’ll see that this
is the cofinite topology on an infinite space: the proper closed subsets are precisely the finite subsets,
or equivalently every nonempty open subset has finite complement. This is far from Hausdorff:
the intersection of two open subsets will still have finite complement, so any two nonempty open
subsets must intersect.

It’s not generally true that just removing the generic point vn will make the space separated, but
in our case, it will be. So if we restrict to nontrivial valuation rings, then the underlying set will
be infinite and we’ll get the cofinite topology. This will be the coarsest separated topology, i.e. if
you want singletons to be closed, finite subsets must be closed. If k ⊂ A ⊂K where A is a Dedekind

8Note that in French, separated may be interpreted as Hausdorff, but here we mean points are closed or equivalently
any two distinct points admit open neighborhoods that do not meet the other point.
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domain with fraction field K, we will see that if we consider not the k-regular elements but the
A-regular ones, we’ll get Σ(K/A) = maxSpec(A) and both Zariski topologies are cofinite. Note
that in a Dedekind domain, trading in a prime spectrum for a max spectrum is removing a generic
point, so this matches up. The moral: the topology of Σ(K/k) is not doing anything interesting
and we won’t need it much.

E
6.6 Scheme Theory, Resolution of

Singularities e

When K/k instead has transcendence degree bigger than 1, then Σ̃(K/k) is much more interesting.
If we were doing things scheme-theoretically, we could try to define a structure sheaf: attaching
a sheaf whose stalks are local commutative rings to make it a locally ringed space.9 Here, the
choice of a ring is straightforward: literally Σ̃(A,A[f1,⋯, fn]). There’s an exercise that shows that
although defining a sheaf on the entire space is somewhat annoying, defining it on a basis suffices.

Exercise 6.6.1 (?)
Endow Σ̃(K/k) with the structure of a locally ringed space.

Remark 6.6.2: In dimension 1 (the case we’re studying), the corresponding Zariski-Riemann space
will be the scheme associated to the complete nonsingular model of the curve. So this valuation-
theoretic approach will take you from the function field back to a nice model of the scheme itself.
But note that in larger dimensions, there is no unique complete nonsingular model – for example,
you can blow any one up to get another – so this pattern can’t possibly continue to hold. In fact,
it’s not clear if we even know if there’s one such model!

Remark 6.6.3: Thus in dimension > 1, you get something that is decidedly not a scheme, but is
still relevant to the study of resolution of singularities for your function field. Where do these come
up? Zariski used Σ(K/A) to prove resolution of singularities 10 in characteristic zero and dimensions
2 and 3 in 1944, although dimension 2 was classical by the Italian school. Later, Hironaka (1984)
got the Fields medal for proving resolution of singularities for all dimensions in characteristic zero
using an ingenious inductive argument that avoided Zariski-Riemann spaces entirely. It remarkably
doesn’t use any new objects/tools, just uses existing ones in a clever way. So why talk about
Zariski-Riemann spaces at all? In the last 10 years or so, work of Ternkin and Conrad has revived
and generalized them. They study relative such spaces.

Problem. (Open)
In positive characteristic, resolution of singularities is only known up to dimension ≤ 3.

9Schemes are a full subcategory of the much larger category of locally ringed spaces.
10Resolving means given K/k, we want to find a complete nonsingular affine variety whose function field is K.
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E 6.7 Intermediate Rings e

The following is an extremely important result from commutative algebra:

Theorem 6.7.1(CA 17.17).
Let A ⊂K be a subring of a field, then

∩v∈Σ̃(K/A)Rv,

the intersection of all valuation subrings of the field, is the integral closure of A in K.

The proof is mostly a Zorn’s lemma type of argument. Note that each Rv is generally big, contains
A, and ff(Rv) =K. Moreover, each valuation ring is integrally closed, although we haven’t proved
this yet.

Corollary 6.7.2(?).
For K/k function field, ∩v∈Σ(K/k)Rv = κ(K), the constant subfield of K.

Proof (?).
Note that κ(K) is the integral (algebraic) closure of k in K. Applying the theorem directly
almost works, except the theorem involves Σ̃. Can we remove the tilde? Suppose not, this
can only happen if Σ(K/k) = ∅ and the intersection is just K itself, the largest thing in the
intersection. But can the integral closure of k in K be K itself? No, since the transcendence
degree of the function field is positive. So K/k is transcendental, while κ(K)/k is an algebraic
extension, a contradiction.

∎

Remark 6.7.3: Note that Σ(K/k) is nonempty: there is a nontrivial valuation ring between k and
K in great generality, and there are often many.

Claim Key: If trdeg(K/k) = 1, then every v ∈ Σ(K/k) is discrete and thus has value group
isomorphic to Z.

So despite the fact that we’ve introduced a more general notion of higher rank valuations, in
dimension 1, every single valuation is discrete.

Proof (?).
Let v ∈ Σ(K/k) be a place, so its a valuation ring with fraction field K that is not K, then Rv
is not a field. So its maximal ideal mv is nonzero, so choose a nonzero element t ∈ mv. Then
t ∈ Rv and Rv contains k, so k[t] ⊂ Rv. Note that k[t] is a PID sitting inside a valuation
ring. So restrict this maximal ideal down: mv ∩ k[t] is a prime ideal of k[t] containing
t, and thus the center mv ∩ k[t] = ⟨t⟩. This follows because a prime ideal in the polyno-
mial ring k[t] which contains t is necessarily generated by t, since there’s exactly one such ideal.

Now restricting the valuation on K to k(t) ⊂ K, K/k(t) will be a finite extension (from the
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first lecture). We know k(t) ⊂ K, and we can now check that v∣k(t) is the t-adic valuation
vt. Note that mv can not contain any other monic irreducible polynomials, since distinct such
polynomials are coprime. Since we’re in a PID, this ideal would contain any linear combination
of them and thus contain 1. So consider the map

k[t]↪ Rb → G(Rv) =K×/R×.

Note that the units of k[t] map trivially, using the fact that any element in k[t] can be written
as u∏paii with the pi monic irreducible polynomials. The unit maps to zero, along with all of
the other monic irreducibles, and thus the image is determined entirely by the image of powers
of t. This whole term goes to zero unless some pi ↦ t, in which case it maps to some power of t.

So suppose t ↦ γ ≠ 0 ∈ G(R), which is nonzero because t was not a unit (since it was in the
maximal ideal). Then the image is exactly γN, the non-negative integer powers of the image
of t. But if we know goes on this domain, taking denominators shows where it goes on the
fraction field (of a UFD), so the image is the cyclic group generated by γ, i.e. the powers
of t are literally the only valuations we get. So the image of k(t)× in G(Rv) is γZ, yielding
a discrete valuation. This proves that the restriction to the rational function field k(t) is
discrete, and we want to use this to deduce that the original valuation is discrete.

We can now use NTII:a since K/k(t) is finite, it follows that v is discrete iff v∣k(t) is discrete,
and thus v is discrete.

∎
aSee NTII, Corollary 1.60: a valuation on a field whose restriction to a finite index subfield is discrete is itself
discrete.

E 6.8 Valuations of Every Rank e

So every place of K/k is a discrete valuation as long as the transcendence degree is one, but this is
far from the case for degree ≥ 2! In the following example, we’ll have a rational function field, which
makes things easier. You need a theory of extending Krull valuations, since we’ll define a non-rank
1 valuation on the rational function field. But an arbitrary finitely generated field extension of
degree d over k is a finite degree extension of the rational function field, and valuation theory will
tell you that every valuation downstairs can be extended in full generality to a finite degree field
extension, and the rank will not change.

Exercise 6.8.1 (?)
If K/k is finitely generated of trdeg ≥ 2, then Σ(K/k) has valuations of rank d.

Note that the Zariski-Riemann space only consists of discrete valuations, which is a characteristic
property of one variable function fields. So these higher rank valuations may look weird, but when
studying a function field of higher transcendence degree (e.g. for an algebraic surface), these occur.
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Exercise 6.8.2 (Constructing valuations of arbitrary rank and value group)
Let k be a field and K = k(t1,⋯, tn). Set G = Zn with the lex order, so G≥0 = Nn.

• Show that k[t1,⋯, tn] = k[G≥0], where the RHS is the associated semigroup ring.

• Define v ∶ k[G≥0]● → G≥0 by mapping each polynomial the minimal index of a monomial
in its support. For example,

v(a1t
3
1t2 + a2t

2
1t

10
2 ) = (2,10),

which has support (3,1) and (2,10), and we take the min in the lex order.

• Extend v to v ∶K●↠ G satisfying VRK1 and VRK2. Show that Rv ∶= v−1(G≥0) ∪ {0} is
a valuation ring with value group G, and in particular, the rank is n.

Note that doing this for n = 1 reduces to the t-adic valuation, which just keeps track of the smallest
power of t appearing. Here you can extend to fraction fields by defining v(x/y) = v(x) − v(y). The
semigroup ring can’t be the valuation ring, since polynomial rings are not local rings, so it’s much
bigger. Note also that Z can be replaced with any group G, since it’s never used in anything but a
psychological fashion.

Slogan 6.8.3
There is a huge difference between trdeg = 1 and trdeg > 1, and so we’ll only be working with the
former case in this course.

7 Lecture 5: Places

Definition 7.0.1 (Affine Domain)
An affine domain R over a field k is a domain that is finitely generated as a k-algebra.

E 7.1 Investigating the Set of Places e

We saw an interesting example of a function field in more than one variable which showed that
valuations of rank larger than 1 can arise, but this does not happen for one variable function fields.
That is, for K/k of transcendence degree 1, all valuations on K which are trivial on k are discrete.
We’ll now want to go farther and describe the places Σ(K/k), which will be the set of points on
an algebraic curve. Scheme-theoretically, this will literally be the set of closed points on a certain
projective curve whose function field is K. Note that a priori, finding closed points on a curve over
an arbitrary field is hard!

Recall that if A is a Dedekind domain such that ff(A) =K, then for all p ∈ mSpec(A) there exists a
discrete valuation vp on K. I.e., every maximal ideal induces a discrete valuation that is A-regular,
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so the valuation ring will contain A. How is this obtained? Take a nonzero x ∈ K×, and take the
corresponding principal fractional ideal ⟨x⟩ ∶= Ax, which we can factor in a Dedekind domain as
Ax = ∏

p∈mSpec(A)
pαp with αp ∈ Z. This looks like an infinite product, but for any fixed x, only finitely

many α are nonzero. Note that these α are exactly what we’re looking for: the p-adic evaluation of
x is given precisely by vp(x) ∶= αp, where we are using unique factorization of ideals in Dedekind
domains. Thus we have a map

v ⋅ ∶ mSpec(A)→ Σ(K/A)
p↦ vp.

So this sends a maximal ideal to a place that is A-regular, and it turns out to be a bijection.

Proposition 7.1.1(?).
The map v is a bijection, and thus we may write

Σ(K/A) ≅ mSpec(A).

Proof (?).

Claim: v is injective.
If p1,p2 ∈ mSpec(A) are two different maximal ideals. Then there exists an element x ∈ p1 ∖p2,
and so x−1 ∈ Ap2 ∖Ap1 . This follows since if x is not in p2, its p2-adic valuation is zero, and
thus the p2-adic valuation of x−1 is −0 = 0 as well. On the other hand, since x ∈ p1, its p1-adic
valuation is positive and therefore vp1(x−1) < 0 and x−1 is not in Ap1 .

Claim: v is surjective.
Let v ∈ Σ(K/A), so A ⊂ Rv, i.e. take a valuation whose valuation ring contains A. Note that
we’re not assuming the valuation is discrete, this can be a general Krull valuation, but we’re
trying to show it’s equal to a certain p-adic valuation. As always with a subring of a valuation
ring, we can pull back the maximal ideal and consider mv ∩A ∈ Spec(A). We’re hoping that
this is a maximal ideal, since maximals correspond to valuations. Since we’re in a Dedekind
domain, the only prime ideal we don’t want this to be is the zero ideal of A, so suppose it
were. Then A● ⊂ R×

v , and so K× ⊂ R×
v . This is because the only element of the maximal ideal

that lies in A is zero, so every nonzero element of A is not in this maximal ideal and is thus a
unit. But for any unit, its inverse is also a unit, yielding the inclusion K× ⊂ R×

v . The only
way this could possibly happen is if Rv = K, which yields the trivial valuation ring. How-
ever, by definition, in Σ(K/A) we’ve excluded the trivial valuation, so this ideal can not be zero.

So we can conclude that the pullback mv ∩ A ∈ mSpec(A), and so Ap ⊂ Rv. This is from
viewing elements in Ap as quotients of elements in A whose denominator have p-adic valuation
zero. Recall that we want to show that Rv = Ap. We know Rv ⊂ K is a proper containment,
and we can use the fact that a discrete valuation ring is maximal among all proper subrings
of its fraction field. In other words, for R a DVR, there is no ring R′ such that R ⊂ R′ ⊂ ff(R).
How do you prove this? This is similar to an early exercise in commutative algebra, where
we looked at all rings between Z and Q, which generalized to looking at all rings between a
PID and its fraction field, and a DVR is a local PID. So proving this statement is actually easier.
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This is enough to show that Ap = Rv, and this v ∼ vp.
∎

Remark 7.1.2: What the idea? For a general one variable function field K/k, we’ll produce affine
Dedekind domains R with k ⊂ R ⊂ K and ff(R) = K. This will give is subrings of this full ring of
places that are mSpec of Dedekind domains. How many such domains will we need for their union
to be the entire set of places? Just one won’t work, since Σ(K/k) is like a complete or projective
object, and a projective variety of dimension 1 can’t be covered by a single affine variety. However,
it turns out that you can always cover it with 2. In fact, if you take any Dedekind domain between
k and ff(K), the set of missing places (the ones that aren’t regular for any of these domains) will
be a nonempty finite set of places. So you can always cover it by finitely many, and two suffices:
as a consequence of the Riemann-Roch theorem, after removing any nonempty finite set of places,
you’ll have the mSpec of a canonically associated Dedekind domain. We’ll prove this by starting
with the case of K = k(t).

Claim:

∣Σ(k(t)/k) ∖mSpeck[t]∣ = 1.

Question 7.1.3
Note that k ⊂ k[t] ⊂ k(t) and k[t] is a Dedekind domain, so this fits into the above framework, and
moreover we know the maximal ideals of polynomial rings: irreducible monic polynomials. Taking
all of these misses exactly one place.

How do we describe this missing place?

E 7.2 Describing the Missing Place e

Suppose v ∈ Σ(k(t)/k)∖Σ(k(t)/k[t]), so the valuation ring of v contains k but does not contain k[t].
Then the valuation ring can not contain t, and thus v(t) < 0 and v(1/t) = −v(t) > 0. Since k[1/t] is
a PID, so if the valuation wasn’t tdashregular, it’s 1/t-regular by definition. So v ∈ Σ(k(t)/k[1/t]).
Note that k[1/t] ≅ k[t] as rings. How many valuations on this polynomial ring give positive valuation
to 1/t? Exactly one, since this corresponds to a prime ideal, namely ⟨1/t⟩, so this unique valuation
is v = v 1

t
, the 1/t-adic valuation.

That is, if we write f ∈ k(t) as (1/t)na(1/t)/b(1/t) with a, b ∈ k[t] polynomials with nonzero constant
terms, then v 1

t
(f) = n. Note that this process is the same as the one used to compute the t-adic

valuation vt.

Recall that a valuation on a domain can be uniquely extended to its fraction field by setting
v(x/y) = v(x) − v(y).
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Exercise 7.2.1 (?)
Define v∞ ∶ k(t)× → Z by p(t)/q(t)↦ deg q − deg p.

a. Show v∞ ∈ Σ(k(t)/k[1/t]).

b. Show v∞ ∼ v 1
t
by showing they have the same valuation ring.

c. Show that v∞ = v 1
t
.

Note that 1/t is a uniformizer for v∞

Theorem 7.2.2(Complete description of places).

Σ(k(t)/k) = mSpeck[t]∐{v∞} .

Note that we know the maximal ideals – the irreducible monic polynomials – but it takes some
effort to write them down. If k is algebraically closed, however, every such polynomial is linear of
the form t − α for α ∈ k. In this case, mSpeck(t) ≅ k, and so σ(k(t)/k) = k∐{∞} = P1(k). More
generally, the set of places on a rational function field will yield the scheme-theoretic set of closed
points on the projective line over k, which is more complicated if k ≠ k since not all closed points
are k-rational. Another way to say this is that if you have a valuation, there is a residue field, and
for any place on a one variable function field the residue field will be a finite degree extension of
k. The degree 1 points will be the k-rational points, and so Σ(k(t)/k) will always contain a copy
of k but may have closed points of larger degree, making things slightly more complicated. This
complication is handled well in both the scheme-theoretic and this valuation-theoretic approach.

E 7.3 Finite Generation in Towers e

The next theorem is a fact from commutative algebra:

Theorem 7.3.1(?).
Let A be a domain with ff(A) =K. Suppose A is a finitely generated k-algebra, let L/K be a
finite degree field extension, and let B be the integral closure of A in L. Then

a. B is finitely generated as an A-module.a

b. B is an integrally closed domain with ff(B) = L which is finitely generated as a k-algebra.

c. dimA = dimBb

d. If A is Dedekind, so is B.
aSee CA notes, “Second Normalization Theorem”, where normalization is a more geometric synonym for
integral closure.

bKrull dimension, i.e. the supremum of lengths of chains of prime ideals.
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Proof (?).
See Pete’s CA notes sections 18 and 14.

∎

Remark 7.3.2: On why these should be true: we have a NTI square

B L

A K

k

⊂

⊂

We have a domain A with a fraction field K, we take a finite degree extension L/K, and to complete
the square we let B be the integral closure of A in L: the collection of elements in L satisfying
monic polynomials with coefficients in A.

In our case, we’re additionally assuming that A/k is finitely generated as a k-algebra.

Remark 7.3.3:
On (b): B being finitely generated as a k-algebra follows from assuming A is, and additionally that
B is finitely generated as an A-module, and finite generation as a module provides finite generation
as an algebra. The result follows from transitivity of finite generation of algebras.

On (c): This is just a property of integral extensions.

On (d): Use the characterization of being Noetherian, integrally closed, and Krull dimension 1.
The only thing to check is that B is Noetherian, which follows from B being finitely generated as a
k-algebra and applying the Hilbert basis theorem.

Remark 7.3.4: Note that we are not assuming that L/K is separable, which is an assumption that
would simplify things. By the Krull-Akuzuki theorem, B will always be a Dedekind domain, but it
need not be finitely generated over A. So the “stem” to k is grounding the situation: it’s not just
a Dedekind domain, but rather an affine domain: a domain that is finitely generated over a field.
Note that this is much better than an arbitrary Dedekind domain!
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E 7.4 Regularity Lemma e

Proposition 7.4.1(Regularity Lemma).
Suppose that instead of K = ff(A), we instead have A ⊂ K an arbitrary subring, and L/K a
finite extension. Taking the integral closure B yields another NTI square:

B L

A K

⊂

subring

Suppose we have an upstairs valuation v on L. Then it makes sense to restrict valuations to
subfields, so

v ∈ Σ(L/B) ⇐⇒ v∣K ∈ Σ(K/A).

So the original valuation is B-regular iff the restricted valuation is A-regular.

Proof (?).
⇐Ô : Since A ⊆ B, being B-regular implies being A-regular.

Ô⇒ : Suppose A ⊂ Rv and x ∈ B, and choose a0,⋯, an−1 ∈ A such that

p(x) ∶= xn + an−1x
n−1 +⋯ + a1x + a0 = 0.

We can do this precisely because B is integral over A. So we have an integral relation for x,
and we want to show v(x) < 0 and derive some contradiction from the fact that v(ai) ≥ 0.
Note that we aren’t grounded to the base field here, so this valuation may not be discrete and
is rather some arbitrary Krull valuation.

If x /∈ Rv, then v(x) < 0, and we can thus write

v(xn) < min{v(ajxj) ∣ 0 ≤ j ≤ n − 1} ≤ v(p(x)).

This follows because the first term is nv(x), and so the next term can only be less negative

since v(aj) > 0. But this is a contradiction, since we know v(xn) = v(−
n−1
∑
j=0

ajx
j), and we’ve

exhibited two elements that differ by a unit (u = −1) which have different valuations.
∎

Next, let K/k be a one variable function, we want to give a nice description of its places. We already
described the places of a rational function field, and we know we can write the former function
fields as finite degree extensions of the latter. Choosing a transcendental t ∈K, to K/k(t) is a finite
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extension, restricting evaluations gives a map

r ∶ Σ(K/k)→ Σ(k(t)/k).

Claim: This is surjective with finite fibers, so it acts like a branched covering map.

This follows from NTI or NTII. The NTI method is taking an extension of Dedekind domains,
taking a prime ideal downstairs, and pushing it forward to see how it factors upstairs. The NTII
method is a field with a valuation and an extension of the field and you try to figure out how many
ways the downstairs valuation can be extended. If the valuations are discrete, these are the same
problem.

E 7.5 An Inequality on Degrees e

Theorem 7.5.1(Degree Inequality (NTII, 1.3)).
Let K be a field with v a rank one valuation with valuation ring R. Let L/K be a finite
extension of degree n. Then the set of valuations on L extending v is finite and nonempty, say
{w1,⋯,wg}.
For 1 ≤ i ≤ g, define

ei(L/K) ∶= ∣wj(L
×)

v(K×) ∣ ramification index

fi(L/K) ∶= [Rwi/mwi ∶ Rv/mv] residual degree,

so ei, fi ∈ Z> 0. Then

a. We have a useful inequality:
g

∑
i=1
ei(L/K)fi(L/K) ≤ [L ∶K] = n.

b. If v is discretea and the integral closure S of R in L is finitely generated as an R-module,
then this is an equality.

aIt will be discrete in our case. Note that this finiteness condition always holds if L/K is separable.

Remark 7.5.2: Note that a valuation can be extended in at least one way over any field extension,
finite or not. For finite extensions, there’s a more precise statement involving completing and
taking a tensor product, then identifying number of valuations with the size of some mSpec over a
finite-dimensional algebra over the field.

NTII shows that ei is a finite number by looking at the exponent of the pushforward. Also note that
we view mwi as an ideal lying over mv, and there is an inclusion of residue fields Rv/mv ↪ Rwi/mwi

which is in fact a finite degree field extension.

7.5 An Inequality on Degrees 37



7 Lecture 5: Places

Remark 7.5.3: Part (a) already shows that r is surjective with fibers of cardinality at most [L ∶K],
but we want equality. We claim is always holds when K/k is a one variable function field and
v ∈ Σ(K/k). There are examples where the inequality is strict, however. In our situation, it’s not
just an arbitrary extension, we have the aforementioned affine “grounding” phenomenon, and all of
these DVRs are going to be localizations of affine Dedekind domains. This is the key fact: arbitrary
extensions of Dedekind domains are nowhere near as nice as those where the bottom one is finitely
generated over a field.

