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Prologue

E 0.1 References e

• Gathmann’s Algebraic Geometry notes[1].

E 0.2 Notation e

• If a property P is said to hold locally, this means that for every point p there is a neighborhood
Up ∋ p such that P holds on Up.

Notation Definition

k[x] = k[x1,⋯, xn] Polynomial ring in n indeterminates
k(x) = k(x1,⋯, xn) Rational function field in n indeterminates

k(x) = {f(x) = p(x)/q(x), ∣ p, q, ∈ k[x1,⋯, xn]}

U ⇉X An open cover
U = {Uj ∣ j ∈ J} ,X = ⋃

j∈J

Uj

∆X The diagonal
∆X ∶= {(x,x) ∣ x ∈X} ⊆X ×X

An/k Affine n-space
An/k ∶= {a = [a1,⋯, an] ∣ aj ∈ k}

Pn/k Projective n-space
Pn/k ∶= (kn ∖ {0}) /x ∼ λx

V (J), Va(J) Variety associated to an ideal J ⊴ k[x1,⋯, xn]

Va(J) ∶= {x ∈ An ∣ f(x) = 0, ∀f ∈ J}

I(S), Ia(S) Ideal associated to a subset S ⊆ Ank
Ia(S) ∶= {f ∈ k[x1,⋯, xn] ∣ f(x) = 0∀x ∈X}

A(X) Coordinate ring of a variety
A(X) ∶= k[x1,⋯, xn]/I(X)

0.1 References 6
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Notation Definition

Vp(J) Projective variety of an ideal
Vp(J) ∶= {x ∈ Pn/k ∣ f(x) = 0, ∀f ∈ J}

Ip(S) Projective ideal (?)
Ip(S) ∶= {f ∈ k[x1,⋯, xn] ∣ f is homogeneous and f(x) = 0∀x ∈ S}

S(X) Projective coordinate ring
S(X) ∶= k[x1,⋯, xn]/Ip(X)

fh Homogenization
fh ∶= xdeg f

0 f (
x1
x0
,⋯,

xn
x0

)

f i Dehomogenization
f i ∶= f(1, x1,⋯, xn)

Jh Homogenization of an ideal
Jh ∶= {f j ∣ f ∈ J}

X Projective closure of a subset
X ∶= Vp(J

h) ∶= {x ∈ Pn ∣ fh(x) = 0∀f ∈X}

D(f) Distinguished open set
D(f) ∶= V (f)c = {x ∈ An ∣ f(x) ≠ 0}

F Presheaf or a sheaf

f ∈ F(U) Section of a presheaf or sheaf

S where S is a set Locally constant functions valued in S

Fp Stalk of a sheaf
Fp ∶= {(U,ϕ) ∣ p ∈ U open , ϕ ∈ F(U)} / ∼

where (U,ϕ) ∼ (U ′, ϕ′) ⇐⇒ ∃p ∈W ⊂ U ∩U ′ s.t. ϕ∣W = ϕ′∣
W

f ∈ Fp Germs at p

OX Structure sheaf
OX ∶= {f ∶ U → k ∣ U ⊆X is open, f ∈ k(x) locally}

0.2 Notation 7
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Notation Definition

OX(U) Regular functions on U
OX(U) ∶= {f ∶ U → k ∣ f ∈ k(x) locally}

OX,p Germs of Regular functions?

E 0.3 Summary of Important Concepts e

• What is an affine variety?
• What is the coordinate ring of an affine variety?
• What are the constructions V ( ⋅ ) and I( ⋅ )?
• What is the Nullstellensatz?
• What are the definitions and some examples of:

– The Zariski topology?
– Irreducibility?
– Connectedness?
– Dimension?

• What is the definition of a presheaf?

– What are some examples and counterexamples?

• What is the definition of sheaf?

– What are some examples?
– What are some presheaves that are not sheaves?

• What is the definition of OX , the sheaf of regular functions?

– How does one compute OX for X =D(f) a distinguished open?

• What is a morphism between two affine varieties?
• What is the definition of separatedness?

– What are some examples of spaces that are and are not separated?

• What is a projective space?
• What is a projective variety?
• What is the projective coordinate ring?
• How does one take the closure of an affine variety X in projective space?
• What is completeness?

– What are some examples and counterexamples of complete spaces?

0.3 Summary of Important Concepts 8
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E 0.4 Useful Examples e

0.4.1 Varieties

• V (x − p) a point.
• V (x) a coordinate axis
• V (xy) ⊆ A2 the coordinate axes
• V (xy − 1) ⊆ A2 a hyperbola
• V (x2

1 − x
2
2 − 1) ⊆ A2

/C
• A2 ∖ {0} is not an affine variety or a distinguished open

0.4.2 Presheaves / Sheaves

• C∞( ⋅ ,R), a sheaf of smooth functions
• C0( ⋅ ,R), a sheaf of continuous functions
• R( ⋅ ), the constant sheaf associated to R (locally constant real-valued functions)
• Hol( ⋅ ,C), a sheaf of holomorphic functions
• Kp the skyscraper sheaf:

Kp(U) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

k p ∈ U

0 else.

• OX( ⋅ ), the sheaf of regular functions on X

E 0.5 The Algebra-Geometry Dictionary e

Let k = k, we’re setting up correspondences:

Algebra Geometry

k[x1,⋯, xn] An/k
Maximal ideals m = x1 − a1,⋯, xn − an Points a ∶= [a1,⋯, an] ∈ An

Radical ideals J =
√
J ⊴ k[x1,⋯, xn] V (J) the zero locus

Prime ideals p ∈ Spec(k[x1,⋯, xn]) Irreducible closed subsets
Minimal prime ideals of A(X) Irreducible components of X
I(S) the ideal of a set S ⊆ An a subset
I + J V (I) ∩ V (J)√
I(V ) + I(W ) V ∩W

I ∩ J, IJ V (I) ∪ V (J)

I(V ) ∩ I(W ),
√
I(V )I(W ) V ∪W

I(V ) ∶ I(W ) V ∖W

0.4 Useful Examples 9



1 Intro and Motivation (Friday, August 21)

Algebra Geometry

k[x1,⋯, xn]/I(X) A(X) (Functions on X)
A(X) a domain X is irreducible
A(X) indecomposable X is connected
k-algebra morphism A(X) → A(Y ) Morphisms of varieties X → Y
Krull dimension n (chaints of primes) Topological dimension n (chains of irreducibles)
Integral domains S(X) Irreducible projective varieties X

1 Intro and Motivation (Friday, August 21)

E 1.1 Coordinate Rings e

General idea: functions in a coordinate ring R[x1,⋯, xn]/I will correspond to the geometry of the
variety cut out by I.

Example 1.1.1:
• x2 + y2 − 1 defines a circle, say, over R

• y2 = x3 − x gives an elliptic curve:

Figure 1: An elliptic curve.

Intro and Motivation (Friday, August 21) 10



1 Intro and Motivation (Friday, August 21)

• xn + yn − 1: does it even contain a Q-point? (Fermat’s Last Theorem)

• x2 + 