Proof (First step).
We have a discrete valuation v on K, so let t be a uniformizing elementa for v. Then the
argument is that any such uniformizer t is transcendental over k. We’ll do this by arguing
t /∈ k and then that t is not algebraic over k either.
Since we’re assuming v is k-regular, t ∈ k Ô⇒ 1/t ∈ k and so v(1/t) ≥ 0, since every element
in k should have nonnegative valuation. But we’re supposed to have v(t) = 1 by definition of
being a uniformizer, so t can not be in k.
Suppose that t is algebraic over k, then k(t)/k is an integral extension, since we’re adjoining
one algebraic element. By the previous proposition we have that v is k(t)-regular, since being
regular is preserved by integral extensions. But now rerunning the argument in the previous
paragraph shows that this is a contradiction: being k(t)-regular would force v(1/t) ≥ 0, but
we’d still need v(1/t) = −1.
So t is transcendental over k, and k[t] is a polynomial ring.

∎
aAn element of valuation one.

Proof (Second step).
Let

• A be the integral closure of k[t] in K, and
• B be the integral closure of k[t] in L.

Instead of a NTI square, we’ll have the following 3-step diagram:

k[t] A B

k(t) K L

⊂

⊂

⊂

⊂

⊂

⊂ ⊂

So A is a Dedekind domain with ff(A) = K, as is B with ff(B) = L, making both A and B
finitely generated k[t]-modules. Why? This comes from the theorem of finiteness of integral
closure when the downstairs domain is grounded to a field. Since k[t] is finitely generated as
a k-algebra, this finiteness applies, which tells us that A finitely generated as a k[t]-module,
as is B. But if B is finitely generated as a k[t]-module and A ⊇ k[t] is an even larger ring,
then B is finitely generated as an A-module (potentially with fewer generators).
Thus B is a finitely generated A-module, and v is k[t]-regular since t was a uniformizing
element, making v regular on both k and t and thus k[t]. Then v is also A-regular by the

7.5 An Inequality on Degrees 38



7 Lecture 5: Places

proposition, and thus v = vp for some p ∈ mSpec(A) coming from our classification of A-regular
valuations on a Dedekind domain.
So the valuation on K is just the p-adic valuation on this Dedekind domain. This means there
is an equality of valuation rings R = Ap

a, the valuation ring of the Dedekind domain. So we
now consider S, the integral closure of R in L. This is a NTI situation, but the downstairs
Dedekind domain is a DVR, so it’s local downstairs. We thus have compatibility between
integral closure and localization in the form of S = Bp = B ⊗A Ap. This comes from taking the
whole integral closure B, and only looking at the primes lying over p. Base change preserves
finite generation, and we know that B was finitely generated as an A-module, so S is finitely
generated as an Ap-module and equality holds.

∎
aThis is the localization at p.

Remark 7.5.4: If Ap was a complete DVR, as opposed to just some localization of an affine domain,
B will be a semilocal Dedekind domain and thus a PID, and again the number of primes it has will
be the number of primes in the original Dedekind domain lying over the fixed prime p.

Remark 7.5.5: We’re not really using valuation theory here, and this could have been phrased
purely in NTI language. But even then, the degree inequality for extensions of Dedekind domains
needs finite generated of the Dedekind domain as a module over the bottom Dedekind domain
to ensure equality. You’d need a suitably algebraic text that considers not necessarily separable
L/K, and you really do want finite generation of B over A to make this work. See Dino Lorenzini’s
textbook!

Exercise 7.5.6 (?)
Let K/k be a one variable function field, and show that the cardinality of the set of points is
given by

∣Σ(K/k)∣ = ∣{monic irreducible polynomials p ∈ k[t]}∣ = max(∣k∣,ℵ0).

Remark 7.5.7: If you know that r is surjective with finite fibers, where the image is infinite (which
it is here), the domain should be infinite of the same cardinality by an easy set-theoretic exercise.
Note that using Möbius inversion, over a finite field there is at least one irreducible polynomial of
every degree, and finitely many of a fixed degree. So the cardinality is ℵ0 when k is a finite field. If
we took a one variable function field over C, we would get the cardinality of the continuum. In this
case, Σ(K/k) really is the set of points on some compact Riemann surface, although the Zariski
topology will be too coarse to coincide with the induced Euclidean topology.

Remark 7.5.8: Note that affine Dedekind domains are important for us because every finitely
generated field extension of k are precisely the fraction fields of affine domains over k, where the
transcendence degree of the function field equals the Krull dimension of the affine domain. We’re
especially interested in affine domains of dimension 1 over k. We established something particularly
important in this proof:

E 7.6 Affine Grounding and Residue Fields e
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Lemma 7.6.1(Affine Grounding).
Let K/k be a one variable function field and v ∈ Σ(K/k) be a place on that function field. Then
there exists an affine Dedekind domain A with ff(A) =K and a maximal ideal p ∈ mSpec(A)
such that Rv = Ap.

Thus we should think of the set of places as the mSpec of finitely many affine Dedekind domains
glued together. For each point (place), the basic open set around that point is the affine Dedekind
domain.

Corollary 7.6.2(?).
For v ∈ Σ(K/k), define the residue field of the local ring Rv as k(v) ∶= Rv/mv. Then k(v)/k
is a finite degree extension.

Proof (of corollary).
If R is a domain with maximal ideal p, then the quotient map factors through the localization,
giving R/p = Rp/pRp:a

R Rp

R/p

So by affine grounding, k(v) is also A/p where A is an affine Dedekind domain and p ∈
mSpec(A). This is Zariski’s lemmab : we showed that k(v) ≅ A/p, where A is a finitely
generated algebra and thus so are its quotients. Thus k(v) is not just finitely generated as a
field extension, but also as a k-algebra, making k(v)/k a finite extension.

∎
aThis is a truly standard fact from commutative algebra.
bA field extension that is finitely generated as an algebra is necessarily a finite degree extension.

Definition 7.6.3 (Degree of a Place)
The degree of v ∈ Σ(K/k) is [k(v) ∶ k] ∈ Z≥0.

We are especially interested in degree 1 places, i.e. those for which the residue field is equal to k
itself, so we denote these by Σ1(K/k). In any other course, we’d call this C(k), the rational points
on the associated curve.

Exercise 7.6.4 (Some motivation)
Let f ∈ k[x, y] be irreducible, so that A ∶= k[x, y]/ ⟨f⟩ is a 1-dimensional affine domaina. As
above, the resude fields of maximal ideals are finite extensions of k. Show that there is a
correspondence

{ Maximal ideals
p∈mSpec(A) } ⇐⇒ {(x,y)∈k×k ∣ f(x,y)=0} .

aThis may not necessarily be a Dedekind domain, since it need not be integrally closed.
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Remark 7.6.5: Note that the polynomial above may not define a smooth geometry, there may
instead be singular points:

Figure 1: Image

These singular points are what stops A from being integrally closed, which is literally true when k
is a perfect field.

Whereas Σ(K/k) is always infinite, Σ1(K/k) may be finite or even empty. When k = Q, it may in
fact be empty “most of the time” When k = Q, it may in fact be empty “most of the time”.

Exercise 7.6.6 (?)
For all v ∈ Σ(K/k), the degree of the point deg(v) will be divisible by [κ(K) ∶ k]. Thus if
κ(L) ⊋ k, then Σ1(K/k) = ∅.a

aUse the fact that the degree will be bigger than 1 when the constant field is bigger than k.

Note that before we were writing the residue field as an extension of k, and it’s worth checking that
the constant subfield embeds as a subfield of the residue field as well.

Remark 7.6.7: There is a tie to CM points on modular curves: if you have a function field over Q
which is not regular due to some proper algebraic subextension, the residue fields of all of the points
on the curve will contain the algebraic closure of the field of definition. Pete had some Q(Xn)
function field, whose constant subfield was Q(ζn) (adjoining the nth roots of unity), and none of
these modular curves over Q have closed points except when the residue fields contain Q(ζn).

Remark 7.6.8: This is a way for there to not be points on the curve, so Σ1(K/k) is empty, but
it’s not the deepest reason – this is a cheap trick to produce “pointless” function fields. It can fail
to have degree 1 places in many different ways!
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Exercise 7.6.9 (?)
Show that for for a one variable function field K/k TFAE:

1. Every v ∈ Σ(K/k) has degree 1,

2. k is algebraically closed.

Remark 7.6.10: One half is easy, since by definition the degree of the residue field is the degree
of some finite extension of the base field, but if k is algebraically closed, the degree of any finite
extension is one.

Exercise 7.6.11 (?)
For a field k, set P1(k) ∶= P(k2), the projectivization of k × k, i.e. the lines through the origin
in A2/k. By taking slopes of lines, P1(k) = k∐{∞}.

Figure 2: Image

Show that Σ1(k(t)/k) = P1(k), and deduce that

Σ(k(t)/k) = P1(k) ⇐⇒ k = k.

Next up we’ll talk about how the set of places is built from affine Dedekind domains. After this,
we’ll be ready for chapter 2: divisors and Riemann-Roch.

8 Lecture 6: Affine Domains and Places
Σ(K/k)

The aim of this lecture is to explain the difference (including some technicalities) between Σ(K/k)
and affine Dedekind domains R such that K = ff(R).

Recall that

• An affine domain over a field k is a domain that is finitely generated as a k-algebra,11

11These are very rich but easier to understand: take a polynomial ring in finitely many variables and mod out by a
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• An affine Dedekind domain is an affine domain that is also a Dedekind domain, so it is
integrally closed and of Krull dimension 1,

• An affine k-order is a one-dimensional affine domain. 12

Example 8.0.1(?): If f ∈ k[x, y] is irreducible, then k[x, y]/ ⟨f⟩ is an affine k-order. It is an affine
Dedekind domain if f is nonsingular over k, i.e. for all a, b ∈ k such that f(a, b) = 0, the usual partial
derivatives in the sense of Calculus ∂f

∂x
and ∂f

∂y
do not simultaneously vanish at (a, b). This is a

sufficient condition, although it’s not far from being necessary as well.

Remark 8.0.2: Let A/k be an affine Dedekind domain such that ff(A) = K. Then mSpec(A) =
Σ(K/A)↪ Σ(K/k). This follows because Σ(K/A) are the valuations that are not just regular on
k, but also on A, (i.e. A-regular valuations) so the valuation ring contains the entirety of A. It’s
thus natural to ask what its complement is, i.e. those valuations which are not regular on A and
give its elements negative valuation. So define

Σ(A,∞) ∶= Σ(K/k) ∖Σ(K/A),

the set of places at infinity with respect to A.

Example 8.0.3(?): Σ(k[t],∞) = {v∞}, which is the infinite place, so the terminology at least
matches up!

Proposition 8.0.4(Key).
For any affine Dedekind domain A, Σ(A,∞) is finite and nonempty.

Remark 8.0.5: This is striking! This says that one affine Dedekind domain is giving almost all of
this infinite set of places, but never all of it.

Proof (?).
By Noether Normalization a

there exists a t ∈ A that that A is a finitely generated (and thus integral) k[t]-module, and A
is the integral closure of k[t] in K. Why must this be the integral closure? Any ring finitely
generated over a subring will be an integral extension, and A is a Dedekind domain and thus
integrally closed. So let

r ∶ Σ(K/k)→ Σ(k(t)/k)

denote the restriction map; then by the regularity property we established in Proposition 7.4.1,
we have

Σ(K/A) = r−1 (Σ(k(t)/k[t])) .

Why? A valuation upstairs in the NTI square is regular with respect to the integral extension
upstairs iff it’s regular with respect to the ring it is the integral extension of. So regularity

prime ideal.
12These will be Noetherian by the Hilbert basis theorem, but may not be integrally closed.
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is preserved both ways by integral extensions. This means you can check regularity either
upstairs or downstairs, allowing us to identify the above preimage.
This means that the places where are not A-regular upstairs are precisely those which are not
k[t]-regular downstairs, and so we have

Σ(A,∞) = r−1 (Σ(k[t],∞)) = r−1(v∞),

since we now there is exactly one such non-regular valuation. But we showed that r was
surjective with finite nonempty fibers, so we’re done since our set is one of the fibers.

∎
aThis says that if you have an affine domain R of a certain Krull dimension, then it is finitely generated as
a module over a subring which is a polynomial ring in trdeg(R) variables. This is like a stronger integral
version of taking a finitely generated field extension and writing it as a finite degree field extension of a
purely transcendental extension.

Remark 8.0.6: Thus is K/k is a one variable function field and A is an affine Dedekind domain
with fraction field K, then Σ(K/k) = mSpec(A)∐S where S is finite and nonempty. Earlier we
saw by affine grounding that for each v ∈ Σ(K/k) there exists an affine Dedekind domain A with
v ∈ Σ(K/A), and thus Σ(K/k) admits a finite covering by mSpec of affine Dedekind domains. The
picture of what’s happening is that we have Σ(K/k) which is quasicompact with respect to the
Zariski topology, which contains many mSpec, at least one of which contains v. Note that these
mSpec(Aj) for affine Dedekind domains Aj is literally an open cover in this topology. But the open
sets are so large that they all have finite complement. However, this means that instead of just an
arbitrary open covering, one can choose a finite open covering: one mSpec(Aj) will cover all but
finitely many, and we can always find at least one mSpec(Aj′) covering all of the remaining points.
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Figure 3: Image

It will in fact turn out that we only need two domains to cover everything.

Definition 8.0.7 (Holomorphy Rings)
For a set S ⊆ Σ(K/k), define the holomorphy ring as

Rs ∶= ⋂
v∈Σ(K/k)∖S

Rv.

Remark 8.0.8: This is the intersection of a bunch of valuation rings, so this contains elements that
are simultaneously regular for this subset of valuations. If S ⊆ S′, then RS ⊆ RS′ , due to the fact
that we’re taking complements and Σ(K/k) ∖ S ⊃ Σ(K/k) ∖ S′, so we’re removing bigger sets and
thus intersecting over fewer things. This can be thought of as relaxing some regularity conditions.

Remark 8.0.9: How to think about holomorphy rings: if you take S = ∅, you intersect over all Rv
and obtain R∅ = κ(k). You get a field that is algebraic over k, so it’s very small compared to the
other types of field extensions that arise. We’ll see that this is “unrepresentably” small.
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Exercise 8.0.10 (Every affine Dedekind domain is a unique holomorphy ring)
If A is an affine Dedekind domain with fraction field k, then

A = RS = ⋂
v∈mSpec(A)

Rv S = Σ(K/k) ∖mSpec(A).

Remark 8.0.11: This is a fact for any Dedekind domain, which is the intersection over all of its
DVRs. You obtain the integral closure for a Dedekind domain by intersecting all of the valuation
rings, but here it is already integrally closed. Its tautological that A ⊂ RS here, so RS is an overring
of a Dedekind domain: for R a domain, an overring is any ring T such that R ⊆ T ⊆ ff(R). When R
is a PID, the overrings are in bijective correspondence with subsets of prime ideals (prime elements
mod associates), so you get all overrings by inverting such subsets. For Dedekind domains it’s more
complicated. Can we classify all overrings of R when it is a Dedekind domain? The answer will
eventually be yes. Under what condition is every overring a localization? When the class group is
torsion. What are the relationships between the class groups of the ring R and its overrings R̂? It
turns out that cl(R̂) is a quotient of cl(R). We will show that all such overrings are of the form
RW for some W , i.e. they’re obtained by intersecting some subset of the localizations of R at its
maximal ideals.

Note that the holomorphy ring in the exercise is obtained from a finite set of places. Conversely,
given any finite nonempty set of places, then the holomorphy of ring of all of the elements of K
that are regular with respect to all but this finite number of valuations will always be an affine
Dedekind domain with fraction field K.

E
8.1 Holomorphy Rings are Affine Dedekind

Domains with Fraction Field K
e

Next up is the main theorem of this lecture.

Theorem 8.1.1(Holomorphy rings on subsets are synonymous with affine Dedekind
domains with fraction field K).
Let K/k be a one variable function field and S ⊂ Σ(K/k) finite and nonempty. Then RS is an
affine Dedekind domain with ff(RS) =K and mSpec(RS) = Σ(K/k) ∖ S.

Exercise 8.1.2 (?)
If S ⊂ Σ(K/k) is infinite, then RS is Dedekind with fraction field K but is not finitely generated
as a k-algebra.

Remark 8.1.3: So what happens when you allow elements to fail regularity at an infinite set
of places instead of just a finite set? From the theory of Dedekind domains, this will again be
a Dedekind domain, but will be more exotic than an affine Dedekind domain. What if it were
finitely generated as a k-algebra? Then it would be an affine Dedekind domain, and we have a good
understanding of mSpec of these types of rings, and it would have to be a holomorphy ring with
respect to some finite set. Note that holomorphy rings for different subsets are distinct.
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Remark 8.1.4: We have an interesting class of rings: Dedekind domain which are holomorphy
rings with respect to an infinite set of places. What are they good for? They’re used in Pete’s
paper “Elliptic Dedekind domains revisited” to give a new proof of a theorem of Clayborne (60s, at
least the third proof) that every commutative group is the ideal class group of some RS .

Get citation.

The Dedekind domain used was a holomorphy ring RS with respect to some infinite set S. He starts
out with an elliptic function field K (so of genus 1 with a degree 1 place), and taking the standard
affine coordinate ring of the curve is RS for S the single degree 1 place. This is particularly nice,
since its class group is canonically isomorphic to C(k), the k-rational points of the elliptic curve.
When you pass from a Dedekind domain to an overring you get some quotient of the class group.
Note that there are three degrees of freedom here: you get to pick k to be any field, then K/k
some function field, and then S. For this paper, k was already some weird transfinitely iterated
field. The upshot here is that not only is every commutative group isomorphic to cl(T ) for T some
Dedekind domain, T is in particular a holomorphy ring of the form RS . This is pretty useful, but
not nearly as much as RS for S a finite set of places.

Definition 8.1.5 (Poles and Zeros)
Let f ∈K×, then a place v ∈ Σ(K/k) is a pole of f iff f /∈ Rv, and v is a zero of f iff f ∈ mv.

Lemma 8.1.6(The divisor of a rational function is well-defined.).
Let f ∈K× be nonzero, then

∣{v ∈ Σ(K/k) ∣ f /∈ RvS}∣ <∞ (finite poles)

∣{v ∈ Σ(K/k) ∣ f ∈ mvS}∣ <∞ (finite zeros).

So f is not regular at only a finite set of places, as as the set of points such that “f(p) = 0”,
i.e. f is in the maximal ideal which makes it zero in the residue field.

Remark 8.1.7: Thinking of f as a rational function, this says that the sets of points which are
poles or zeros are both finite.

Proof (of first statement).
If f ∈ κ(K), then both sets are empty, so assume otherwise that f is transcendental. This is
because if f is a nonzero constant function, i.e. it is algebraic over k, and both f, f−1 lie in all
of the valuation rings and none of the maximal ideals. Then the integral closure A of k[f] in
K is an affine Dedekind domain containing f .a But we’re done: for all v ∈ Σ(K/A), we have
f ∈ Rv and thus

Σ(A,∞) = Σ(K/k) ∖Σ(K/A),

which is finite by affine grounding. This is because Σ(K/A) already has finite complement, so
all but finitely many valuations are A-regular, and f ∈ A. Conversely, if f is nonconstant it
can not be regular at all places since it would then lie κ(K).

∎
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aPete’s Commutative Algebra, Theorem 18.4 (a normalization theorem).

Proof (of second statement).
Note that f ∈ mv ⇐⇒ vp(f) > 0 ⇐⇒ vp(1/f) < 0 ⇐⇒ 1/f /∈ Rv, so we can just apply the
first statement to 1/f .

∎

Exercise 8.1.8 (Function fields are always covered by mSpec of two affine Dedekind domains
(too easy!))
Show that there exist A1,A2 affine Dedekind domain such that

Σ(K/k) = Σ(K/A1) ∪Σ(K/A2).

Remark 8.1.9: This will follow from a theorem we haven’t proved yet. If we think of Σ(K/k) as
a compact Riemann surface, the theorem is saying that pulling out a single point (or any finite
number) then what’s left is mSpec(A) for A an affine Dedekind domain. So just pull out two
different points.

Remark 8.1.10: The lemma is allowing us to define the divisor of a rational function. We’ll define
DivK as the free Z-module with bases Σ(K/k). Any divisor will be of the form

D = ∑
p∈Σ(K/k)

np[p],

where all but finitely many of the np are zero. If we have a rational function f ∈K×, we’ll define

Div f = ∑
p∈Σ(K/k)

vp(f)[p].

How do we know this is well-defined? We need vp(f) = 0 for all but finitely many places p. But
vp(f) > 0 Ô⇒ f /∈ mp, and one part of the lemma said f can only lie in finitely many mp. On the
other hand, vp(f) can’t be negative, since this would imply f /∈ Rv.

This is extremely important: the map that sends a rational function to its divisor is multiplicative
and additive, so this yields a subgroup of DivK called the principal divisors. The quotient is
the class group of K, and now we are cooking with gas (as Pete’s undergraduate instructor used
to say).

Theorem 8.1.11(Strong Approximation).
Let X ⊊ Σ(K/k) be proper and let p1,⋯, pr ∈X. Let {xj}rj=1 ⊂K and {nj}rj=1 ⊂ Z. Then there
exists a single x ∈K such that

∀1 ≤ j ≤ r, vpj(x − xj) = nj
∀p ∈X ∖ {pj}rj=1 , vp(x) ≥ 0.

Remark 8.1.12: Note that X is allowed to be infinite, so the statement only gets stronger if we
allow a maximal proper subset where its complement is just a point. If we only had the first

8.1 Holomorphy Rings are Affine Dedekind Domains with Fraction Field K 48



8 Lecture 6: Affine Domains and Places Σ(K/k)

statement, this would be weak approximation. The conclusion is weaker, but it applies much more
generally. One first learns this in NTII, and it applies to any finite set of inequivalent norms on
a field. The second statement is a requirement that x is regular. If X were not all but one place,
we should replace it by that since it’d still satisfy the hypotheses. Enlarging X only makes the
conclusion of the second statement stronger, since this is enforcing more integrality conditions.

Proof (?).
Without loss of generality, assume that the complement Σ(K/k) ∖X = {p0} ∶= S is a single
place. We know that RS is an affine Dedekind domain (by a theorem stated but not proved
yet), so apply the Dedekind Approximation Theorema.

∎
aPete’s NTII, Proposition 1.17

Remark 8.1.13: Note that Stichtenoth uses Weil’s proof of Riemann-Roch to prove this. Too bad
he doesn’t have several hundred pages of lecture notes to draw on! The difference between weak
and strong approximation: weak applies to a finite set of places, and strong applies to all but one
place. Later in NTII there’s an adelic statement of strong approximation, which works in the more
general setting of a linear algebraic group over a global field. You can take the adelic points of that
group, remove one place, and ask if strong approximation holds. It turns out to depend on what
kind of algebraic group you have.

E 8.2 Proof of Main Theorem e

We return now to the proof of Theorem 8.1.1.

We’re trying to show that RS for S a finite and nonempty set of places is an affine Dedekind domain.
So we need to show that it’s Dedekind, and that it’s finitely generated over a field.

If ∅ ⊊ S1 ⊊ S2 are finite subsets of Σ(K/k), then RS1 ⊆ RS2 ⊂ K. By the structure theory of
Dedekind domains, 13 every overring of a Dedekind domain is again a Dedekind domain. This
allows us to restrict to the case where ∣S∣ = 1.

8.2.1 Case 1

We start with the case where K is a one variable function field, since it should certainly be true
there. So assume K = k(t). If S = {v∞} is just the infinite place, then RS = k[t] from a previous
discussion. This is definitely a Dedekind domain, since it’s an affine PID.

13Pete’s CA, Section 23.2.
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8.2.2 Case 2

The next case is one place of degree 1, so S = {vt−a} corresponds to a monic irreducible polynomial,
where we use the fact that the degree of the residue field is the degree of the polynomial. Then
RS = k [ 1

t − a]. This is holomorphic at ∞, since the degree in the denominator is bigger than that
of the numerator. So it lies in Rv∞ as well as Rvq for every monic irreducible polynomial q except
for t− a. This is a PID since it’s isomorphic to a polynomial ring, and has fraction field K. (?) We
certainly have a containment ⊇, but the RHS is already an affine Dedekind domain whose mSpec is
everything but this single place. By the theory of overrings, the only other possibility is that the
RHS is bigger, but going from a Dedekind domain to a larger Dedekind domain removes elements
from mSpec.

8.2.3 Case 3

Now consider the case S = {vp} with deg p ∶= d > 1. This corresponds to a monic irreducible
polynomial of degree bigger than 1. Note that k[t] ≅ k[α] for any transcendental α, so we can
take k[1/p] ⊂ RS . This is an affine PID, and the containment follows from the fact that 1/p is
holomorphic at ∞ (for the same reason as above). The only way it could not be regular with respect
to some polynomial q would be that after cancelling the numerator and denominator, q appears in
the denominator, and that happens precisely at p. Now taking fraction fields, we have ff k[t] = k(t)
and [k(t) ∶ k(1/p)] = d, the degree of the denominator, which follows from this exercise:

Exercise 8.2.1 (Basic but important)
If p(t)/q(t) ∈ k(t) is a nonconstant rational function, then what is the degree d ∶= [k(t) ∶ k(p/q)]?
Show that d = max {deg p,deg q}.

So k[1/p] ⊂ RS must be proper, since ff(RS) = K but ff(k[1/p]) is a proper extension. We can’t
have equality, so instead let A be the integral closure of k[1/p] in k(t). Then A is a Dedekind
domain with ff(A) = k(t) and mSpec(A) = Σ(k(t)/k) ∖ {vp} from the following NTI square:

A k(t)

k[1/p] k(1/p)

k

⊆

⊆

Link to diagram

By affine grounding, we know k[1/p] is an affine Dedekind domain, and by the second normalization
theorem we know that A is finitely generated as a module over k[1/p], which is in turn finitely
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generated as an algebra over k, making A a finitely generated k-algebra. The key ingredient in iden-
tifying mSpec(A) is that 1/p ∈ A. By a previous exercise, we can conclude that A is a holomorphy
ring, and since we know the exact excluded set is S, we can conclude A = RS . This makes A an
affine Dedekind domain.

For the final case, suppose S is finite and nonempty. Choose v ∈ S and define S1 ∶= {v}. Then
RS1 ⊆ RS ⊂K, so RS is a Dedekind domain since it’s an overring of a Dedekind domain. A surprising
fact is that A ∶= RS is not a PID when the degree is greater than 1, and instead cl(A) ≅ Z/dZ
and is thus torsion. It’ll be enough to show that RS is finitely generated as an algebra (but not a
module?) over RS1 , which will make it a finitely generated k-algebra, and we’d really like it to be
a localization. We examined this before: is every overring of a Dedekind domain a localization? A
theorem of Clayborne shows that this is true when the class group is torsion.

Let v2 ∈ S∖S1, so that every such v2 yields an ideal pv2 ∈ mSpecRS1 . Since cl(RS) = Z/dZ, we don’t
know that pv2 is principal, but we do know that pαv2 is for some power α Note that localization is
forgiving in the sense that inverting an element x is equivalent to inverting any power xk (e.g. using
that 1/x = xk/xk+1). So we can write pαv2 = ⟨f⟩, and it follows that R{v,v2} = Rv[1/f] is an affine
domain which is obtained by localizing f . Note that we can think of this overring as puncturing
or removing one place (a certain maximal ideal) at a time, i.e. intersecting over all of the maximal
ideals except one in order to go from RS1 = R{v1} to R{v1,v2}. You can continue this inductively
using the fact that Rv[1/f] is a different Dedekind domain – since it’s an overring, the corresponding
class group is a quotient and thus still torsion. You could also continue this inductively by just
puncturing one point at a time. You can also do it all at once: for each element in S not equal to
v1, obtain an fj , and invert the product ∏

j

fj .14

Key fact: We’re in a lucky situation where we don’t have a PID, but we have a torsion class group.
Anytime you pass to an overring by puncturing finitely many maximal ideals, it will always be a
localization and thus monogenic as an algebra over the smaller Dedekind domain.

E 8.3 Case 3: Fixed Proof e

The remainder of the proof will go toward reducing to the first step of a function field and exactly
one place. We’ll apply the Riemann-Roch theorem, however this does not rely on results on holo-
morphy rings, so there’s no logical circularity. As usual, we lose no generality by replacing k with
κ(K) and just assuming that κ(k) = k.

Let S ⊂ Σ(K/k) be finite and nonempty. Then by Riemann-Roch there exists an f ∈ K× having
poles precisely at the elements of S, i.e. f is regular away from S.

14Alternatively, see Pete’s Commutative Algebra, Corollary 23.6.
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Recall that poles were defined as elements not in Rv. This is motivated by considering meromorphic functions
f on C, then the order of vanishing of f at p is a discrete valuation, and if that valuation is negative then
p is a pole.

Note that we’re specifying the poles but not their orders, and allowing poles of arbitrary orders
would still allow us such a rational function by a result like the Riemann inequalities, which is easier
to prove than the Riemann-Roch theorem. You can also obtain such a function from the Strong
Approximation theorem.

Since f has poles, it’s nonconstant, so we have a nontrivial map r ∶ Σ(K/k) → Σ(k(f)/k) to a
rational function field and thus r−1(∞) = S since the poles all like above the place at ∞. The
analogy here is a holomorphic function f from a compact Riemann surface to P1

/C, in which case
f−1(∞) is the set of poles. Since k[f] is a polynomial ring, we can take the integral closure of k[f]
in K, say B, in which case B is an affine Dedekind domain and mSpec(B) = Σ(K/k) ∖ S.

The picture is as follows: think of k(f) as the Riemann sphere with the point ∞ and Σ(K/k) as a
Riemann surface above it, then S is the preimage of ∞.
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Figure 4: Image

If you have an upstairs valuation v ∈ Σ(K/k) in an integral extension, then it is regular upstairs iff
its restriction downstairs is regular. Completing the NTI square yields

B K

k[f] k(f)

⊆ ⊆

⊆

⊆

Link to diagram

Here B is the integral closure. So if we take a valuation in K, it is B-regular iff its restriction to
k(f) is A-regular. But Rv contains k[f] iff it contains f , since it’s already a k-valuation, so the
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non-regular valuations are those that restrict to ∞.

Now if you have an extension of Dedekind domains, then the maximal ideals upstairs are everything
which restricts to a finite place downstairs. So those that don’t restrict to a finite place restrict to
∞, which is precisely the preimage of ∞. With the identification of mSpec(B) = Σ(K/k) ∖ S,we
have B ⊂ RS since every valuation in the complement of S is regular at B by this argument.
Since B ⊂ RS ⊂K, we can use the classification of overrings of Dedekind domains, and the mSpec
corresponds to precisely the maximal ideals that are being intersected. The only way this could
be a proper extension would be if the mSpec shrank, but then RS would be the holomorphy ring
attached to a larger set than S. So we obtain an equality.

∎

9 Lecture 7: Riemann-Roch

E 9.1 Divisors e

Definition 9.1.1 (Divisor group)
The divisor group DivK is the free Z-module with basis Σ(K/k), so

DivK ∶= ⊕
p∈Σ(K/k)

Z.

Thus every D ∈ DivK is of the form D = ∑
p∈Σ(K/k)

npp where np ∈ Z and are almost all zero,

recalling that a point p ∈ Σ(K/k) is an equivalence class of valuations.

Definition 9.1.2 (Effective Divisor)
A divisor D =∑npp is effective iff np ≥ 0 for all p and write D ≥ 0.

Definition 9.1.3 (Support of a divisor)
The support of a divisor D is the set of places p ∈ Σ(K/k) such that np(D) ≠ 0. Note that
this is always a finite set, and the zero divisor is the unique divisor supported on ∅.

Definition 9.1.4 (Partial order on divisor)
We write D1 ≤D2 iff D2 −D1 ≥ 0 is effective. Note that this holds iff for all places p ∈ Σ(K/k),
if D1 =∑

p

mpp and D2 =∑
p

npp, then mp ≤ np for all p.

This is a partially ordered commutative group, which came up when we were talking about groups
of divisibility. It’s a reasonable group when studying domains with nice factorization properties:
if R is a UFD with a set of principal prime ideals15 denoted Σ(R), then the group of divisibility

15Note that primes in a UFD are principal.
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G(R) is isomorphic to ⊕
(p)∈Σ(R)

Z as a partially ordered commutative group.

There is an analogy: comparing UFDs to Dedekind domains, we trade unique factorization of
elements for factorization of ideals, and the group of all fractional ideals in a Dedekind domain is a
free commutative group on its set of prime ideals. So DivK is analogous to the group of divisibility
of a UFD and to the group of fractional ideals of a Dedekind domain, the latter of which is the
closer analogy. So DivK is a geometric or projective analog of the group of fractional ideals, and is
more than an analogy as we’ll see later.

Definition 9.1.5 (Degree of a Divisor)
There is a group morphism

deg ∶ DivK → Z
D =∑

p

npp↦∑
p

np deg p.

Its kernel is denoted Div0K, the degree zero divisors. Note that if k = k, then deg p = 1 for
all p.

Remark 9.1.6: Note that this is similar to the augmentation in a group ring. This construction
can be done with any free Z-module, and makes sense because only finitely many terms are nonzero.
Recall that to define the degree of a place v ∈ Σ(K/k), we consider Rv ∶= {x ∈K ∣ v(x) ≥ 0} and

mv ∶= {x ∈K ∣ v(x) > 0}, and k(v) ∶= Rv/mv is the residue field. Note that k(v) is a field extension
of k by composing k ↪ Rv ↠ k(v), and we proved used affine grounding and Zariski’s lemma that
this was a finite degree extension. We can then define deg v ∶= [k(v) ∶ k]. Note that it’s more natural
to think of valuations v as points p.

Definition 9.1.7 (Index of a divisor)
The index of K is defined as

I(K) ∶= ∣coker deg∣.
a

aThis quantity made an appearance near the end of Pete’s advanced course on elliptic curves.

Remark 9.1.8: Note that I(K) is nonzero, since we can think of p ∈ DivK as the divisor with
nq = 1 [q = p], so the image contains a subset consisting of all degrees of all places, so the image is
of the form dZ for some d. Some other characterizations:

• deg (DivK) = I(K)Z, so I(K) is the generator of the degree ideal.
• I(K) is the least positive degree of a divisor on K.
• I(K) = gcd ({deg p ∣ p ∈ Σ(K/k)}), i.e. the gcd of the closed points.

The last characterization follows because we have generators of DivK given by “skyscraper” divisors
p where nq = 1 ⇐⇒ p = q, so the image is the subgroup of Z generated by the degrees of the points,
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i.e. the gcd of the degrees.

Exercise 9.1.9 (?)
Let K/k be a one variable function field.

a. Show that if Σ1(K/k) ≠ ∅ then I(K) = 1.

b. Later we will show that if ∣k∣ < ∞ then I(K) = 1 but Σ1(K/k) may be empty. Try to
show this.

c. Show that if k = k then I(K) = 1.

Remark 9.1.10: (a) follows from the Riemann hypothesis for curves over a finite field, although
this is not how you should prove it. It was proved by F.K. Schmidt much earlier in the 20th
century, and this is the basic way of understanding the zeta function of a curve.

(b) says that over a finite ground field, you may not have any degree 1 places. You can try
constructing a hyperelliptic curve over a finite field Fq with no rational points, which is always
possible if the genus is large compared to the size of Fq.

Lemma 9.1.11(?).
For a nonzero rational function f ∈K× we have vp(f) = 0 for almost every place p ∈ Σ(K/k).

Proof (?).
See previous lecture, in particular Lemma 8.1.6.

∎

This says that the set of places for which the valuation is nonzero is finite, so except for finitely
many places the valuation is zero. This allows us to define the divisor of a rational function:

( ⋅ ) ∶K× → DivK
f ↦ (f) ∶=∑

p

vp(f)p,

which is a group morphism.

Exercise 9.1.12 (?)
Show that (f) = 0 ⇐⇒ f ∈ κ(K), which we’re assuming is equal to k. This happens when it
has neither zeros nor poles, so it’s an intersection of all of the Rv, which is the integral closure
of k in K. In general, this would mean that f is algebraic over k. So ker( ⋅ ) = k×.

Definition 9.1.13 (Poles and Zeros of Elements of K)
For any D ∈ DivK one may uniquely write it as D =D+ −D−, which are both effective divisors
and so D+,D− ≥ 0, and the uniqueness follows from requiring supp(D+) ∩ supp(D−) = ∅. Note
that this is just collecting positive and negative np into each term, and leaving out all divisors
for which np = 0.
For f ∈K×, we define

(f)+ ∶= the divisor of zeros of f
(f)− ∶= the divisor of poles of f,

9.1 Divisors 56



9 Lecture 7: Riemann-Roch

where we can note that (f) = (f)+ − (f)−.

The next proposition shows that these geometric divisors can be interpreted in terms of Fq points.

Proposition 9.1.14(?).
Let f ∈K ∖ k be transcendental.

a. Let B0 be the integral closure of k[f] in K, which is an affine Dedekind domain of K,
i.e. its fraction field is K.a

Then

fB0 =
r

∏
j=1

p
aj
j Ô⇒ (f)+ =

r

∑
j=1

ajpj .

b. Let B∞ be the integral closure of k[1/f] in K, which is an affine Dedekind domain of
K. Then

( 1
f
)B∞ =

s

∏
j=1

q
bj
j Ô⇒ (f)+ =

s

∑
j=1

bjqj .

aAs usual for an extension of Dedekind domains, we push forward an ideal (maybe principal) into its integral
closure and see how it factors.

Exercise 9.1.15 (?)
Prove this proposition.

Remark 9.1.16: This says that pushing forward an ideal and looking at the factorization is precisely
what’s needed to determine the divisor of zeros. There aren’t many new ideas for this proof, the
point is that the set of places upstairs is being controlled by mSpec of Dedekind domains.

Slogan 9.1.17
In any affine coordinate chart, the divisor of a function is a principal fractional ideal.

E
9.2 The Degree of the Divisor of a

Rational Function is Zero
e

Corollary 9.2.1(Excruciatingly Important: the degree of the divisor of any rational
function is zero.).
Let f ∈K ∖ k be transcendental, then

a. deg(f)+ = [K ∶ k(f)] = deg(f)−

b. deg(f) = 0.
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Remark 9.2.2: Here think of f as a holomorphic map from a curve to P1
/C, and the degree of this

extension is the degree of the corresponding branched cover. For C, this is literally the cardinality
of any finite fibers. Note that (a) follows by symmetry sense k(f) ≅ k(1/f).

Proof (?).
This comes down to NTI. We know deg(f)+ = ∑ j = 1raj deg pj . In K/k(f), the places
p1,⋯, pr all lie over the degree 1 place vf of k(f). The places where upstairs you have a zero
are the places where to coordinate downstairs is equal to zero, which corresponds to the
irreducible polynomial in f given by f itself. Since the residue field at vf downstairs is k
itself, since it is k[f]/ ⟨f⟩. So the downstairs places has degree 1, and so the degree of the
upstairs places, whatever the residue field is, its degree over k is equal to its degree over the
downstairs residue field. Thus the geometric deg pj coincides with the residual degree fi, and
ai is the ramification index in the extension of Dedekind domains B0/k[f].

So we have a degree equality,
r

∑
j=1

aj deg pj =∑ ejfj = [K ∶ k(f)],

where the second equality follows from having an extension of Dedekind domains with this
nice finite generation hypothesis. We similarly get [k ∶ k(f)] = deg(f)−.

Note that part (b) follows immediately, since (f) = (f)+ − (f)− implies that

deg(f) = deg(f)+ − deg(f)− = [k ∶ k(f)] − [k ∶ k(f)] = 0.

∎

Remark 9.2.3: We have two different things that sound like the degree of a rational function. We
define the degree of a rational function f ∈K ∖ k as [K ∶ k(f)], otherwise it is the degree (number
of sheets) of the corresponding branched covering of P1. But note that we also attached a divisor to
f , which may be confusing, be hard to confuse in practice because we found that deg(f) = 0 always.

Definition 9.2.4 (Principal Divisors)
The divisor of a rational function is called principal, we define PrinK to be the group of
principal divisors.

Exercise 9.2.5 (PrinK is a group)
For f, g ∈K×, show that

a. (1/f) = −(f),

b. (fg) = (f) + (g),

c. PrinK ≤ Div0K is a subgroup (since we know they’re degree zero).
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Definition 9.2.6 (Linear Equivalence)
For Di ∈ DivK, we set D1 ∼D2 ⇐⇒ D1 −D2 ∈ PrinK, in which case we say these divisors are
linearly equivalent.

Remark 9.2.7: Near the end of the course we’ll see why this is good terminology: it’s related to
morphisms of projective space attached to linear systems.

Definition 9.2.8 (Divisor Class Group)
We define the divisor class group as

clK ∶= DivK/ ∼= DivK/PrinK.

But note that there’s something between PrinK and DivK, namely Div0K:

Definition 9.2.9 (Degree 0 Divisor Class Group (Important! Fundamental!))
We define the degree 0 divisor class group as

Cl0K ∶= Div0K/ ∼= Div0K/PrinK.

Remark 9.2.10: This is extremely important! Attached to a curve is a Jacobian abelian variety,
a nice group variety whose dimension is equal to the genus of the curve, and the k-rational point of
the Jacobian will become a commutative group that is isomorphic to Div0K.

Exercise 9.2.11 (?)
Show that we have the following exact sequences:

a.

1→ k× →K× ( ⋅ )ÐÐ→ PrinK → 0.

b.

0→ Cl0K → ClK degÐÐ→ I(K)Z→ 0.

Deduce that ClK ≅ Cl0K ⊕Z.

Remark 9.2.12: For (a), we saw that rational functions that have zero divisors are constants,
assuming that κ(K) = k. For (b), because principal divisors have degree zero, the degree map
factors through the quotient. The deduction comes from that fact that we have a free and hence
project Z-module, yielding a splitting.

Exercise 9.2.13 (Very important, Pete insists that someone solves it!)

a. Show that Div0 k(t) = Prink(t).

b. Deduce that deg ∶ Clk(t) ∼Ð→ Z and cl0 k(t) = 0.
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Remark 9.2.14: Note that I(K) = 1 in this case since both the t-adic or ∞-adic valuation have
degree one. Moral: the class groups are not interesting on rational function fields. You have to take
a degree zero divisor on a rational function field and build a rational function whose divisor is any
given degree. This is extremely useful!

Remark 9.2.15: More general if K/k has genus zero (e.g. a rational function field), then working
over C we would have Cl0K equal to the points of some compact complex Lie group of C-dimension
g, so a large complex torus, unless g = 0. So if k = k, Cl0K will be uncountably infinite when g > 0.
If not, it might trivial, or it might be anything in between.

The following result appears in a 1973 paper of Rosen, where he attributes it to F. K. Schmidt. It
gives a close relationship between Cl0K and the class groups ClRS of the affine Dedekind domains
of K. This shows that instead of Cl0K just being an analogue of the class group of a Dedekind
domain, there’s almost the same. If you fix K, Cl0K is just one group attached to it, but there are
infinitely many RS since there are infinitely many places. So these groups can not be equal, since
we could change the size of S to obtain overrings of Dedekind domains, where the resulting class
groups are quotients. So you could kill finitely many elements in the class group of the Dedekind
domain by just passing to an overring by adding finitely more places.

Theorem 9.2.16(Rosen).
Let S ⊂ Σ(K/k) be nonempty and finite, and recall that the holomorphy ring was defined as

RS = ∩v∈Σ(K/k)Rv.

Define the following:

• D0(S): the degree 0 divisors with support in S.
• P (S) ∶= PrinK ∩D0(S), the principal divisors supported in S.

– Divisors of rational functions all of whose zeros and poles lie in S.

• dS : The least positive degree of a divisor supported on S.

– Note that this is different to the index in that we restrict to S, and is thus a multiple
of I(K).

Then there is an exact sequence

0→D0(S)/P (S) ιÐ→ Cl0K αÐ→ ClRS βÐ→ C(d/I(K))→ 0.

Proof (?).
See NTII, Theorem 3.27.

∎

Remark 9.2.17: Note that the kernel D(S)/P (S) could be infinite but is always finitely generated.
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The map α is induced by

α′ ∶ DivK → FracRS

∑npp↦ ∏
p∈mSpecRS

pnp ,

where we note that mSpecRS ⊂ Σ(K/k), and in fact Σ(K/k) = mSpecRS∐S. We can do this
because if p is already in maxSpecRS , we raise it to an appropriate power, and otherwise, for the
finitely many p ∈ S we just get rid of them. But this kills of some elements, namely those things
supported in S, hence the kernel in the exact sequence.

Note that the last group appearing is finite cyclic of order d/I(K). If you just looked at D0(S)
before modding out by principal divisors, if you didn’t impose degree zero, the subgroup would be
isomorphic to Z∣S∣. But there’s a linear condition that the degree is equal to zero, which cuts down
the dimension by 1, yielding Z∣S∣−1. It’s hard to say how much P (S) is cutting down the size.

Remark 9.2.18: The moral is that there is a map, but the kernel and cokernel both depend on S.
If you understand Cl0K, however, you have a good handle on all ClRS .

Exercise 9.2.19 (?)

a. Show that D0(S) ≅ Z∣S∣−1.

b. Suppose S consists of a single place whose degree is the quantity dS appearing in the
previous theorem, the least positive degree of a divisor supported on S. Show that there
is an exact sequence

0→ Cl0K αÐ→ ClRS βÐ→ C(dS/I(K))→ 0.

c. Deduce that α is an isomorphism iff I(K) = d.

d. Deduce that if p ∈ Σ(k(t)/k) has degree d, then ClR{p} ≅ Z/dZ.

e. Deduce that if S = {p} and deg p = 1, then α ∶ Cl0K → ClRS is an isomorphism.

Remark 9.2.20: Note that if you’re given a finite set of places and ask for all of the rational
functions that have zeros and poles only at those places, it is difficult to determine how close that
is to filling out the entire degree zero divisor class group? If you have two degree 1 points pi, so
∣S∣ = 2, do you have a rational function whose divisor is p1 − p2? Probably not, because then the
divisor of such a function would have degree 1. You can continue this line of thought, but already
using elliptic function fields you can see that all of these algebraic possibilities can occur.

Remark 9.2.21: Note that in the case where S is a single point of degree d, then dS is equal to
the degree of the point d. On the other extreme, consider what happens when I(K) = 1. Then
C(dS) is cyclic of order d, so in (c) if we have a rational function field, we know it has degree 1
places (like 0,∞), and the class group is zero. So if you take one place on P1 of degree d and look
at the correspond affine Dedekind domain of functions that are regular away from that one place
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R{p}, then the class group is nontrivial and it’s thus not a PID. Note that Cl0 P1 is trivial, and
puncturing it has an effect on the divisor class.

Exercise 9.2.22 (?)

a. Suppose Cl0K is finite, and show that every ClRS is finite. a

b. Suppose Cl0K is finitely generated, and show that for all finite nonempty S ⊂ Σ(K/k),
there exists a finite S′ ⊃ S such that ClRS′ is trivial.

aLater we will show that Cl0K is finite when k is finite.

Remark 9.2.23: This is the positive characteristic version of one of the basic finiteness theorems
from NTI: the ring of integers of any number field has finite class group. But the S-class group is
always finite, since it’s a quotient of the class group, and that’s what’s happening here. It’s enough
to show that the Cl0K and C(dS/I(K)) appearing in the SES in the previous theorem are finite,
since the first term can only cut down the size. The groups ClRS when k is finite are analogues of
the S-class groups of number fields. In the function field case, you can’t get away from the S-class
group, since if S = ∅ then RS is not an interesting Dedekind domain: it’s just κ(K). So you have
to put something at ∞ to even get a 1-dimensional domain, whereas in the number field case, you
always have a finite nonempty set of nonarchimedean places.

This allows us to deduce from the finiteness of this one geometric group the finiteness of S-class
groups in the characteristic p case. If done correctly, this can be used to prove the finiteness of
class groups of all number fields, e.g. if you do things in an adelic way in NTII.

Theorem 9.2.24(Trotter, 1988).
The ring R[cos θ, sin θ] of real trigonometric polynomials is not a UFD, while C[cos θ, sin θ] is
a PID.

Remark 9.2.25: Trotter shows that using sin(θ) sin(θ) = (1 + cos(θ))(1 − cos(θ)) exhibits non-
unique factorization, since the terms appearing are non-associate irreducible elements in an integral
domain. See Pete’s list of exercises. Note that given an affine Dedekind domain how one figures out
what the infinite places are concretely, but this will come up when discussing hyperelliptic curves.

Remark 9.2.26: One exercise applies Rosen’s theorem to show that ClR[cos(θ), sin(θ)] = Z/2Z
while ClC[cos(θ), sin(θ)] = 1. What’s happening is that over R, there is perhaps one degree 2 place
at ∞, but after extending scalars to C it breaks up into two degree 1 places.
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E 10.1 Setup for the Riemann-Roch Theorem e
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Setting up for the single most important theorem in the course: the Riemann-Roch theorem. We
start by motivating this by considering the following property of K ∶= k(t): for any degree 116 place
p ∈ Σ(K/k), there exists an f ∈K× such that (f)− = p. In other words, f is a rational function with
a simple pole at the given place, and no other poles. Why? We just know precisely what all of the
places are for this function field.

If p =∞, we can just take f(t) = t, since any polynomial is regular away from ∞ and the valuation
is −deg(f) = −1 The other places p correspond to t − α (the uniformizing element) for α ∈ k, since
they correspond to other points on A1

/k, and so we can take f(t) = 1/(t − α). This f is regular at
infinity since the degree of the numerator is larger than the degree of the denominator, and the
denominator doesn’t vanish at any other place.

Remark 10.1.1: With some thought, it can be found that this is a characteristic property of
rational function fields: if f ∈K, a one variable function field, and deg(d)− = 117 then the degree of
the function is equal to the degree of the divisor of the zeros and the divisor of the poles, and thus
the degree of the extension [K ∶ k(t)] = 1 and thus K = k(t) is rational. So having a rational with
a simple pole at only one point only happens in you’re in a rational function field.

On the other hand, we both wanted and used in our discussion of holomorphy rings the fact that
given a nonempty finite subset S ⊂ Σ(K/k), we want to find a rational function f ∈ K× has poles
at all of the points in S, so supp(f)− = S. Better yet, we’d like a bound on the degree of any such
f , i.e. the orders of all of these poles. If S is a single place, unless the function field is rational, we
can’t require the function to have a pole of degree 1 at that point. But can it admit a pole of degree
at most 10, for example? This is what motivates the Riemann-Roch spaces and the Riemann-Roch
theorem. If you’re trying to give a quantitative bound on how high of an order of a pole you have
to allow in order to have a rational function, this comes from a key invariant called the genus of
the function field. The theorem that will tell us about the existence of rational functions with poles
of prescribed degrees in terms of the genus is precisely the Riemann-Roch theorem, so that’s where
we are headed.

E 10.2 The Riemann-Roch Space e

Definition 10.2.1 (Riemann-Roch Space of D (Key Definition))
For D ∈ DivK, the Riemann-Roch space of D is defined as

L(D) ∶= {f ∈K× ∣ (t) ≥ −D} ∪ {0} .

Remark 10.2.2: This will turn out to be a k-vector space, and is a sub k-vector space of K. One
of the first things we’ll prove is that it’s always finite dimensional. This is only interesting when

16So the residue field of the corresponding DVR is k itself rather than some proper finite degree extension.
17Recall that this is the divisor pole.
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D is linearly equivalent to an effective divisor, so we should think of D as having a nonnegative
degree, and in fact itself being an effective divisor. So this is the space of rational functions that
have prescribes poles of a prescribed order.

Question 10.2.3
Does L(D) contain any rational functions other than zero?

Answer 10.2.4
For any nonzero f ∈ L(D)●, the divisor D + (f) is effective, since (f) ≥ −D, and also linearly
equivalent to D. If D is not linearly equivalent to an effective divisor, this is just the zero vector
space.

Exercise 10.2.5 (?)
Let K = k(t) and n ∈ Z≥0. Show that

L(n∞) = {f ∈ k[t] ∣ deg f ≤ n}

and in particular is a k-vector space of dimension n + 1.a

aRecall that ∞ is the 1/t-adic place.

Remark 10.2.6: Note that ∞ is a degree 1 place, and multiplying it by n yields an effective divisor.
The Riemann-Roch space here is comprised of rational functions that regular away from ∞, which
are polynomials, whose pole at ∞ has order at worst n. But the order of a pole at infinity is its
degree as a polynomial, since the ∞-adic valuation is the negative degree, so this yields polynomials
of degree at most n.

E 10.3 Working with Divisors e

Lemma 10.3.1(?).
For D ∈ DivK,

L(D) ≠ {0} ⇐⇒ 0 is equivalent to an effective divisor.

Proof (?).
Ô⇒ : If f ∈ L(D)●, then D + (f) is effective and linearly equivalent to zero.
⇐Ô : If D′ ≥ 0 and D′ ∼D, then D′ =D + (f) ≥ 0. So (f) ≥ −D and thus f ∈ L(D).

∎

Example 10.3.2(?): L(0) = {f ∣ (f) ≥ 0}∪ {0}, which consists of rational functions with no poles
(so their divisor is the zero divisor), and thus L(0) = κ(K). I.e., these are the constants: they are
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regular everywhere and have no zeros or poles. We would like this space to have k-dimension 1, so
we impose κ(K) = k.

Exercise 10.3.3 (?)

a. Show that for all D, L(D) ∈ Vectk.
b.

D ∼D′ Ô⇒ L(D) ≅Vectk L(D′).

Remark 10.3.4: You can frame the above as taking rational functions with poles of certain orders,
and analyzing the orders of poles of their sums. If you take D′ and write it as D + (f) for f a
rational function, then f should produce this isomorphism. The moral: L(D) only depends on the
linear equivalence class of D.

Exercise 10.3.5 (?)
Let D ∈ Div0K be a degree zero divisor, then TFAE:

a. dimL(D) ≥ 1
b. dimL(D) = 1,
c. D is principal, i.e. the divisor of a rational function or linearly equivalent to zero.

Slogan 10.3.6
The only way a degree zero divisor can have a nontrivial Riemann-Roch space is if it’s linearly
equivalent to zero.

E
10.4 Subspaces and Dimension of

Riemann-Roch Spaces e

Lemma 10.4.1(?).
Let A ≤ Ba in DivK, then

a. L(A) ≤Vectk L(B) is a subspace,
b. dimL(B)/L(A) ≤ degB − degA = deg(B −A).

aThese are formal linear combinations of places, so the coefficients in front of each place in A should be less
than the corresponding coefficient for B, or equivalently B −A is effective.

Remark 10.4.2: Since B ≥ A, you can think of this as starting with A and adding an effective
divisor to get B, namely A + (B − A) = B. How much does that decrease the dimension of the
Riemann-Roch space? At most, by the degree of B −A as a divisor.

Corollary 10.4.3(?).
For D ∈ DivK,
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a. If degD < 0 then L(D) = 0.
b. If deg(D) ≥ 0 then dimk L(D) ≤ deg(D) + 1 <∞.

Remark 10.4.4: This shows that Riemann-Roch spaces are always finite dimensional, and also
gives a simple upper bound on that dimension.

Proof (of corollary).
For (a), a divisor of negative degree is not linearly equivalent to an effective divisor, so we
might as well assume it’s effective.
For (b), the dimension of L(D) doesn’t change if D is replaced by a linearly equivalent divisor,

so wlog assume D is effective. Now write D =
r

∑
i=1
pi as a sum of not necessarily distinct places,

and use the lemma: each time you add an effective divisor, the dimension either stays the same
or increases by at most the degree of the added divisor. So start with the zero divisor, use
the fact that dimk L(0) = 1, and apply the lemma r times. This yields a space of dimension at
most 1 +∑deg pi = degD.

∎

Proof (of lemma, part (a)).
If A ≤ B and f ∈ L(A), then (f) ≥ −A. Since −A ≥ −B, we have (f) ≥ −A ≥ −B, so f ∈ L(B).

∎

For the next part, it’s perhaps easiest to consider the case k = k so everything has degree 1. If
you go from a divisor to adding a single degree 1 place, this lemma says that if you increase your
Riemann-Roch space by either allowing a pole at a point you didn’t allow before or allowing a pole
of order 1 greater, then the dimension increases by at most 1.

Proof (of lemma, part (b)).
From the previous argument, we see that it’s enough to do this one place at a time. So we can
easily reduce to the case B = A+P for P some place of degree not necessarily equal to 1 (since
we’re not assuming k = k), using that fact that B ≥ A. So choose an element t ∈K such that

vp(t) = vp(B) = vp(A) + 1,

since B is built from A by adding a single copy of P . For f ∈ L(B), we have by definitiona

vp(f) ≥ −vp(B) = −vp(t),
and so by bringing t to the other side we get vp(ft) ≥ 0 and thus ft ∈ Rp (the corresponding
local ring). This allows us to define a k-linear map

ψ ∶ L(B)→ k(P ) = Rp/mp

f ↦ ft (mod )mp.

In words, we multiply f by t to make it p-adically regular, then look at its image in the
residue field. The kernel is precisely those elements x such that multiplying by t lands in the
maximal ideal mp, which means that v(x) as 1 more than it could have been. So the kernel is
all elements such that multiplying by t and taking the valuation gives at least one, thus

kerψ = {f ∈ L(B) ∣ vp(f) ≥ −vp(t) + 1 = −vp(A)} = L(A),
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which follows since B and A only differ at P , since B = A + P , so the divisors A,B have the
same coefficient at every other place. We thus have the following diagram:

0 L(A) L(B) L(B)/L(A) 0

k(P ) = Rp/mp ⋯

∃ι
ψ

Link to diagram
where we can conclude that the indicated injection exists, and thus

dimL(B)/L(A) ≤ [k(p) ∶ k] = degP.

∎
aNote that vp is the p-adic valuation, i.e. the coefficient of P in the divisor as a formal linear combination of
points.

Fact 10.4.5
For p ∈ Σ(K/k) with residue field kp and [kp ∶ k] = d, defining Kp as the completion of K with
respect to ∣ ⋅ ∣p, there is an isomorphism Kp ≅ kp((t)), a formal Laurent series field. One issue is
that if d = 1 then k ⊂ kp, but not for general d ≥ 2. However, taking the completion results in k ⊂Kp

again. This shouldn’t be too surprising from the perspective of local fields in NTII. There is a
structure theory of complete discretely valued fields. This is an equicharacteristic such field, i.e. the
characteristic of the field agrees with that of the residue field, and all equicharacteristic discretely
valued fields will be isomorphic to a ring of formal Laurent series. This isn’t a fact of the geometry
of curves.

E 10.5 Bounds on Dimensions e

Definition 10.5.1 (`(D): The dimension of a Riemann-Roch space)
For D ∈ DivK, define

`(D) ∶= dimk L(D).

Exercise 10.5.2 (?)
If D ∈ Divk(t), show that

`(D) =
⎧⎪⎪⎨⎪⎪⎩

deg(D) + 1 degD ≥ 0
0 else.

Remark 10.5.3: Recall that in a rational function field, every degree zero divisor is principal,
and if you adjust by a principal divisor, you don’t change `(D). This means that in any rational
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function field, any two divisors of the same degree are going to be linearly equivalent, and thus
`(D) will only depend on degD. So rational function fields are much simpler than the fully general
case.

Problem. (The Riemann-Roch Problem)
Give good upper and lower bounds on `(D) and especially `(nD) as a function of n.

Remark 10.5.4: The stronger version of knowing `(D) in all cases is unsolvable. If we knew the
dimension of every Riemann-Roch space, then we would know too much! E.g. about Weierstrass
points on elliptic curves. (?) Looking at positive multiples nD of a single divisor is common. If D
is a single point, then the support of the divisor is the collection of places that appear with nonzero
coefficients, nD has the same support. This is analogous to not allowing poles at new points, but
rather allowing poles at the same points of higher order. So it’s reasonable to ask about asymptotic
behavior of `(nD) in n. Secretly this is a kind of Hilbert function computation: if you have a
graded algebra and you look at dimensions of its graded pieces, then there is a theorem that the
Hilbert function is a polynomial for n≫ 1. Here, `(nD) will be a linear polynomial for n≫ 1 by
the Riemann-Roch theorem, so there are some stabilization phenomena, but given a random divisor
of low degree it is difficult to determine `(D).

Remark 10.5.5: The last corollary gave us a lower bound:

deg(D) ≥ 0 Ô⇒ deg(D) − `(D) ≥ −1.

This can also be thought of as an lower bound on `(D) in terms of deg(D), and next up we’ll try
to find an upper bound:

Proposition 10.5.6(?).
There exists a δ = δ(K/k) ∈ Z such that for all A ∈ DivK, we have

degA − `(A) ≤ δ.

11 Lecture 8: Riemann-Roch Spaces (Part 2)

Recall the proposition we ended with last time:

Proposition 11.0.1(?).
There exists a δ = δ(K/k) ∈ Z such that for all A ∈ DivK, we have

degA − `(A) ≤ δ.

Exercise 11.0.2 (?)
This proposition is enough to show the existence of rational functions whose polar divisor has
as its support any finite subset S ⊂ Σ(K/k).

Most of the lecture will be the proof of this statement.
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E 11.1 Proof of Upper Bound e

Rewriting Lemma 10.4.1 yields

A2,A2 ∈ DivK, A1 ≤ A2 Ô⇒ degA1 − `(A1) ≤ degA2 − `(A2).

We now proceed to prove Proposition 11.0.1 in several steps.

11.1.1 Step 1

Choose an x ∈K ∖ k and set B ∶= (x)−.

Claim: There exists a C ≥ 0 such that for all n ≥ 0,

`(nB +C) ≥ (n + 1)degB.

So we give ourselves a certain effective divisor: the divisor of poles of an arbitrary nonconstant
element. We can then get a preliminary asymptotic lower bound, not on the same Riemann-Roch
space, but on a new one after augmenting the space by some fixed effective divisor C.

Proof (?).
Since K/k(x) has finite degree, let u1,⋯, ud be a basis for K consisting of finitely many rational
functions. Note that d = [K ∶ k(x)], and is also equal to degB since B was a divisor of poles.
Noting that the divisor groups are free commutative groups, so taking any finite number of
elements in ⊕Z, we can find an element that is less than or equal to all of them. Thus we
can choose a C ≥ 0 such that

(ui) ≥ −C ∀1 ≤ i ≤ d.

Since the ui are k(x)-linearly independent in K, the functions {xiuj ∣ 0 ≤ i ≤ n, 1 ≤ j ≤ d}
are k-linearly independent, since any k-linear relation would immediately yield a k(x)-linear
relation among the ui.

Exercise (?)
If fi ∈ L(Di), so the poles of f are no worse than Di, then the poles of f1f2 are bounded
by D1 +D2 and thus f1f2 ∈ L(D1 +D2).

Now we can note that there are (n + 1)d = degB many elements here, and moreover, these all
lie in L(nB +C) since each (uj) ≥ −C and (x) ≥ −B and i ≤ n. From this we can conclude

`(nB + c) ≥ (n + 1)d = (n + 1)degB.

∎
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11.1.2 Step 2

We’ll now show that throwing in the fixed divisor C can’t increase the Riemann-Roch space that
much, and in fact

`(nB +C) ≤ `(nB) + degC,

and so we get a bound

`(nB) ≥ `(nB +C) − degC
≥ (n + 1)degB − degC
= deg(nB) + ([K ∶ k(x)] − degC)
∶= deg(nB) ± γ,

which shows that
∀n ≥ 0, deg(nB) − `(nB) ≤ γ. (1)

A problem here is that γ depends upon everything that we’ve done so far, and this inequality only
holds for multiples of a fixed divisor (an infinite ray emanating from B).

11.1.3 Step 3

Claim: For all A ∈ DivK, there exist A1,D ∈ DivK and n ≥ 0 such that A ≤ A1, A1 ∼ D, and
D ≤ nB. I.e. although it can’t literally be true that A ≤ nB, it will be up to linear equivalence.

To see this, set A1 ∶= max(A,0). Using the bound from equation (1), for n≫ 0 we have

`(nB −A1) ≥ `(nB) − degA1

≥ deg(nB) − γ − degA1

> 0,

and so there exists a z ∈ L(nB −A1)●, a nontrivial element in the linear system.

Remark 11.1.2: The first inequality is an application of our lemma because A1 is effective, which
was the point of this maneuver. I.e., in order to get from nB −A1 to nB, we added A1, which can
only increase the dimension of the space by at most degA1. Finally, in the last inequality, we use
the fact that B has positive degree since it’s a divisor of poles of a nonconstant rational function,
and the remaining terms don’t depend on n, so we can make deg(nB) arbitrarily large.

So now set D ∶= A1 − (z), then A1 ∼D and since it’s in the linear system,

(z) ≥ −(nB −A1) = A1 − nB

so −(z) ≤ nB −A1 and by adding A1 to both sides, we obtain

0 = A1 − (z) ≤ nB.
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What have we shown? For any divisor D, we can make it less than nB for some n, up to linear
equivalence.

11.1.4 Step 4

Finally, for A ∈ DivK, choose A1,D as in the previous step, so A ≤ A1 ∼D ≤ nB. Then

degA − `(A) ≤ deg(A1) − `(A) using A ≤ A1

= deg(D) − `(D) changing within linear equivalence class
≤ deg(nB) − `(nB)
≤ γ.

∎

E 11.2 Genus e

Definition 11.2.1 (Genus (Important!))
The genus of K/k is defined as

g ∶= max
A∈DivK

(deg(A) − `(A) + 1).

This exists by the Proposition 11.0.1, since this set is bounded above.

Exercise 11.2.2 (?)
Show that g ≥ 0 always and

g(k(t)/k) = 0.

Remark 11.2.3: Note that if the +1 is mostly a correction factor to match up with the topological
genus of P1

/C. That the genus is non-negative should come from the lower bound we had from before.
It turns out that over k = C, this genus will agree on the nose with the topological genus of the
corresponding compact Riemann surface.

Theorem 11.2.4(Riemann’s Inequality).
If K/k is a function field of genus g,

a. For all A ∈ DivK,

`(A) ≥ deg(A) + 1 − g.

b. There exists a c = c(K) ∈ Z such that for all A ∈ DivK,

deg(A) ≥ c Ô⇒ `(A) = deg(A) − g + 1.

11.2 Genus 71



12 Lecture 9

Remark 11.2.5: This says that the dimension of the linear system is very close to the degree
of the corresponding divisor, and is only off by a constant factor g. Part (a) is literally just a
rearrangement of the definition of the genus. Part (b) says that if you assume A has sufficiently
large degree, this upper bound becomes an equality.

Proof (of b).
By the definition of g, since it is a maximum there exists an A0 such that

g = deg(A0) − `(A0) + 1.

Set c ∶= deg(A0) + g. Then if deg(A) ≥ c, we have

`(A −A0) ≥ deg(A −A0) − g + 1
≥ c − deg(A0) − g + 1
= 1,

so there exists a z ∈ L(A −A0)● since the dimension is at least 1.
Now set A′ ∶= A + (z), and note that A′ ≥ A0. Thus

deg(A) − `(A) = deg(A′) − `(A′)
≥ deg(A0) − `(A0) by the lemma
= g − 1.

By maximality of the genus, we have deg(A) − `(A) ≤ g − 1, which forces equality
∎

Next up: how to we make this inequality into an equality? It turns out that there is some different
divisor D′ and we can subtract off `(D′), and that will be the Riemann-Roch theorem.

12 Lecture 9

Last time: we proved the Riemann Inequality (??), the content of which is that there is a non-
negative quantity called the genus for which the stated inequality holds. The next step will be to
try to improve this inequality to an equality, for which we introduce the following definition:

Definition 12.0.1 (Index of Speciality)

ι(A) ∶= `(A) − degA = g − 1 ≥ 0.

Tautologically, this yields

`(A) − ι(A) = degA − g + 1.
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E
12.1 Riemann-Roch Theorem and

Applications e

Theorem 12.1.1(Riemann-Roch Theorem).
If K/k is a function field of genus g, there exists a divisor k ∈ DivK such that for all D ∈ DivK,
ι(D) = `(k −D), and thus

`(D) − `(k −D) = degD − g + 1.

Remark 12.1.2: As a result, deg(D) > deg(k), so k−D has negative degree. We know that `(D) > 0
iff there is a D′ ∼D linearly equivalent to D, and there’s no effective divisor equivalent to a divisor
of negative degree. Thus ι(A) = 0 as soon as deg(D) > deg(k).

Exercise 12.1.3 (?)

1. `(k) = g and deg k = 2g − 2.
2. g ≥ 0
3. If g ≥ 1, then the least α ∈ Z such that whenever deg(D) > α we have ι(D) = 0 is given

by α ∶= 2g − 2.

Remark 12.1.4: Try taking D = 0 and k =D respectively, and compute ι(k) = 1.

Exercise 12.1.5 (?)

a. Show that the Riemann-Roch theorem uniquely characterizes g, i.e. there is at most one
quantity g for which it holds.

b. Show that if Riemann-Roch holds for k, then it holds for any k′ ∼ k.

c. Show that if Riemann-Roch holds for k1, k2 then k1 ∼ k2.

Definition 12.1.6 (Canonical Class)
Thus the Riemann-Roch theorem singles out a distinguished class of divisors [k] of degree
2g − 2, which is called the canonical class. Any divisor D ∈ [k] is called a canonical divisor.

Exercise 12.1.7 (?)
Let K/k be a genus zero function field.

a. Show that Cl0(K) = 0, so degree zero divisors are principal.

b. Show that D ∈ DivK is canonical iff degD = −2.

c. Show that the index I(K) can only be 1 or 2.

d. Show that K ≅ k(t) iff Σ1(K/k) ≠ ∅ iff I(K) = 1.
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Exercise 12.1.8 (?)
If K/k is genus 1, show that a divisor D ∈ DivK is canonical iff D is principal.

E 12.2 Applications of Riemann-Roch e

12.2.1 Genus Zero Function Fields

Let K/k be a genus zero function field with k a canonical divisor, so deg k = −2. Then deg(−k) = 2
and by Riemann-Roch every effective divisor is not principal and

`(−k) = deg(−k) − g + 1 = 3.

One can choose −k to be effective, so 1 ∈ L(−k). So L(k) has a basis of the form {1, x, y} for some
elements x, y.

Claim:

K = k(x, y).

Proof (?).
Case 1: If either x or y has degree 1, this is also the degree of the function field K/k(x), and
then k = k(x) or k(y) and the function field is rational.
Case 2: Since (x) ≥ − (−k), we have (x)− ≤ −k + (x)+, so deg(x) ≤ deg(−k) = 2. So deg(x) = 2.
Similarly, deg(y) = 2 and so [K ∶ k(x)] = 2. Thus it’s enough to show that y /∈ k(x). Toward
a contradiction, if y ∈ k(x), since [K ∶ k(y)] = 2, we get k(x) = k(y). In this case y is a
degree 1 rational function in x, and so is of the form y = ax + b

cx + d with a, b, c, d ∈ k. This forces
(x)− = (y)− = −k, since the only possibilities for these divisors are having degrees zero or one,
and we’ve ruled out the degree zero possibility.
So y only has poles where x has poles. This follows because for a map f ∶ k → k(t), the places
over the point at infinity are places over infinity:
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Figure 5: Image

Since (x), (y) has the same divisor of poles in K, all of their poles like over∞ ∈ k(t). Moreover,
since y is regular away from ∞ ∈ k(x), this forces c = 0 and y = ax + b. But this exhibits a
k-linear dependence between x, y.

∎

Now consider 1, x, y, x2, xy, y2 ∈ L(−2k). Since `(−2k) = 5, these is necessarily a linear dependence
in this set, so there is a tupoe (a, b, c, d, e, f) ⊂ k6 such that

f(x, y) ∶= ax2 + bxy + xy2 + dx + ey + f = 0.

Not all of a, b, c can be zero, since this yields the linear dependence dx+ey+1 = 0. Moreover f must
be irreducible: if not, it would have a linear factor, which would again yield a linear dependence
between x and y.

Theorem 12.2.1(Genus Zero Function Fields are Quadratic Extensions).
For K/k a genus zero function field, there exists a, b, c, d, e, f ∈ k with a, b, c not all zero such
that

f(x, y) ∶= ax2 + bxy + xy2 + dx + ey + f = 0 and K =Kf .

Exercise 12.2.2 (?)
Suppose ch(k) ≠ 2, and show that every genus zero function field is regular and there exist
a, b, c ∈ k× such that K =Kf where f(x, y) = ax2 + by2 + c.
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16 Lecture 11A: Weil’s Proof of
Riemann-Roch

Let K/k be a one variable function field, finitely generated of transcendence degree one, with
κ(K) = k, so k is algebraically closed in K. Define the small Adele ring associated to K, as the
restricted direction product with respect to {Rv ∣ v ∈ Σ(K/k)}:

Ak ∶=
res
∏

v∈Σ(K/k)
K = {(xv) ∈KΣ(K/k) ∣ xv ∈ Rv for a.e. v} ,

where each factor is a copy of K. Note that a restricted direct product is when you have a family of
sets, and for each set you also attach a subset. Then if you have a tuple in the entire direct product,
it’s in the restricted direct product iff for all but finitely many coordinates lie in a given subset.
Here the subset is the valuation ring Rv. So these are tuples of elements of K, indexed by places,
where each element has a p-adic valuation and the only restriction is that (except for finitely many
cases) we want this valuation to be nonnegative.

Remark 16.0.1: To get the big Adele ring, you’d replace K with its completion with respect to
the p-adic valuation. If k is finite, then this is equal to the positive characteristic Adele ring from
NTII. If you complete, then you get a complete discretely valued field whose residue field equals
the residue field at the place v. So for finite extensions of k, the residue will be finite iff k is finite,
and from the structure theory of discretely valued fields, this field has a natural topology: the adic
topology, coming from the inverse limit. This will be locally compact iff the residue field is finite.
Here, since the ground field is infinite, even passing to the completion wouldn’t yield anything
locally compact. So there’s no advantage to passing to the completion, although there’s no harm
either.

Note that Ak is a ring, and in fact a K-algebra, but we will only need its structure as a K-vector
space. This structure comes from embedding K ↪ Ak diagonally, so x ↦ [x,x,⋯], and pull back
v ∈ Σ(K/k), remembering that every element of K (a rational function) is regular except for finitely
many v.
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If we have a valuation on K, we can consider a place p and projecting onto the kth factor:

Aj
πpÐ→→K

vpÐ→ Z ∪ {∞} .

So we now attach an adelic version of the Riemann-Roch space: for D ∈ DivK, we set

Ak(D) ∶= {α ∈ AK ∣ vp(α) ≥ −vp(D)∀p ∈ Σ(K/k)} .

The only difference here is that the usual space is over K, and here we’re over AK , which is a much
larger space. This makes things easier, however, in the same sense that studying a large collection
of local fields is easier than studying the corresponding global field. Note that the p-adic valuation
vp is just the coefficient of p in the divisor, and AK ∩K yields the usual Riemann-Roch space.

Exercise 16.0.2 (?)

a. Show that AK(D) is an k-subspace of AK .a

b. Show that (just as for the Riemann-Roch space) D1 ≤D2 Ô⇒ AK(D1) ⊆ AK(D2).
aConsider scaling by nonzero constants, where the valuation of constants are zero.

Lemma 16.0.3(?).

D1 ≤D2 Ô⇒ dimkAK(D2)/AK(D1) = degD2 − degD1.

Note that this is the adelic analogue of our first lemma on Riemann-Roch spaces, now with an
equality instead of being bounded above.

Proof (?).
As we did before, by induction we can assume D2 = D1 + p for some p ∈ Σ(K/k), i.e. we can
go from the smaller divisor to the bigger one by repeatedly adding closed points. Then choose
an element t ∈ k× such that vp(t) = vp(D2), and define a similar map

ϕAK(D2)→ kp

α ↦ (tαp) (mod m)p.

Why? Once you multiply by t, note that we’re looking in the pth component. The
condition before was that the valuation at the pth component was at least −vp(D2), but
now we’re adding vp(D2). This yields a nonnegative valuation, making the image lie inside
the corresponding local ring, so it makes sense to consider it modulo the maximal ideal
to get an element of the residue field. As before, it should be clear that this is k-linear,
kerϕ = AK(D1), and is surjective. The kernel are exactly those elements such that multiplying
by t makes the p-adic valuation at least 1, since that’s what the maximal ideal is. This is
indeed AK(D1), since D1 and D2 are the same except for the added condition D2 =D1+p at p.

So the main difference is that the map is now surjective, which was not true for the original
Riemann-Roch space. Why? This is a purely local situation. Take an element which is zero
away from the p component, which is easy to do since zero is in Rv for any v. So can you
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find an element of k such that multiplying by t and reducing modulo the maximal ideal yields
every element of the residue field?

∎

Theorem 16.0.4(2.13).
For all D,

dimkAK/ (AK(D) +K) = ι(D) ∶= `(D) − deg(D) + g − 1,

where ι(D) is the index of speciality of the divisor, which measures the discrepancy between
the degree and the dimension.

Remark 16.0.5: This says that adding K into the adelic Riemann-Roch space results in a big
k-vector space, having high dimension in the infinite dimensional k-vector space AK .

Proof (Step 1).
For divisors A1 ≤ A2, we have a short exact sequence of k-vector spaces

0→ L(A2)/L(A1)
σ1Ð→ AK(A2)/AK(A1)

σ2Ð→ (AK(A2) +K) / (AK(A1) +K)→ 0.

The first thing we did was compute the dimension of the middle quotient space, which was
degD2 −degD1. Note that σ2 is a quotient map, but σ1 just comes from embedding K ↪ AK .
To show exactness, the only nontrivial part is that ker(σ2) ⊂ im(σ1). So take an element
α ∈ AK(A1) (mod )AK(A1) such that σ2(α) = 0, so there exists an x ∈ K such that α − x ∈
AK(A1) by definition of being zero in the last quotient. Since AK(A1) ⊆ AK(A2), we have
that x ∈ AK(A2) ∩K ∶= L(A2). This follows because α,α − x are both in AK(A2). Thus we
have

α +AK(A1) = x +AK(A1) = σ (x + α(A1)) .

∎

Proof (Step 2).
We can now compute the dimension of this quotient. Using step 1 and Lemma 2.12, we get

dimk (AK(A2) +K) / (AK(A1) +K) = dimkAK(A2)/AK(A1) − dimk L(A2)/L(A1)
= (degA1 − `(A2)) − (degA1 − `(A1))
= ι(A1) − ι(A2),

where the last step follows from adding and subtracting g − 1.
∎

Proof (Step 3).
By step 2, it is enough to show that for all A1 ∈ DivK, there exists a bigger divisor A2 ≥ A1
such that ι(A2) = 0 (by just adding closed points) and AK(A2) +K = AK . By Riemann’s
inequality, we have ι(A2) = 0 if degA2 ≫ 0, so choose such an A2 ≥ A1. Thus we’re reduced to
showing that if ι(B) = 0 for all B ∈ DivK, then AK = AK(B) +K. We’ll do this by choosing
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another large effective divisor.a
Let B1 ≥ B, then we have

`(B1) ≤ deg(B1) + `(B) − deg(B)
= deg(B1) − g + 1.

Also, Riemann’s inequality gives `(B1) ≥ deg(B1) − g + 1, so we have equality. Thus any
divisor greater than or equal to a non-special divisor is again non-special.

We want to take an arbitrary element of the Adele ring and show that it differs from an element
of the adelic Riemann-Roch space associated to B by an element of K, so we’ll cleverly choose
a divisor in order to do this. So take an arbitrary element α ∈ AK of the Adele ring, then
we may choose B1 ≥ B such that α ∈ AK(B1). I.e., choosing B1 large enough is allowing the
poles to be however bad you want them to be, and α is a fixed element, all but finitely many
elements have valuation ≥ 0.
We understand the relative situation well, based on what we proved. By step 2, since B,B1
are non-special, the dimension of the quotient is zero:

dimk(AK(B1) +K)/(AK(B) +K) = deg (B1 − `(B1)) − (degB − `(B))
= (g − 1) − (g − 1)
= 0.

But then these spaces are equal to each other, so AK(B1) +K = AK +K. But we chose B1
arbitrarily large so it contained α, and we found that the resulting space is no bigger than
the original. Note that B1 was chosen so that α ∈ AK(B1) before adding K, which remains
true when adding K. But this says α is in the LHS, which equals the RHS. Then α ∈ AK(B),
where α was arbitrary, so α ∈ AK(B) +K.

∎
aThis “cone structure” on divisors is very useful!

Corollary 16.0.6(2.14).
This can be applied to the zero divisor:

dimkAK(AK(0) +K)ι(0) = g.

Exercise 16.0.7 (?)
Corollary 2.14 shows that if K = k(t) is the rational function field, then we have AK(0) +K =
AK .a Show this directly.

aSo every Adele differs from a rational function by an effective Adele.

Remark 16.0.8: Note that analogy to consider A(Q), where you get AQ = Ẑ+Q, where Ẑ denotes

the profinite completion. Recall that AQ =
′
∏
p

Qp ×R, and inside of this we have A(0) ∶=∏
p

Zp ×R.

Not too crazy of a fact: given an Adele, it has finitely many places where its p-adic valuation is
negative, so it shouldn’t be hard to find a rational number as a correction term which doesn’t
change the valuation. The fact that this works for Q is related to Z being a PID.
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19 Lecture 12: Chapter 3, Curves Over a
Finite Field

E 19.1 Finiteness of Class Groups e

We consider k = Fq a finite field, which by definition is a one variable global function field. Idea:
we’ve defined some affine dedekind domains (the holomorphy rings) had a finite nonempty set of
places of the function field. These are analogous to the ring of integers of a number field, or more
generally S-integer rings. Recall some basic results from NT1: the finiteness of the class group, and
the finite generation of the unit group. Here we have a class groups of affine Dedekind domain, and
by Rosen’s theorem, there are infinitely many as you vary over nonempty subsets of places of the
function field, and they’re all closely connected to a geometric class group: the degree zero divisor
class group. Thus by this analogy, when the field is finite, we’d expect that Cl0(K) is finite as well,
which is the main result we’ll prove today.

E 19.2 Base Extension e

Let K/Fq be a one variable function field with constant field Fq, so that the only elements of K that
are algebraic over Fq are already in Fq. Since Fq is a perfect field (x ↦ xp is a surjection), every
such function field is regular.

Let Fq be an algebraic closure, then for all r ∈ Z+ there exists a unique degree r extension, which
we’ll denote Fqr . The extension Fqr/Fq is a cyclic galois extension (i.e. it’s galois group is cyclic)
with a canonical generator: the Frobenius map.

The galois theory of the constant field comes in when trying to study constant extensions of the
function field. There is a general theory of constant extensions, but in our case, every such extension
will be cyclic or procyclic, so we don’t need the entire theory.

For any positive integer r, define the extension Kr ∶= KFqr given by extending scalars, which is a
regular function field over Fqr . There are two ways to obtain this: either take an algebraic closure
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of K and take the compositum, or take K ⊗Fq Fqr , which we proved was again a field. This Kr is
what we get by extending constants, and the way regular function fields work is that if you make
an arbitrary extension of the ground field, then you retain a regular function field over this new
extension. On the other hand, note that KR/K is a degree r arithmetic extension of function field,
whose galois group is also generated by Frobenius. If we take any regular function field over k and
then take a finite galois extension l/k, then extending scalars in this way would give an extension
of the upstairs fields which is galois and has the same galois group as the constant extension. This
is arithmetic because the only thing that changes going from K to Kr is the field of constants.

In the analogy of function fields as the meromorphic functions on a Riemann surface, this type
of extension has no analog: since C is algebraically closed, there are no constant extensions. So
arithmetic extensions are just extending scalars, and geometric extensions don’t change the constant
field at all and instead have the property that if you extended scalars to the algebraic closure, you’d
have an extension of the same degree. Note that the étale fundamental group also has a similar
decomposition into an arithmetic part and a geometric part (see Daniel Litt’s course).

19.2.1 Splitting of Places

Question 19.2.1
Given a place in K, how does it split (or not) in Kr?

Remark 19.2.2: We can ask this question in whenever we have an extension of function fields.
This reduces to the usual ATI type of question: for v ∈ Σ(K/Fq), choose an affine Dedekind domain
R such that v ∈ Σ(K/R), i.e. the place is regular. Let S be the integral closure of K in Kr; this place
corresponds to a maximal ideal p, we then want to factor its pushforward pvS. So this question is
a special case of how a prime ideal factors in an extension of Dedekind domains.

We’ll temporarily black-box the following lemma:

Lemma 19.2.3(?).
Suppose v is the downstairs place, r is the degree of the extension, and d ∶= deg(v). Then

• Kr/K is galois and we have efg = r.a

• This extension will be unramified: we in fact have e = 1, so g = gcd(d, r) and f =
r/gcd(d, r), and

• Each place w ∈ Σ(Kr/Fqr) lying over v has degree d/gcd(d, r).
ae is the prime ramification index, f is the prime residual degree, and g is the number of distinct primes. This
result essentially comes from ANTI, replacing ∑ eifi = r.

Remark 19.2.4: Note that having an extension of Dedekind domains coming from a galois extension
of fields simplifies things: this makes the inertial degree and ramification indices coincide.
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Example 19.2.5(?):
• The extension is inert ⇐⇒ gcd(d, r) = 1

– I.e. d, r are coprime and g = e = 1, f = r.

• The extension splits completely ⇐⇒ r ∣ d.

– If r = d, i.e. we take a degree d place and extend scalars to Kd, it splits completely into
d degree 1 places.

• All w ∣ v have degree 1 ⇐⇒ d ∣ r.

Remark 19.2.6: Suppose we have w over v with w ∈ Σ(Fqr) and v ∈ Σ(K/Fq). If v has degree d,
this means that the residue field satisfies k(v) ≅ Fqd , since we have unique extensions in each degree.
If f is the f from ANTI, it is also the degree of the residual extension, so we know [k(w) ∶ k(v)] = f
and thus k(w) ≅ Ffdq .

On the other hand, k(w) is an extension of Fqr of degree deg(w), so k(w) ≅ F(qr)deg(w) = Fqr deg(w) .
Thus r = fg and

qf deg(v) = qr deg(w) Ô⇒ deg(w) = (f
r
)deg(v) = deg(v)

g
.

The residue field, if it changes at all, can only increase in size, since any extension of Dedekind
domains induces an extension of residue fields. So the size of the residue field of w is at least as big
as the size of the residue field of v. But the degree of w is measured relative to the extended field Fqr ,
since it’s the degree of the residue field as an extension of Fqr . So consider deg(w) = deg(v)/g, we
see that even as the residue field is increasing by a factor of f , the degree of the point is decreasing
by a factor of g.

Upshot: The residue field grows, but its degree can only shrink. Thus making an extension forces
the degrees of the upstairs places to decrease.

We’re trying to find out in how many ways a discrete valuation extends to a finite degree field
extension. From ANTII, we have a result that describes this: if v is a rank 1 valuation on k and
L/K is a finite degree extension, then the extensions of v to L correspond with mSpec(K̂v ⊗K L),
where the hat denotes completing K with respect to the valuation. The e, f, g can all be computed
as well.18

This is some finite degree K̂v algebra, and if L/K is separable then this decomposes as a finite
product of finite degree field extensions of K and K̂v, the number of which will be g. The e and f
can be read off because each extension will have a ramified and unramified part.

18See Pete’s NTII notes, Theorem 1.64.
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Exercise 19.2.7 (?)

a. Show that Fqd ⊗Fq Fqr ≅ Fd
′
ql where l = lcm(d, r) and d′ = gcd(d, r).

b. Generalize this to the case when kp/k and `/k are both cyclic galois extensions.

E
19.3 Degree 1 Places and Rational Points

on a Curve
e

Taking the lemma as a black box, for r ∈ Z+ let Nr ∶= ∣Σ1(Kr/Fqr)∣, i.e. the number of degree 1
places of the function field after making a degree r extension. Equivalently, Nr = ∣C(Fqr)∣ where C
is a unique complete nonsingular curve over Fq corresponding to K, and this denotes the number
of Fqr rational points. We’ll eventually see these are finite.

Remark 19.3.1: Important way of thinking about these: degree one places of a function field over
k correspond to k-rational points of a curve.

Corollary 19.3.2(Equivalence of data: places and rational points).

Nr =∑
d∣r
d ⋅ ∣Σd(K/Fq)∣,

so knowing the number of closed points of each degree is equivalent to knowing the Fqr -points
for all r.

Proof (?).
Let w ∈ Σ1(Kr/Fqr) be a degree 1 point and set v ∶= w∩K so w lies over v. What is the degree
of v? Setting d ∶= deg(v), the lemma gives

1 = deg(w) = d

gcd(d, r) ,

which implies that gcd(d, r) = d and thus d ∣ r. So for each d dividing r, every degree of
v ∈ Σ(K/Fq) contributes gcd(d, r) = d degree 1 points on Kr, i.e. every downstairs degree d
place splits into d degree one places. So for every such d, every degree d closed point contributes
d degree 1 closed points lying above it, and conversely if d does not divide r then the upstairs
point would not have degree 1, so this accounts for all of the degree 1 points.

∎

Remark 19.3.3: We saw that the degree 1 places and the rational points are the same information,
and there is a third equivalently quantity: An, defined to be the number of effective divisors of
degree n.
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E
19.4 Finiteness of Places and Rational

Points
e

Lemma 19.4.1(?).

a. For all d, the number of degree d closed points Σd(K/Fq) is finite (and therefore Nr is
finite), and

b. For all n, An is finite.

Proof (of a).
Let L/K be a degree n extension of regular function fields over Fq. We then have a restriction
map

r ∶ Σ(L/Fq)↠ Σ(K/Fq)

which we showed is surjective with finite fibers. We can say a little bit more: for all places
w ∈ Σ(L/Fq), we have an inequality

( 1
n
)deg(w) ≤ deg(r(w)) ≤ deg(w),

noting that we’re now measuring all degrees over a common ground field Fq. So things are
now what you’d expect: the degree of the upstairs point is a multiple of the degree of the
downstairs point. The upper bound comes from the fact that the residue of the upstairs point
is a finite extension of the residue field of the downstairs points. The opposite inequality comes
from ANTI: the degree of the residual extension is at most the degree of the entire extension.
So r doesn’t preserve degrees exactly, but preserves them up to a bounded factor, and thus
Σ≤d(L/Fq) is finite for all d ⇐⇒ Σ≤d(K/Fq) is finite for all d. Because of this, we can reduce
the situation by exchanging the function field L/Fq with any other function field for which L
is a finite extension, and in particular we can take the rational function field K = Fq(t). What
are the degree d places of a rational function field? There is exactly one place at infinity, and
the remaining ones correspond to monic irreducible polynomials. Since Fq is finite, there are
only finitely many such polynomials of any fixed degree.a

∎
aThere is an exact formula for this quantity.

Proof (of b).
Left as an exercise.
Some remarks: how do you build an effective divisor of degree n? Take closed points (places)
and start adding them up with positive coefficients, then the degree of the divisor is the sum
of the degrees of the places. But if you only have finitely many places, each of which can only
be used a bounded number of times (certainly no more than n times!), thus one can only build
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finitely many effective divisors of each degree.
∎

E 19.5 Finiteness of Class Group e

Proposition 19.5.1(Finiteness of class group).
The degree 0 divisor class group Cl0(K) is finite.

This is a geometric analog of the finiteness of the class group of the ring of integers of a number
field. By Rosen’s theorem, as an immediate corollary, the class group of any affine dedekind domain
over a finite ground field is finite. This follows from looking at the exact sequence: a finite index
subgroup of the class group of any dedekind domain is a quotient of Cl0(K), and a finite index
subgroup of a finite group is finite.

Proof (?).
Set δ ∶= I(K) to be the index, i.e. the least possible degree of a divisor.a
In any case, for all n ∈ Z, we have

ClnK =
⎧⎪⎪⎨⎪⎪⎩

0 δ ∤ n
∣Cl0K ∣ δ ∣ n

.

If you have any degree n divisors, then ClnK will be a coset of Cl0K. Here we just look at
the degree map, which is a group morphism onto its image, of which all nonempty fibers have
the same size. Thus we may work with ClnK for n≫ 0.

In particular, choose n ≥ g the genus such that δ ∣ n, and let D ∈ DivnK. A Riemann-Roch
computation shows that `(D), the dimension of the linear system, is at least n − g + 1, and
so we have `(D) ≥ 1 and D is linearly equivalent to an effective divisor. This shows that the
map taking effective degree n divisors to ClnK taking a divisor to its divisor class (restricted
to effective divisors) is surjective. But we just saw that the set of effective degree n divisors
is finite – it was built out of finitely many closed points of bounded degrees – forcing ClnK
to be finite. The result follows because ClnK is a coset of Cl0K, all of which have the same
size, and the index is finite.

∎
aBy a theorem of Schmidt, we’ll later prove that δ = 1.

Definition 19.5.2 (Class Number of K)
The class number of K is defined as

h ∶= ∣Cl0K ∣.

Remark 19.5.3: There is a much fancier proof: there exists a g-dimensional abelian variety A/Fq,
the Jacobian variety of C/Fq, such that Cl0K +A(Fq). It is built out of the degree 0 divisor class
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group in some functorial way. In particular, A is a projective variety, and thus embeds into some
PN/Fq , and so ∣A(Fq)∣ ≤ ∣PN/Fq ∣ < ℵ0.

As one varies over all function fields over all finite fields, there will only be finitely many whose
class number is bounded by some fixed h0. E.g. there are only finitely many function fields of
class number 1, and these can be explicitly listed. So h→∞ in some sense, which is not proved by
showing that ∣A(Fq)∣→∞, and we’ll instead prove it using methods closer to what we’re seeing in
this course.

Up next: setting up the zeta function.

20 Lecture 13: Splitting Places

Recall that we previously looked at the regular function fields: we took a function field in one
variable and considered the class of function fields for which we could take any extension of the
constant field that we wanted. As long as the ground field is perfect, being regular is equivalent to
the constant subfield being k itself. However, we haven’t done anything with them yet!

If you take an algebraic closure of the finite ground field Fq, there is a unique subextension of
degree r for every r, so we call that Fqr . The extension Fqr/Fq is cyclic galois, with a geometric
Frobenius x→ xq. Note that Fqr is the fixed field of F r, the rth power of the Frobenius map. We
set Kr ∶=KFqr , which is a regular function field over Fqr . Note that we could view this as a function
field just over Fq, but it would not be regular. Then Kr/K is a degree r arithmetic extension of
function fields.

Question 20.0.1
What happens to places when making this scalar extension? I.e., how to places in K decompose in
Kr?

Remark 20.0.2: This is related to an Algebraic Number Theory I problem: for v ∈ Σ(K/Fq) above
an affine Dedekind domain R such that v ∈ Σ(K/R), let S be the integral closure of K in Kr. Then
we want to factor pvS?

Not quite sure.

E 20.1 How Places Split e
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Lemma 20.1.1(Key lemma about how places split.).
Suppose d ∶= deg(v). Then Kr/K is galois, so we have efg = r. In fact, c = 1, so f = r

gcd(d, r)
and g = gcd(d, r) and each place w ∈ Σ(Kr/Fqr) has degree d

gcd(d, r) .

Remark 20.1.2: We have the following cases:

• The extension is inert iff gcd(d, r) = 1,

• The extension splits completely iff r ∣ d,

• All w dividing v have degree 1 iff d ∣ r.

The last thing we proved was that the degree zero divisor class group is finite when we’re over a
finite ground field. Why is this true? Whenever there is a divisor of degree n, then the set of degree
n divisors is a coset of the degree zero divisors, all of which have the same cardinality. We proved
finiteness using the Riemann-Roch theorem, using the fact that the set of effective degree n divisors
is finite for all n.

The next main topic will be the zeta function, which keeps track of three equivalent packets of
information: An, the number of effective divisors of degree n, the number of places of degree d
(since an effective divisor is a linear combination of these), and Nr the number of degree 1 points
in the degree r extension, i.e. the number of Fqr rational points.

E 20.2 Counting Effective Divisors e
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Lemma 20.2.1(?).
Suppose C ∈ Cl(K), then

• The number of effective divisors D ∈ [C] is given by

q`(C) − 1
q − 1

,

where `(C) is the dimension of the linear system associated to the divisor class C, and
this is the dimension of a projective space over Fq.

• For all n > 2g − 2 with δ ∣ n, we have

An = h(q
n+1−g − 1
q − 1

) .

Proof (?).
Proof of (a): The set of effective divisors linearly equivalent to D is naturally viewed as
the projectivization PL(D) of the one-dimensional subspaces of the linear system of that
divisor class. It is then a fact that the number of elements in a d-dimensional vector space

over Fq has dimension precisely qd − 1
q − 1

elements. The projectivization comes in because two
different functions have the same divisor if one of them is a constant multiple of the other.
Note that the number of elements is computed as the number of nonzero elements divided by
the number of nonzero scalars.

Proof of (b): This will come out of the Riemann-Roch theorem. In order to compute the
number of divisors in a divisor class, you need to know the dimension of the linear system,
which is not easy in general. However, if the divisor class has sufficiently large degree, the
Riemann-Roch theorem tells you exactly what it is. As long as n > 2g−2, there is no correction
term, and the dimension of the linear system is equal to its degree minus the genus plus one.
So by Riemann-Roch, since deg(D) > 2g − 2, D is non-special and `([D]) = n − g + 1, which
yields the desired formula for An.

∎

Remark 20.2.2: This is the sharpest result possible: the canonical divisor has degree 2g − 2 and
is special, so this fails for the canonical class.

The upshot: there are three piece of information:

• Nr, the number of Fqr rational points,

• ∣Σd(K/Fq)∣ the number of closed points / places of degree d,

• An the number of effective divisors of degree n,

and there are simple formulas relating these. Moreover, it is enough to know only finitely many of
these quantities, where the number depends on g.
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E 20.3 Hasse-Weil Zeta Functions e

There is a general theory that will unify

• The Riemann zeta function, thought of as the zeta function of Z,

• The Dedekind zeta function, attached to the ring of integers over a number field,

• The Hasse-Weil zeta function of a one variable function field over a finite field,

all of which will be special cases of a Serre zeta function which can be attached to a finite type
scheme over Z.

Note that we aren’t specifically discussing schemes in this course, but you don’t need to know much
about what a scheme is to define the Hasse-Weil zeta function. Just note that an affine finite-type
Z-scheme corresponds to a finitely generated Z-algebra, and a general finite-type Z-scheme will be
covered by finitely many affine ones, the zeta function will be determined by these finitely many
Z-algebras and some kind of inclusion-exclusion principle (since the scheme is a not necessarily
disjoint union of affine schemes).

Recall that An = An(K) is the number of effective divisors of degree n, which we’ve proved is finite.
We have a formula when n > 2g − 2, namely

Z(t) =
∞
∑
n=0

Ant
n = ∑

D∈Div+(K)
tdeg(D) ∈ Z[[t]],

where Div+ are the effective divisors and we’ve collected terms based on their degree. This is
analogous to the Dedekind zeta function of a number field K, a formal Dirichlet series which is
given by

ζK(s) = ∑
I∈I(Z●K)

∣ZK/I ∣−s.

where the sum is now over all of the nonzero ideals of the ring of integers, where we measure the
size using the norm, i.e. the size of the residue field. There’s an analogy between integral ideals
(vs fractional ideals) and effective divisors. We could get an Euler product decomposition for the
Dedekind zeta function by only considering prime ideals, since in a Dedekind domain all ideals
factor uniquely into prime ideals. In fact, any nonzero ideal is a linear combination of prime ideals.
Similarly, the effective divisors are linear combinations of effective divisors, so an Euler product
expansion is possible here too. If we take a prime ideal, since we’re in a discrete valuation ring, we
can consider the local ring at that point. We can take the residue field, which in general won’t be
finite, but will be a finite extension. So a reasonable measure of the size of a prime divisor would
be the dimension of its residue field as a vector space over K.

Note that if we wanted to make these look even more similar to each other, we could define an
(depending on ZK) as

an = ∣{I ⊴ ZK ∣ ∣ZK/I ∣ = n}∣,
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which allows us to write

ζK(s) =
∞
∑
n=1

an
ns
.

Question 20.3.1
Where we’re going: how does Z(t) depend on K?

Answer 20.3.2
It turns out that it only depends on A0,A1,⋯,A2g−2, and thus Z(t) depends on only finitely much
information. We will

1. Show that Z(t) ∈ Z(t), i.e. it is a rational function and can be written Z(t) = P (t)/Q(t).

Note: the denominator will always be the same, (1 − t)(1 − qt), and we’ll always have degP = 2g. This is
essentially coming from `-adic cohomology. We’ll also determine the leading coefficient.

2. Understand degP and degQ in terms of the genus g.

3. Ask about the roots of P (t), and establish a Riemann hypothesis for Dedekind zeta functions
(and in particular, the Riemann zeta function).

In particular, what are their magnitudes? This is what Weil did, this is the big theorem in this area. Note
that we’ll need to consider reciprocal roots, which will end up having magnitude √

q. We’ll see why this
happens, and it turns out to be analogous to fact that the nontrivial zeros of the Riemann zeta function have
real part 1/2.

These are approximately in order of difficulty. The first two will follow from Riemann-Roch, but the
third will be much deeper. This is essentially a positive characteristic analogue of the usual Riemann
hypothesis. Note that we’re in a global field, the positive characteristic analog of a number field,
and for number fields the Riemann hypothesis is the single outstanding problem. In the function
field case, it is a theorem!

Proposition 20.3.3(Formula for the zeta function exhibiting rationality).
Let K/Fq have genus g and δ = I(K) the index, the least positive degree of a divisor.a

a. If g = 0, then

Z(t) = 1
q − 1

( q

1 − qδtδ −
1

1 − tδ ) .
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b. If g ≥ 1, then Z(t) + F (t) +G(t) where

F (t) = 1
q − 1 ∑

0≤degC≤2g−2
q`(C)tdeg(C)

G(t) = h

g − 1
(q

1−g(qt)2g−2+δ

1 − (qt)δ − 1
1 − tδ ) ,

so F involves summing over all divisor classes of degree at most 2g − 2, and G is a term
coming from Riemann-Roch involving the class number h.

aIt will turn out (by a theorem of Schmidt) that δ = 1 in the case of a finite ground field.

Remark 20.3.4: Note that as a consequence, it will definitely be rational in q, and will have a
simple pole at t = 1. There’s no major idea for the proof: when the degree of the divisor class
is sufficiently large, we just have an exact formula. If it is smaller, than the formula involves the
dimension of the linear system.

E 20.4 Proof of Rationality e

Proof (of rationality of Z(t)).
Recall that `(C) is the dimension of the associated Riemann-Roch space.
When g = 0, by Riemann-Roch we have Cl0(K) = 0 over any ground field k (see exercises),
and so h = 1. Since every n ≥ 0 satisfies n ≥ 2g − 2 when g = 0, if δ ∣ n we have

An = h(q
n+1−g − 1
q − 1

) = q
n+1 − 1
q − 1

,

and since An = 0 unless n is divisible by δ, we have

Z(t) =
∞
∑
n=0

Ant
n =

∞
∑
n=0

Aδnt
δn =

∞
∑
n=0

qδn+1 − 1
q − 1

tδn.

This can now be split into two terms, each of which will have a geometric series to sum.
Now let g ≥ 1, and write

∞
∑
n=0

Ant
n = ∑

deg(C)≥0
∣{A ∈ C ∣ A ≥ 0}∣tdeg(C),

where we instead count the number of divisors in each divisor class (a consequence of the
previous lemma). Continuing this computation, we separate out the part where deg(C) ≤ 2g−2
and pull out the −1 in the numerator:

⋯ = ∑
deg(C)≥0

q`(C) − 1
q − 1

tdeg(C)

= ( 1
q − 1

)
⎛
⎝ ∑

0≤deg(C)≤2g−2
q`(C)tdeg(C) + ∑

deg(C)>2g−2
qdeg(C)−g+1tdeg(C) − ∑

deg(C)≥0
tdeg(C)⎞

⎠
∶= F (t) +G(t),
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so we can write

F (t) = 1
q − 1 ∑

0≤deg(C)≤2g−2
q`(C)tdeg(C)

(q − 1)G(t) =
∞
∑

n= 2g−2
δ

+1
hqnδ+1−gtnδ −

∞
∑
n=0

htnδ.

Note that δ ∣ 2g − 2 since the canonical divisor has degree 2g − 2 and δ is a gcd. Note that
for g = 1, the index divides zero, which tells you nothing about it! This now reduces to some
geometric series that can be summed, which shows these are rational functions in t.

∎

Exercise 20.4.1 (?)
Let K = Fq(t), then g = 0, δ = 1, and

Z(t) = 1
(1 − qt)(1 − t) .

We will see in general that the numerator is of the form L(t) where L ∈ Z[t] has degree 2g.

Note that this all generalized to higher dimensional projective varieties X/Fq , for which these
properties were proved by the work of Deligne. In general, Z(t) will be of the form

ZX(t) = L1(t)⋯L2d−1(t)
L0(t)⋯L2d(t)

,

where d = dim(X) and degLi will be the dimension of the ith `-adic cohomology. Moreover, if X/Fq
is a reduction mod q of a variety in characteristic zero, these will be the Betti numbers of X/C. If
we take a compact Riemann surface, which has a honest topological genus of g, the Betti numbers
are 1,2g,1, and this recovers the formula above for L(t) and its degree.

The next result will be the following theorem:

Theorem 20.4.2(Schmidt, 1910ish).
For all K/Fq ,

δ = I(K) = 1.

This will greatly simplify the previous formulas. A useful application is if you have a genus zero
curve of index 1, applying Riemann-Roch to a divisor of degree 1 shows that the function field is
rational. Thus the only genus zero function field over Fq is the rational function field. Useful aside:
the Riemann hypothesis here gives an estimate of the number of Fqr rational points.
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21 Lecture 14: The Hasse-Weil Zeta
Function

Recall the that Hasse-Weil zeta function of a one-variable function field K/Fq over a finite ground
field is defined in the following way: let An = An(K) be the number of effective divisors of degree
n. We have proved that An is finite, and for n > 2g − 2 we have a formula

Z(t) =
∞
∑
n=0

Ant
n = ∑

D∈Div+(K)
tdeg(D) ∈ Z[[t]],

which is a formal power series with integer coefficients.

Remark 21.0.1: Recall that we have proved that it is a rational function of t, and in particular
when g = 0, δ = 1 19 we get

Z(t) = 1
(1 − qt)(1 − t) .

We got another expression which isn’t fantastic: it involves this δ, which we’ll work toward proving
is equal to 1. When g > 1, we broke the zeta function into two pieces Z(t) = F (t) + G(t). For
divisors of sufficiently high degree, Riemann-Roch tells you what the dimension of the Riemann-
Roch space is, and G(t) explains the part coming from divisors of large degree. We obtained a
formula previously for F (t) and G(t), and once we show δ = 1 the formula for G will simplify. For
F (t), we specifically had

F (t) = 1
q − 1 ∑

0≤deg(c)≤2g−2
q`(c)t

deg(c)
,

where the sum is over divisor classes and ` is the dimension of linear system corresponding to a
divisor. But this isn’t a great formula: what are these classes, dhow many are in each degree, and
what is the dimension of the Riemann-Roch space?

Remark 21.0.2: This is analogous to the Dedekind zeta function of a number field K, in which
case

ζK(s) =
●
∑

T ∈`(Zk)
∣Zk/I ∣−s,

which will be covered in a separate lecture on Serre zeta functions.

Theorem 21.0.3(F.K. Schmidt).
For all K/Fq, we have δ = I(K) = 1 where I is the index.

This will follow from the associated, but it much weaker. However, this is one of the facts we’d like
to establish to use to prove the Riemann hypothesis.

19The index of the function field, least positive degree of a divisor.
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Remark 21.0.4: Pete studied this in 2004 and found that every I ∈ Z+ arises as the index of a
genus one function field K/Q.

Notation: for n ∈ Z+, let µn denote the nth roots of unity in C.

Lemma 21.0.5(?).
For m,r ∈ Z+, set d ∶= gcd(m,r). Then

(1 − tmr/d)
d
= ∏
ξ∈µr

1 − (ξt)m.

Proof (?).
In C[x], we have

(Xr/1 − 1)d = ∏
ξ∈µr

(X − ξm),

where both sides are monic polynomials whose roots include the (r/d)th roots of unity, each
with multiplicity d. On the LHS, the distinct roots are the r/dth roots of unity, then raising
to the dth power gives them multiplicity d. On the RHS, this is an exercise in cyclic groups:
consider the nth power map on Z/rZ and compute its image and kernel. As ξ ranges over rth
roots of unity, ξm ranges over all r/dth roots of unity, each occurring with multiplicity d.
Substituting X = t−m and multiplying both sides by tr yields the original result.a

∎
aSpecial case: set m = r, so d = r, then the RHS is r copies of 1.

E
21.1 Comparing Zeta Functions After

Extending Scalars e

Next up, we want to compare the zeta function Z(t) for a function field over Fq to the zeta function
obtained when extending scalars to Qr.

Proposition 21.1.1(Factorization identity for the zeta function).
Let K/Fq be a function field, r ∈ Z+, and take the compositum Kr of K and Frq viewed as a
function field over Frq. Let Z(t) be the zeta function of K/Fq and Zr(t) the zeta function of
Kr/Frq. Then

Zr(tr) = ∏
ξ∈µr

Z(ξt).

Proof (?).
We have an Euler product formula

Z(t) = ∏
p∈Σ(K/Fq)

(1 − tdeg(p))−1.
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where the sum is over places of the function field.a

Exercise
Why is this product expansion true? Write as a geometric series with ratio tdeg(p). Here
just expand each summand to get

Z(t) =∏
p

∞
∑
j=1

tj deg(p).

Multiplying this out and collecting terms is in effect multiplying out the prime divisors
to get effective divisors.

We now use the result about splitting that was stated (but not proved):

Claim: If p ∈ Σm(K/Fq) is a degree n place and r ∈ Z+, then there exist precisely

d ∶= gcd(m,r)

places pr of Kr lying over p, where each place pr has degree m/d.
In order to compare Zr(t) to Z(t), we collect the p′ into ones that have the same fiber. We
then can range over all p first, then over all p′ in the fiber above p, yielding

Zr(tr) = ∏
p∈Σ(K/Fq )

∏
p′/p

1
1 − tr deg(p′) .

Using the Euler product identity, we have for p ∈ Σm(K/Fq) and d ∶= gcd(m,r) we can express
the innermost product as

∏
p′/p

1
1 − tr deg(p′) = (1 − trm/d)−d = ∏

ξ∈µr
(1 − (ξt)m)−1,

where we’ve used the fact that we know there are exactly d places and each contributes the
same degree in the first expression. By using −d in the previous lemma, we get the last term.
Combining all of this yields

Zr(tr) = ∏
ξ∈µr

∏
p∈Σ(K/Fq )

(1 − (ξt)deg p)−1 = ∏
ξ∈µr

Z(ξt).

∎
aProving this Euler product formula might show up in a separate lecture, but it is not any more difficult than
proving it for the Riemann zeta function.

Remark 21.1.3: Similar to taking an abelian extension of number fields and noting that the
Dedekind zeta function factors into a finite product: the original zeta function, and in general,
Hecke L functions. If you do this for an abelian number field over Q, then the Dedekind zeta
function of the upstairs number field will be a finite product where one of the terms in the Riemann
zeta function and the others are Dirichlet L functions associated to certain Dirichlet characters. So
this is some (perhaps simpler) version of that.
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E 21.2 Proof That δ = 1 e

We can finally prove Schmidt’s theorem that δ = 1:

Proof (δ = 1).
Take a δth root of unity ξ ∈ µδ. Then for all places p ∈ Σ(K/Fq), δ divides deg p by definition
since it is a gcd, and so we have

Z(ξt) = ∏
p∈Σ(K/Fq )

(q − (ξt)deg p)−1 = ∏
p∈ΣKFq

1
1 − tdeg p = Z(t),

using the fact that ξdeg p = 1.
We’re now in a situation where we can apply the previous proposition, which gives the following
identity for the zeta function over the degree δ extension:

Zδ(tδ) = ∏
ξ∈µδ

Z(ξt) = Z(t)δ.

Our previous formulas show that any zeta function for a 1-variable function field over a finite
field has a simple pole at t = 1, and since Ordt−1(tδ) = 0, we get

−1 = Ordt−1Zδ(tδ) = Ordt−1Z(t)δ) = −δ,

where for the first equality we’re using the fact that the (t− 1)-adic valuation of Zδ(tδ) is one,
and for the RHS, the ordinary zeta function has a simple pole at t = 1 and since we have a
valuation, raising something to the δth power is just δ times the original valuation.

∎

There is some modest representation theory (character theory) that shows up when looking at zeta
functions of abelian extensions.

Remark 21.2.1: We can also conclude that every genus zero function field K/Fq is isomorphic
to Fq(t) and thus rational, since such a function field rational iff it has index one. Why? By
Riemann-Roch, index one implies existence of a divisor of degree one, and taking a genus zero curve
says that every divisor of nonnegative degree is linearly equivalent to an effective divisor. Thus
if you have a divisor of degree one, you have an effective divisor of degree one, which makes the
function field a degree one extension of a rational function field.

Exercise 21.2.2 (?)
Let K = Fq(t), then show that g = 0, δ = 1, and

Z(t) = 1
(1 − qt)(1 − t) .

Hint: go back to complicated formulas and substitute δ = 1 to simplify things.

Thus for rationality of the zeta function, we can get rid of the δ cluttering up formulas.
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E 21.3 The Functional Equation e

Going back to the plan, we wanted to show

1. Rationality: Z(t) ∈ Q(t) and thus Z(t) = P (t)/Q(t),

2. Understand the degrees of P and Q in terms of the genus, and

3. Ask about the roots of P (t) to understand the analog of the Riemann Hypothesis for Dedekind
zeta functions

We’ll want to establish a functional equation, as is the usual yoga for zeta functions, since it helps
establish a meromorphic continuation to C. The algebraic significance of the functional equation is
that it aids in understand several equivalent packets of data:

• The number of effective divisors of a given degree,

• The number of places of a given degree,

• The number of rational points over each finite degree extension of the base field.

Theorem 21.3.1(Functional Equation).
Let K/Fq be a function field of genus g, then

Z(t) = qg−1t2g−2Z ( 1
qt

) .

Proof (?).
For g = 0, we know that

Z(t) = 1
(1 − t)(1 − qt) ,

and plugging in 1
qt

is a straightforward calculation. So assume g ≥ 1.
The idea was that we wrote Z(t) = F (t) +G(t). The F (t) piece came from summing over
divisor classes of degree between 0 and 2g − 2 and recording the dimension of the associated
linear system. The tricky piece G(t) came from summing an infinite geometric series to get
a more innocuous closed-form expression of a rational function. So the strategy here is to
separately establish the functional equation for each of F and G separately. How to do this:
for g = 0, there was no F (t) piece. If we have a closed form it’s just a computational check.
For F (t), we’ll use our greatest weapon and dearest ally, the Riemann-Roch theorem. This
will provide the extra symmetry we need.
We essentially already applied Riemann-Roch to G(t) to get the closed-form expression, but
we haven’t applied it to the small degree divisors. This doesn’t tell you what the dimension
is, but rather gives you a duality result: ti gives the dimension in terms of the dimension of a
complementary divisor.

21.3 The Functional Equation 97



21 Lecture 14: The Hasse-Weil Zeta Function

Take a canonical divisor K ∈ Div(K), so degK = 2g − 2. As C runs through all divisor classes
of K of degree d with 0 ≤ d ≤ 2g − 2, so does the complementary divisor K −C.
We can thus write

(q − 1)F (t) = ∑
0≤degC≤2g−2

q`(C)tdeg(C)

(q − 1)G(t) = h(q
gt2g−1

1 − qt − 1
1 − t) .

We can thus compute

(q − 1)F ( 1
qt

) = ∑
0≤degC≤2g−2

q`(C) ( 1
qt

)
degC

= ∑
0≤degC≤2g−2

q`(K−C) ( 1
qt

)
2g−2−degC

,

where in the second step we’ve exchanged C forK−C and noted that deg(K−C) = 2g−2−deg(C).
We now do the calculation another way,

(q − 1)F (t) = ∑
0≤degC≤2g−2

q`(C)tdegC

= qg−1t2g−1 ∑
0≤degC≤2g−2

qdeg(C)−(2g−2)+`(K−C)tdeg(C)−(2g−2) by Riemann-Roch

= qg−1t2g−2 ∑
0≤degC≤2g−2

q`(K−C) ( 1
qt

)
deg(K−C)

= qg−1t2g−2(q − 1)F ( 1
qt

) .

where we’ve used Riemann-Roch to find that `(C) = `(K −C)+ deg(C)− g + 1. Cancelling the
common factor of (q − 1) establishes the functional equation for F (T ).
Now using the fact that δ = 1, we have

(q − 1)G(t) = h(q
gt2g−1

1 − qt − 1
1 − t) ,

and thus

(q − 1)qg−1t2g−2G( 1
qt

) = hqg−1t2g−2
⎛
⎜
⎝
qg ( 1

qt
)

2g−1
− 1

1 − q ( 1
qt)

− 1
1 − 1

qt

⎞
⎟
⎠

= h( −1
1 − t +

qgt2g−1

1 − qt )

= (q − 1)G(t),

which establishes the functional equation for G(t).
∎
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E 21.4 The L Polynomial e

Definition 21.4.1 (The L Polynomial)

L(t) ∶= (1 − t)(1 − qt)Z(t) ∈ Z[t].

This clears the denominators in Z(t), so this is now a polynomial of degree at most 2g. We can
thus rewrite

Z(t) = L(t)
(1 − t)(1 − qt) = a2gt

2g +⋯ + a1t + a0

(1 − t)(1 − qt) .

Note that if we know L(t), then we know Z(t), and in particular we would like to know what the
coefficients aj are. We’ll be able to determine a0 = 1 in all cases, as well as a2g in all cases pretty
easily. So it looks like it only remains to compute a1,⋯, a2g−1, but the functional equation will give
a “mirror” relation between pairs of coefficients. The upshot is that the functional equation shows
that we only need to know a1,⋯, ag to completely determine Z(t). If g = 1, just one coefficient
suffices. It turns out that a1 will be q + 1 minus the number of degree one places.

Question 21.4.2

• What are the constraints on these quantities?

• Can we write the zeta function in a nice way?

• Exactly what do we need to compute to determine it?

It will turn out that computing the number of rational points over Fq,Fq2 ,⋯,Fqg will be possible.
For example, for a hyperelliptic curve, we’ll have an explicit defining equation and can make an
explicit point count, and you only need g of them.

22 Lecture 15: The L-Polynomial

E 22.1 Big List of Important Facts e

Recall that we had Z(t) + F (t) +G(t):
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(q − 1)F (t) = ∑
0≤degC≤2g−2

q`(C)tdeg(C)

(q − 1)G(t) = h(q
gt2g−1

1 − qt − 1
1 − t) .

Note that F (t) is a polynomial of degree at most 2g − 2, and clearing denominators in G(t) yields
a polynomial of degree at most 2g

Definition 22.1.1 (The L-polynomial)
The L-polynomial is defined as

L(t) ∶= (1 − t)(1 − qt)Z(t) = (1 − t)(1 − qt)
∞
∑
n=0

Ant
n ∈ Z[t].

It turns out that the degree bound of 2g is sharp, and the coefficients closer to the middle are most
interesting:

Theorem 22.1.2(?).
Let K/Fq be a function field of genus g ≥ 1, then

a. degL = 2g.
b. L(1) = h
c. L(t) = qgt2gL( 1

qt
).

d. Writing L(t) =
2g
∑
j=1

ajt
j ,

• a0 = 1 and a2g = qg.

• For all 0 ≤ j ≤ g, we have a2g−j = qg−jaj .

• a1 = ∣Σ1(K/Fq)∣ − (q + 1), which notably does not depend on g.

• Write L(t) =
2g
∏
j=1

(1 − αjt) ∈ C[t] a

e. The αj ∈ Z b (which were a priori in C) and can be ordered such that for all 1 ≤ j ≤ g,
we have ajag+j = q. c

f. If Lr(t) = (1−t)(1−qrt)Zr(t) then Lr(t) =
2g
∏
j=1

(1−αrjt), whereKr is the constant extension

KFqr/Fqr
aThe polynomial isn’t monic, but rather has a constant coefficient, so this expansion is somewhat more natural
than (say)∏(t − α).

bZ denotes the algebraic integers.
cThis is the first hint at the Riemann hypothesis: if for example they all had the same complex modulus, this
would force ∣aj ∣ =

√
q. Thus proving that they all have the same absolute value is 99% of the content!
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Note that the αj are reciprocal roots.

E 22.2 Proofs e

22.2.1 The degree of L and L(1)

Proof (of a).
We saw from Z(t) = F (t) +G(t) that degL ≤ 2g. Equality will follow from the proof of (d)
part 1, since this would imply that a2g = qg ≠ 0.

∎

Proof (of b).
Our formula Z(t) = F (t) +G(t) and Schmidt’s theorem (showing δ = 1) gives

L(t) = (1 − t)(1 − qt)F (t) + h

q − 1
(qgt2g−2(1 − t) − (1 − qt)) ,

where we’ve expanded G but not F because it involves various `(D) which are difficult to
compute. It is some polynomial though, and we can evaluate L at 1 to get L(1) = h. Thus the
class number is the sum of the coefficients!

∎

22.2.2 Functional Equation

Proof (of c).
This follows easily from the functional equation for Z(t), which we already established using
the Riemann-Roch theorem:

Z(t) = qg−1t2g−2Z ( 1
qt

) .

We can compute

qgt2gL( 1
qt

) = qgt2g (1 − 1
qt

)(1 − 1
t
)Z ( 1

qt
)

= qg−1t2g−2(1 − t)(1 − qt)Z ( 1
qt

)

= (1 − t)(1 − qt)Z(t)
∶= L(t),

where we’ve distributed one q and two ts in the first steps.
∎
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22.2.3 Coefficients aj for j = 0,1,2g and Duality

Proof (of d).
Using the functional equation from (c), we can write

L(t) = qgt2gL( 1
qt

) = (a2g

qg
) + (a2g−1

qg−1 ) t +⋯ + (a0q
g) t2g,

where we’re correcting by enough in t but not enough in q and seeing what we get. Equating
coefficients, for 0 ≤ j ≤ g we have

a2g−j = qg−jaj . (2)

Using the fact that A0 is the number of effective degree zero divisors, which is only zero, we
have A0 = 1 and we can multiply formal power series to obtain

L(t) = a0 + a1t +⋯ + a2gt
2g = (1 − t)(1 − qt)

∞
∑
n=0

Ant
n

= (1 − (q + 1)t + qt2) (1 +A1t +A2t
2 +⋯)

= 1 + (A1 − (q + 1)) t +⋯.

From this, we can read off

• L(0) = a0 = 1
• a1 = A1 − (q + 1) = Σ1(K/k) − (q + 1)
• a2g = a2g−0 = qg−0a0 = ag by taking j = 0 in equation (2), and thus degL = 2g.

∎

22.2.4 Absolute Values of Roots / RH

Proof (of e (the most interesting!)).
Consider the reciprocal polynomial

L⊥(t) ∶= t2gL(1
t
) = t2g + a1t

2g−1 +⋯ + qg.

The original polynomial had Z coefficients and constant term 1, so this polynomial is monic
and has a nonzero constant term. Thus its roots are patently nonzero algebraic integers in Z●.

If L⊥(t) =
2g
∏
j=1

(t − αj), then

L(t) = t2gL⊥ (1
t
) =

2g
∏
j=1

(1 − αjt)

and if the roots of L(t) are rj , then the roots of L⊥(t) are the reciprocal roots 1/rj and
vice-versa. This shows the first assertion that rj ∈ Z as well.
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The most interesting part is what follows. Making the substitution t = qu and using (c) we get

L⊥(t) =
2g
∏
j=1

(t − αj)

∶= t2gL(1
t
)

= q2gu2gL( 1
qu

) by (c).

Using u = t/q, we can write

qgL(u) = qg
2g
∏
j=1

(1 − αju)

= qg
2g
∏
j=1

(1 − αj
q
t)

= qg
2g
∏
j=1

αj

q

2g
∏
j=1

(t − 1
αj

)

=
2g
∏
j=1

(t − q

αj
) ,

where we’ve pulled out a factor of −αj/q and in the last step we’ve used that
2g
∏
j=1

αj = qg. This

follows because the αj are the roots of L⊥, which has even degree, so the product of all of the
roots is equal to the constant term of L⊥, which is the leading term of L, which we showed
was qg.
This says that if we take these roots αj as a multiset and replace each αj with q/αj , we get
the same multiset back. I.e., this multiset is stable under the involution

C× → C×

z ↦ q

z
.

This almost pairs up the elements of this finite set of roots, except it may have fixed points.
The complex numbers α such that α = q/α are precisely ±√q. So group the α−1

i into

• k pairs of nonfixed points, where αi ≠ q/αi,
• m points such that αi =

√
q,

• n points such that αi = −
√
q.

So we’d like to show that m and n are both even, so when we’re pairing roots with reciprocals
these get paired with themselves. We know 2k +m + n = 2g, so m + n is even. We also know
that

qg =
2g
∏
j=1

αj

= qk (√q)m (−√q)n

= (−1)nqk+
m
2 +

n
2

= (−1)nqg.
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This forces n to be even, and since m = 2g − 2k − n, m must be even as well.
∎

Proof (of f).
We used Dirichlet’s character-style decomposition of Z(t) in Schmidt’s theorem, and we’ll use
it again here. Write

Lr(tr) = (1 − tr)(1 − qrtr)Zr(tr)
= (1 − tr)(1 − qrtr) ∏

ξ∈µr
Z(ξt)

= (1 − tr)(1 − qrtr) ∏
ξ∈µr

L(ξt)
(1 − ξt)(1 − qξt)

= ∏
ξ∈µr

L(ξt),

where we’ve used that

∏
ξ∈µr

1
1 − ξt = 1 − tr

∏
ξ∈µr

1
1 − qξt = 1 − qrtr

which leads to all of the denominators canceling. We can then expand Lr(tr) as a product to
compute

Lr(tr) = ∏
ξ∈µr

L(ξt)

= ∏
ξ∈µr

2g
∏
j=1

(1 − αjqt)

=
2g
∏
j=1

∏
ξ∈µr

(1 − αjqt) since these are finite products

=
2g
∏
j=1

(1 − αrjtr).

From this we can conclude that Lr(t) =
2g
∏
j=1

(1−αrjt), since tr is just an indeterminate and these

are all identities of polynomials.
∎

E 22.3 Applications and Corollaries e
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22.3.1 Counting Rational Points

Corollary 22.3.1(?).

Suppose K/Fq is genus g ≥ 1 and L(t) =
2g
∏
j=1

(1 − αjt). Then for all r ∈ Z≥0, we have a nice

expression for Nr:

Nr ∶= ∣Σ1(Kr/Fqr)∣ = qr + 1 −
2g
∑
j=1

αrj .

Proof (?).

Let Lr(t) =
2g
∑
j=1

aj,r =
2g
∏
j=1

(1 − αrjt), so a1,r = −
2g
∑
j=1

αrj . Then using (d) part 3, we can write

∣Σ1(Kr/Fqr)∣ = qr + 1 + a1,r = qr + 1 −
2g
∑
j=1

αrj .

This follows from consider∏(1−αrjt), where extracting the t1 coefficient involves choosing −αrj
once and 1 from all of the remaining terms, and then you sum over the disjoint possibilities.

∎

Remark 22.3.2: We’d really like to compute the coefficients of the L polynomials, since we can
solve a polynomial equation to get the roots. But the Galois groups of these polynomials may not
be solvable, so the term ∑αrj will in general be some symmetric function in the complex roots.
Note that any symmetric polynomial in the roots is also a symmetric polynomial in the coefficients.

22.3.2 Relating Rational Points to Coefficients

Corollary 22.3.3(?).
For K/Fq a function field, define

Sr ∶= Nr − (qr + 1) = −
2g
∑
j=1

αrj .

Note that Nr = ∣Σ(Kr/Fqr)∣ is the number of Fqr -rational point. Then

a. L′(t)/L(t) =
∞
∑
r=1

Srt
r−1.

b. a0 = 1, and for all 1 ≤ i ≤ g,

iai = Sia0 + Si−1a1 +⋯ + S1ai−1.
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Remark 22.3.4: What’s the usefulness here? If you only have the coefficients of the L polynomials,
taking the logarithmic derivative gives access to these quantities Sr. The second formula is a recursive
expression for the ai in terms of the Si. So you can compute the coefficients of the L polynomial
by counting Fqr -rational points on your curve (or places on your function field) for r = 1,2,⋯, g.
Similarly, if you have all of the coefficients for a Z polynomial, you can solve for the Si.

Proof (of a).

Essentially just a computation. Logarithmically differentiating both sides of L(t) =
2g
∏
j=1

(1−αjt)

and expanding in a geometric series yields

L′(t)
L(t) =

2g
∑
j=1

−αj
a − αjt

=
2g
∑
j=1

(−αj)
∞
∑
r=0

(αjt)r

=
∞
∑
r=1

⎛
⎝

2g
∑
j=1

(−αrj)
⎞
⎠
tr−1

=
∞
∑
r=1

Srt
r−1.

∎

Proof (of b).

Clearing denominators and equating coefficients in L′(t) = L(t)
∞
∑
r=1

Srt
r−1 yields the result

immediately, since the iai are what appear as coefficients in the derivative of a formal power
series, whereas the RHS is a Cauchy product.

∎

Remark 22.3.5: The moral: to compute zeta functions, you don’t have to enumerate divisors
and compute dimensions of Riemann-Roch spaces. Note that the Riemann-Roch theorem tells us
something interesting about these dimensions, but doesn’t compute the dimension outright! Instead,
it suffices to compute Fqr -rational points for r ≤ g.

A few lectures ago we discussed the places on a hyperelliptic function field, including a place at
infinity. Computing the zeta function of a hyperelliptic curve involves plugging in x-values and
determining if it is

• A nonzero non-square: no y-values,
• Zero: exactly one y-value,
• A nonzero square: two y-values.

This is what happens at the finite places. To handle the place at ∞, there is a recipe for the
degree of the polynomial in terms of the coefficients. So for any hyperelliptic function field (and
in particular, for any elliptic function field) we have a concrete algorithm for computing their zeta
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functions. Note that this is not necessarily a good algorithm: it still involves plugging in many
values and checking if things are squares in finite values. It seems that most people who compute a
lot of zeta functions mostly focus on hyperelliptic function fields.

How are you going to compute zeta functions or even places for more complicated function fields?
The Riemann-Hurwitz formula says that since any function field is a finite degree extension of a
rational function field, the curve is given as a degree 2 branched cover of P1, it suffices to compute
the fibers of this cover in order to get point counts.

23 Lecture 16

E 23.1 Weil Bounds e

Last time: we finished a discussion of the Hasse-Weil zeta function over a finite ground field Fq.

Exercise 23.1.1 (?)
Let K/Fq be a function field of genus 1.

a. Show

Z(t) = 1 − at + qt2
(1 − t)(1 − qt) ,

where a = q + 1 − ∣Σ1(K/Fq)∣.

b. Let L(t) ∶= (1 − α1t)(1 − α2t). Show that a = α1 + α2, and that for all r ∈ Z+,

∣Σ1(Kr/Fqr ∣ = qr + 1 − αr1 − qr/αr1.

Thus for elliptic curves E/Fq, knowing ∣E(Fq)∣ determines ∣E(Fqr)∣ for all r ∈ Z+.

c. Suppose ar = 0 and show

r odd Ô⇒ ∣Σ1(Kr/Fqr)∣ = qr + 1
r ≡ 2 (mod 4) Ô⇒ ∣Σ1(Kr/Fqr)∣ = (qr/2 + 1)2

r ≡ 0 (mod 4) Ô⇒ ∣Σ1(Kr/Fqr)∣ = (qr/2 − 1)2

.

Theorem 23.1.2(?).

Let K/Fq be a function field of genus g with L-polynomial L(t) =
g

∏
i=1

(1 − αit). Then ∣α∣i =
√
q

for all i.
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Remark 23.1.3: In order to prove this, Weil had to develop foundations for algebraic geometry in
positive characteristic. His original proof used intersection theory on algebraic surfaces.

Corollary 23.1.4(Weil Bounds).
If K/Fq is a function field of genus g, then

∣∣Σ1(K/Fq)∣ − (q + 1)∣ ≤ 2g√q.

Remark 23.1.5: This says that the number of Fq points is approximately q + 1< where the error
is controlled by the genus.

Proof (?).
We know

∣Σ1(K/Fq)∣ = q + 1 −∑αi.

Thus

∣Σ1(K/Fq) − (q + 1)∣ = ∣∑αi∣ ≤
2g
∑
i=1

∣αi∣ = 2g√q.

∎

Corollary 23.1.6(?).
For r ≫ 0, Nr ∶= ∣Σ1(Kr/Fqr)∣ ≥ 1.

Proof (?).
The Weil bounds yield

Nr ≥ qr + 1 − 2gqr/2 ≥ qr/2 (qr/2 − 2g) r→∞∞ .

This can be alternatively phrased as

Nr = qr +Og(qr/2).

Note that we’ve used the fact that making any separable extension of a function field will
preserve the genus, and so g is fixed.

∎

Remark 23.1.7: So for r large enough, there is an Fqr -rational point, and Nr →∞ exponentially
fast in r.

Remark 23.1.8: As a consequence, if ω ∈ Σ1(Kr/Fqr), let v ∶= ω ∩K. We saw that deg(v) = d
which divides r, so we can form the divisor r/d[p] ∈ DivrK for any place p below v. So any degree
1 place yields a degree r divisor, which shows that DivrK ≠ ∅ for all r large enough and thus δ = 1
(which is Schmidt’s theorem).
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Exercise 23.1.9 (?)

a. Show that there is a constant C depending only on g such that if r ≥ C then for all n ≥ 2,
Nnr > Nr.

b. Use the following fact to show that there exists a constant D depending on g such that
for all d ≥D, Σd(K/Fq) ≠ ∅:

Nr =∑
d∣r
d∣Σd(K/Fq)∣.

Remark 23.1.10: Note that this is stronger than Schmidt’s theorem: it implies that not only do
you have a divisor of degree d, but also a place of degree d.

Exercise 23.1.11 (?)

a. Use the Weil bounds to show that when g = 0, ∣Σ1(K/Fq)∣ = q + 1. Deduce that every
genus zero function field is rational.

b. Use the Weil bounds to show that if g = 1, then ∣Σ1(K/Fq)∣ ≥ (√q − 1)2 > 0, and thus
every genus 1 function field over Fq is elliptic.a

aBy definition, a genus 1 function field with a degree 1 place, which can be used as the origin for the group
structure.

Corollary 23.1.12(Serre Bounds).
Let K/Fq be a function field of genus f , then

∣Σ1(K/Fq) − (q + 1)∣ ≤ g⌊2√q⌋.

Remark 23.1.13: We write

Mq(g) ∶= The maximal ∣Σ(K/Fq)∣ as K ranges over genus g function fields
mq(g) ∶= The minimal ∣Σ(K/Fq)∣ as K ranges over genus g function fields

A(q) ∶= lim sup
g→∞

Mq(g)
g

.

This is essentially the best constant that can be put in front of g in the bounds. With these
definitions, we have

A(q) ≤ 2√q by Weil bounds
A(q) ≤ ⌊2√q⌋ by Serre bounds

.

Note that we can do much better, e.g. A(2) ≤
√

2 − 1, but it is not known if this is sharp.

Proof (of Serre’s bound).
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We may assume g ≥ 1, and write L(t) =
2g
∏
i=1

(1 − αit), where the αi may be ordered such that

αiαg+− = g for all i. By the Riemann hypothesis, we have ∣αi∣ =
√
q, and so for each i we have

αi = q/αi = αg+i. We now pair in the following way: set

γi ∶= (αi + αi) + ⌊2√q⌋ + 1
δ ∶= − (αi + αi) + ⌊2√q⌋ + 1
.

These are real algebraic integers and by the Riemann hypothesis they are positive. Since
L⊥(t) ∶=∏ t − αi ∈ Z[t], take any complex embedding

σ ∶ Q ({αi})↪ C,

which preserves the αi. If σ(αi) = αj , then we have

σ(αi) = σ (q/αi) = q/σ(αi) = σ(αi) = αj ,

and thus σ preserves the multisets of the γi and δi.
Now set γ ∶=∏γi and δ ∶=∏ δi, making these both positive real integers that are fixed by
every embedding σ, and thus γ, δ ∈ Z+. We can now apply the AM-GM inequality:

1
g

g

∑
i=1
γi ≥ (

g

∏
i=1
γi)

1
g

= γ1/g ≥ 1,

and thus

g ≤∑γi = ∑
αi+αi

+g⌊2√q⌋ + g =∑αi + g⌊2
√
q⌋ + g,

and we can conclude that −∑αi ≤ g⌊2√g⌋. Repeating the argument with the δi yields
∑αi ≤ g⌊2

√
q⌋, meaning that ∣∑αi∣ ≤ g⌊2

√
q⌋. Thus

∣∣Σ1(K/Fq)∣ − (q + 1)∣ = ∣∑αi∣ ≤ g⌊2
√
q⌋.

∎

Remark 23.1.14: An application to class numbers: since g = L(1), by the Riemann hypothesis we
have

√
q − 1 ≤ ∣αi − 1∣ ≤ √

q + 1

and thus

(√q − 1)2g ≤ h ≤ (√q + 1)2g .

There is a slight improvement:

(√q − 1)2g ≤ (q + 1 − ⌊2√q⌋)g ≤ h ≤ ⌊(√q + 1)2⌋g = (q + 1 + ⌊2√q⌋)g .
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Corollary 23.1.15(?).

a. For all q ≥ 5, we have

h geq (
√

5 − 1)2g ≥ 1.2362g.

b. The class number grows exponentially in the genus not just for each fixed q but uniformly
over all q ≥ 5. In particular, if g ≥ 1, this forces h > 1.

What exactly is happening at small q, such as q ∈ {2,3,4}?

Theorem 23.1.16(?).
For K/Fq of genus g ≥ 1,

h ≥ (q − 1
2

)(q
2g + 1 − 2gqg
g (qg+1 − 1) ) .

Exercise 23.1.17 (?)

a. Show that

h ≥ (q − 1
2

)(q
g−1

g
− 2
q
) ,

which still grows exponentially in g.

b. Show that for any 1 < C < 2, setting h(g) to be the minimum class number of a genus
g function field over any finite field, we have h(g) ≫ Cg and is thus also growing
exponentially in g.

c. Deduce that for all H ∈ Z, the collection C(H) ∶=
{(q, g) ∣ ∃K/Fq of genus g ≥ 1 and h ≤H} is a finite set.

Question 23.1.18 (Class Number Problem)
Find C(H) for each H. For H = 1, this has been solved, but there hasn’t been much work on the
H = 2,3 cases.

The following proof: very neat! Pete likes it.

Proof (?).

The number A2g of effective degree 2g divisors on K is h(q
g+1 − 1
q − 1

) by an application of the

Riemann-Roch theorem, since 2g > 2g − 2. Let Q ∈ Σ1(K2g/Fq2g) be a degree one place and

restrict to K to obtain P ∶= Q ∩K which has degree ` dividing 2g. Then ( 2g
deg(P ))P has
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degree 2g, and this yields a map

Σ1(K2g/Fq2g)→ Effective degree 2g divisors

Q↦ 2g
degP

P.

This is not necessarily surjective, but how far is it from being injective? The fibers have size
at most 2g since we have a degree 2g extension of Dedekind domains. Thus

∣Σ1(K2g/Fq2g)∣ ≤ A2g,

and substituting the known value of A2g and rearranging yields

h ≥ 1
2g

( q − 1
qg+1 − 1

)N2g

≥ ( 1
2g

)( q − 1
qg+1 − 1

)(q2g + 1 − 2gqg) by the Weil bounds

= (q − 1
2

)(q
2g + 1 − 2gqg
g (qg+1 − q) ) .

∎
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24 Lecture 17 (Todo)

25 Lecture 18 (Todo)

26 Lecture 19 (Todo)

27 Lecture 20 (Todo)

28 Lecture 21 (Todo)

29 Lecture 22 (Todo)

30 Lecture 23 (Sketch)

What is an isogeny?

What is an Artin-Schreier extension?

What is Kummer theory?

What are Weil differentials?

What are Kahler differentials?

What is the Riemann Hurwitz formula?

Corollary 30.0.1(?).
Let k be a perfect field of characteristic p > 0, d ∈ Z≥0 with gcd(d, p) = 1, and let f ∈ k[x] and
L ∶=K(p−1(f)). Then [L ∶K] = p and L/k is a regular function field of genus g = 1

2
(p−1)(d−1)

that is unramified away from ∞.
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E
30.1 Artin-Schreier Extensions of Function

Fields
e

Fact 30.1.1
For k a field, ch(k) = p > 0, and a, b ∈ k, TFAE:

1. k(p−1(a)) = k(p−1(b))

2. a and b generate the same cyclic subgroup of k/p(k).

In particular, if K(p−1(u))/k is an Artin-Schreier extension, then for all x ∈ k, k(p−1(u−(xp−x))) =
k(p−1(u)).

Lemma 30.1.2(?).
Let k a perfect field of characteristic p > 0, K/k a function field, u ∈K, and p ∈ Σ(K/k).

• There exists a z ∈K such that zv ∶= vp(u − (zp − z)) satisfies either

– zv ≥ 0, or
– zv ≤ 0 and zp is prime to p.

• There exists a most one m ∈ Z that is negative and prime to p such that for
some z ∈ K we have vp(u − (zp − z)) = m. If such an m exists, it is given by
m = max {vp(u − (zp − z)) ∣ z ∈K}.

• It follows that precisely one of the two alternatives in the first statement holds.

Theorem 30.1.3(Genus Formula for Artin-Schreier Extensions).
Let k a perfect field of characteristic p > 0, K/k a function field, u ∈ K, L ∶= K(p−1(u)),
p ∈ Σ(K/k), and set

Mp ∶=
⎧⎪⎪⎨⎪⎪⎩

∣m∣ if there exists a z ∈K such that vp(u − (zp − z)) =m
−1 if there exists a z ∈K such that vp(u − (zp − z)) ≥ 0

.

Then

a. If Mp = −1, then p is unramified in L.

b. If Mp ≥ 1, then p is totally ramified in L. Letting p̃ be the unique place lying over p, then

d(p̃/p) = (p − 1)(Mp + 1) (wild ramification).

c. Suppose there exists a p such that Mp ≥ 1. Then [L ∶K] = p, L/k is regular, and we have
a genus formula

gL = pgK + (p − 1
2

)
⎛
⎝
−2 + ∑

p∈Σ(K/k)
(Mp + 1)deg p

⎞
⎠
.
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31 Lecture 24: Hermitian Function Fields
(Sketch)

What is an elementary p-group?

What is geometrically irreducible?

Theorem 31.0.1(Stichtenoth Prop 6.4.1).
Let k be a perfect field of characteristic p > 0, q ∶= ps some power of p, K ∶= k(x). Let u ∈ k×
and suppose T q + µT splits in k.a Let f ∈ k[x] with deg(f) =M where p /∣M . Then

a. The polynomial

P (x, y) ∶= yq + uy − f(x) ∈ k[x]

is geometrically irreducible, and so L ∶= ff(k[x, y]/ ⟨p⟩) is a regular function field over k.

b. We have [L ∶K] = q.

c. A ∶= {γ ∈ k ∣ γq + uγ = 0} is an order q subgroup of Ga/k ∶= (k,+). Moreover, for all
σ ∈ Aut(L/K), there exists a unique γ(σ) ∈ A such that σ(y) = y + γ(σ) and σ ↦ γ(σ)
yields an isomorphism Aut(L/K) ∼Ð→ A.

d. No finite place ofK ramifies in L, while p∞ is totally ramified. If p̃∞/p∞, then d(p̃∞/p∞) =
(q − 1)(M + 1).

e. We have

gL = (1
2
) (q − 1)(m − 1).

aWhen u = −1, this recovers q-Artin-Schreier extensions.

Next up: one of the most important function fields of all time!

Definition 31.0.2 (Hermitian Function Field)
Set Aq ∶= Fq2(x, y) and consider the polynomial

yq + y = xq+1.

Then u = 1,M = q + 1, and g = (1
2
) (q)(q − 1) = (q

2
).

Theorem 31.0.3(?).

∣Σ1(Aq/Fq2)∣ = q3 + 1.

What are the Weil bounds?
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Corollary 31.0.4(Ihara).
If K/Fq is a maximal function field of genus g, then

g ≤ (1
2
) (q −√

q) .

Fact 31.0.5

If K/Fq2 is maximal, then N1 = q2+1+2gq = q2+q−
2g
∑
j=1

αj . Applying the RH, ∣αj ∣ = q, and it follows

that αj = −q for all j and thus

L(t) = (1 + qt)2g .

Theorem 31.0.6(Kleiman, Serre).
If K/Fq ⊂ L/Fq is a finite extension of function fields, then LK(t) divides LL(t).

Corollary 31.0.7(?).
If L/Fq2 is maximal, so is K/Fq2 .

Theorem 31.0.8(Stichtenoth?).

Aut(A1/Fq2) ≅ PGU3(Fq2),

the projective unitary group, which is of order q3(q2 − 1)(q3 + 1).

Remark 31.0.9: The size of this group Gq is asymptotically Gq ∼ q8, while g(Aq) ∼
q2

2
, so this is

a lot of automorphisms compared to the sizes of automorphism groups of Riemann surfaces. More
precisely, Gq > 16g(q)4.

Theorem 31.0.10(Stichtenoth).
For any other function field K/k for any field k, ∣Aut(K/k)∣ < 16g4.

Remark 31.0.11: This only happens in positive characteristic, when ch(k), g, q match up in a very
specific way. So Hermitian function fields are the algebraic curves with the most symmetries.

Theorem 31.0.12(Hurwtiz).
In characteristic zero, if g ≥ 2 then ∣Aut(K/k)∣ ≤ 84(g − 1).
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32 Lecture 25: Differential Pullback
Theorem (Sketch)

This will recover the Riemann-Hurwitz formula by taking degrees.

Lemma 32.0.1(?).
Let K/k ⊂ L/` be a finite degree extension of function fields, and suppose K/k is regular and
L/K is separable. Then `/k and L/` are separable and L` is regular.

L

K `

k

separable

regular

Link to diagram

Recall some facts/definitions:

• The adele ring of K is defined as

AK ∶=
′
∏

v∈Σ(K/k)
K

which is a restricted direct product, i.e. each element α ∈ AK has the property that for almost
every p, the p-adic valuation of the pth coordinate vp(αp) ≥ 0. There is a diagonal embedding

K ↪ AK
f ↦ (f, f,⋯).

• For any divisor D ∈ DivK, define

AK(D) ∶= {α ∈ AK ∣ vp(αp) ≥ −vp(D) ∀p} ,

the adelic analog of the Riemann-Roch space.

• A space of linear forms

Ω(D) ∶= {ω ∶ AK → A ∣ kerω ⊇K +AK(D)}

where D1 ≤D2 Ô⇒ ΩK(D2) ≤ ΩK(D1).

• ΩK ∶= limÐ→
D

ΩK(D).
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• For any ω ∈ Ω●
K , (ω) ∶= max {D ∣ ω = 0 on AK(D) +K}.

• AL/K = {α ∈ AL ∣ αq1 = αq2 if Q1,Q2/p} ≤Vect` AL

• The adelic trace map

TrL/K ∶ AL/K → AK
α ↦ TrL/K(α)/p = TrL/K(αQ) for any Q/p.

Theorem 32.0.2(?).
Let ω ∈ ΩK , then there exists a unique ω∗ ∈ AL such that

• For all α ∈ AL/K , we have Tr`/k ω∗(α) = ω(TrL/K(α)).

ω∗ is formally denoted CotrL/K(ω) and called the cotrace of ω.

Theorem 32.0.3(?).
If K/k ⊂ L/` is a finite extension of function fields with K/k regular, then for all ω ∈ A●K , we
have ω∗ ∈ A●L. Moreover,

(ω∗) = ιL/K((ω)) +D(L/K).

Taking degrees yields the Riemann-Hurwitz formula.

ToDos

List of Todos

What’s a global field? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Get citation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Not quite sure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

What is an isogeny? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

What is an Artin-Schreier extension? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

What is Kummer theory? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

What are Weil differentials? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

ToDos 118



32 ToDos

What are Kahler differentials? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

What is the Riemann Hurwitz formula? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

What is an elementary p-group? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

What is geometrically irreducible? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

What are the Weil bounds? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

ToDos 119



32

Definitions

2.1.1 Definition – Finitely Generated Field Extension . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Definition – Finitely Generated Algebras . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.3 Definition – Rational Function Field . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.6 Definition – Algebraically Independent . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.8 Definition – Transcendence Degree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.11 Definition – Function fields in d variables . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.1 Definition – Integral Closure and Field of Constants . . . . . . . . . . . . . . . . . . 9
3.2.1 Definition – Generic Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3.1 Definition – Divisor Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3.3 Definition – Principal Divisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3.4 Definition – Class Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2.2 Definition – Base Change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3.10 Definition – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2.1 Definition – Geometrically Irreducible Polynomial . . . . . . . . . . . . . . . . . . . 19
5.2.5 Definition – Absolutely Irreducible Polynomial . . . . . . . . . . . . . . . . . . . . . 20
6.1.1 Definition – Valuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.1.2 Definition – Valuation Ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.2.1 Definition – Group of Divisibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.3.5 Definition – Equivalence of Krull valuations . . . . . . . . . . . . . . . . . . . . . . . 25
6.4.1 Definition – Important: Regular and Centered . . . . . . . . . . . . . . . . . . . . . 26
6.4.3 Definition – Key: Zariski-Riemann Space . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.4.5 Definition – Key: Places, Points of a Curve . . . . . . . . . . . . . . . . . . . . . . . 26
6.5.1 Definition – Zariski Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.0.1 Definition – Affine Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.6.3 Definition – Degree of a Place . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
8.0.7 Definition – Holomorphy Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
8.1.5 Definition – Poles and Zeros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
9.1.1 Definition – Divisor group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
9.1.2 Definition – Effective Divisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
9.1.3 Definition – Support of a divisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
9.1.4 Definition – Partial order on divisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
9.1.5 Definition – Degree of a Divisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
9.1.7 Definition – Index of a divisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
9.1.13 Definition – Poles and Zeros of Elements of K . . . . . . . . . . . . . . . . . . . . . . 56
9.2.4 Definition – Principal Divisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
9.2.6 Definition – Linear Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
9.2.8 Definition – Divisor Class Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
9.2.9 Definition – Degree 0 Divisor Class Group (Important! Fundamental!) . . . . . . . 59
10.2.1 Definition – Riemann-Roch Space of D (Key Definition) . . . . . . . . . . . . . . . 63
10.5.1 Definition – `(D): The dimension of a Riemann-Roch space . . . . . . . . . . . . . 67
11.2.1 Definition – Genus (Important!) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Definitions 120



32

12.0.1 Definition – Index of Speciality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
12.1.6 Definition – Canonical Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
19.5.2 Definition – Class Number of K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
21.4.1 Definition – The L Polynomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
22.1.1 Definition – The L-polynomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
31.0.2 Definition – Hermitian Function Field . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

121



32

Theorems

2.1.5 Theorem – Field Theory Notes 11.19 . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.7 Theorem – Existence of transcendence bases . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.9 Theorem – Transcendence Degree is Additive in Towers . . . . . . . . . . . . . . . . 8
2.1.10 Theorem – Bounds on Transcendence Degree . . . . . . . . . . . . . . . . . . . . . . 8
2.2.3 Theorem – Lüroth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.4 Theorem – Castelnuovo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.5 Theorem – Zariski . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.6 Theorem – Clemens-Griffiths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.1.6 Proposition – FT 12.7, 12.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3.8 Theorem – FT 12.20: Regular Field Extensions . . . . . . . . . . . . . . . . . . . . . 16
4.4.1 Proposition – Some Facts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2.4 Proposition – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.3.1 Theorem – Regular Function Fields in One Variable are Geometrically Irreducible 21
6.5.3 Theorem – Zariski . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.7.1 Theorem – CA 17.17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.1.1 Proposition – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.2.2 Theorem – Complete description of places . . . . . . . . . . . . . . . . . . . . . . . . 34
7.3.1 Theorem – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.4.1 Proposition – Regularity Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.5.1 Theorem – Degree Inequality (NTII, 1.3) . . . . . . . . . . . . . . . . . . . . . . . . . 37
8.0.4 Proposition – Key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
8.1.1 Theorem – Holomorphy rings on subsets are synonymous with affine Dedekind

domains with fraction field K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
8.1.11 Theorem – Strong Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
9.1.14 Proposition – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
9.2.16 Theorem – Rosen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
9.2.24 Theorem – Trotter, 1988 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
10.5.6 Proposition – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
11.0.1 Proposition – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
11.2.4 Theorem – Riemann’s Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
12.1.1 Theorem – Riemann-Roch Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
12.2.1 Theorem – Genus Zero Function Fields are Quadratic Extensions . . . . . . . . . . 75
16.0.4 Theorem – 2.13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
19.5.1 Proposition – Finiteness of class group . . . . . . . . . . . . . . . . . . . . . . . . . . 85
20.3.3 Proposition – Formula for the zeta function exhibiting rationality . . . . . . . . . . 90
20.4.2 Theorem – Schmidt, 1910ish . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
21.0.3 Theorem – F.K. Schmidt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
21.1.1 Proposition – Factorization identity for the zeta function . . . . . . . . . . . . . . . 94
21.3.1 Theorem – Functional Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
22.1.2 Theorem – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
23.1.2 Theorem – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Theorems 122



32

23.1.16 Theorem – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
30.1.3 Theorem – Genus Formula for Artin-Schreier Extensions . . . . . . . . . . . . . . . 114
31.0.1 Theorem – Stichtenoth Prop 6.4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
31.0.3 Theorem – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
31.0.6 Theorem – Kleiman, Serre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
31.0.8 Theorem – Stichtenoth? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
31.0.10 Theorem – Stichtenoth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
31.0.12 Theorem – Hurwtiz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
32.0.2 Theorem – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
32.0.3 Theorem – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

123



32

Exercises

2.1.4 Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.8 Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.2 Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.1.2 Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.1.5 Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2.3 Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2.6 Exercise – the simplest possible case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3.12 Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.1.3 Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2.3 Exercise – an easy one . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2.7 Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.2.8 Exercise – Nice, Recommended . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.3.1 Exercise – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.3.2 Exercise – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.3.3 Exercise – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.3.7 Exercise – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.6.1 Exercise – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.8.1 Exercise – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.8.2 Exercise – Constructing valuations of arbitrary rank and value group . . . . . . . . 31
7.2.1 Exercise – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.5.6 Exercise – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.6.4 Exercise – Some motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.6.6 Exercise – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.6.9 Exercise – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.6.11 Exercise – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
8.0.10 Exercise – Every affine Dedekind domain is a unique holomorphy ring . . . . . . . 46
8.1.2 Exercise – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
8.1.8 Exercise – Function fields are always covered by mSpec of two affine Dedekind

domains (too easy!) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
8.2.1 Exercise – Basic but important . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
9.1.9 Exercise – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
9.1.12 Exercise – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
9.1.15 Exercise – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
9.2.5 Exercise – PrinK is a group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
9.2.11 Exercise – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
9.2.13 Exercise – Very important, Pete insists that someone solves it! . . . . . . . . . . . . 59
9.2.19 Exercise – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
9.2.22 Exercise – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
10.2.5 Exercise – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
10.3.3 Exercise – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
10.3.5 Exercise – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Exercises 124



32

10.5.2 Exercise – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
11.0.2 Exercise – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
11.1.1 Exercise – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
11.2.2 Exercise – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
12.1.3 Exercise – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
12.1.5 Exercise – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
12.1.7 Exercise – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
12.1.8 Exercise – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
12.2.2 Exercise – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
16.0.2 Exercise – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
16.0.7 Exercise – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
19.2.7 Exercise – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
20.4.1 Exercise – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
21.1.2 Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
21.2.2 Exercise – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
23.1.1 Exercise – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
23.1.9 Exercise – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
23.1.11 Exercise – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
23.1.17 Exercise – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

125



32 List of Figures

Figures

List of Figures

1 Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2 Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3 Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4 Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5 Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Figures 126



32 Bibliography

Bibliography

[1] H. Stichtenoth. Algebraic function fields and codes. Springer, 2009.

Bibliography 127


	Table of Contents
	References
	References

	Lecture 1: Field Theory Preliminaries
	Finite Generation of Fields
	Notion 1
	Notion 2
	Notion 3

	Case Study: The Lüroth Problem.
	Integrals Closures and Constant Fields

	Lecture 1: Discussion and Review
	Valuations
	Places
	Divisors

	Lecture 2: Field Theory Preliminaries
	Base Extension
	When Extensions Preserve Being a Domain
	Good Base Change For Function Fields
	Example of a Non-Regular Family of Function Fields

	Lecture 3: Last of Preliminaries
	Polynomials Defining Regular Function Fields
	Geometric Irreducibility
	Our Function Fields are Geometrically Irreducible

	Lecture 4: Chapter 1, One Variable Function Fields and Their Valuations
	Valuation Rings and Krull Valuations
	Group of Divisibility
	Generalized Valuations
	Regular or Centered Valuations
	Topological Considerations
	Scheme Theory, Resolution of Singularities
	Intermediate Rings
	Valuations of Every Rank

	Lecture 5: Places
	Investigating the Set of Places
	Describing the Missing Place
	Finite Generation in Towers
	Regularity Lemma
	An Inequality on Degrees
	Affine Grounding and Residue Fields

	Lecture 6: Affine Domains and Places \Sigma(K/k)
	Holomorphy Rings are Affine Dedekind Domains with Fraction Field K
	Proof of Main Theorem
	Case 1
	Case 2
	Case 3

	Case 3: Fixed Proof

	Lecture 7: Riemann-Roch
	Divisors
	The Degree of the Divisor of a Rational Function is Zero

	Lecture 8: Riemann-Roch Spaces (Part 1)
	Setup for the Riemann-Roch Theorem
	The Riemann-Roch Space
	Working with Divisors
	Subspaces and Dimension of Riemann-Roch Spaces
	Bounds on Dimensions

	Lecture 8: Riemann-Roch Spaces (Part 2)
	Proof of Upper Bound
	Step 1
	Step 2
	Step 3
	Step 4

	Genus

	Lecture 9
	Riemann-Roch Theorem and Applications
	Applications of Riemann-Roch
	Genus Zero Function Fields


	Lecture 10A (Todo)
	Lecture 10B (Todo)
	Lecture 10C (Todo)
	Lecture 11A: Weil's Proof of Riemann-Roch
	Lecture 11B: Weil's Proof of Riemann-Roch (TODO)
	Lecture 11C: Weil's Proof of Riemann-Roch (TODO)
	Lecture 12: Chapter 3, Curves Over a Finite Field
	Finiteness of Class Groups
	Base Extension
	Splitting of Places

	Degree 1 Places and Rational Points on a Curve
	Finiteness of Places and Rational Points
	Finiteness of Class Group

	Lecture 13: Splitting Places
	How Places Split
	Counting Effective Divisors
	Hasse-Weil Zeta Functions
	Proof of Rationality

	Lecture 14: The Hasse-Weil Zeta Function
	Comparing Zeta Functions After Extending Scalars
	Proof That \delta = 1
	The Functional Equation
	The L Polynomial

	Lecture 15: The L{\hbox{-}}Polynomial
	Big List of Important Facts
	Proofs
	The degree of L and L(1)
	Functional Equation
	Coefficients a_j for j=0, 1, 2g and Duality
	Absolute Values of Roots / RH

	Applications and Corollaries
	Counting Rational Points
	Relating Rational Points to Coefficients


	Lecture 16
	Weil Bounds

	Lecture 17 (Todo)
	Lecture 18 (Todo)
	Lecture 19 (Todo)
	Lecture 20 (Todo)
	Lecture 21 (Todo)
	Lecture 22 (Todo)
	Lecture 23 (Sketch)
	Artin-Schreier Extensions of Function Fields

	Lecture 24: Hermitian Function Fields (Sketch)
	Lecture 25: Differential Pullback Theorem (Sketch)
	ToDos
	Definitions
	Theorems
	Exercises
	Figures
	Bibliography

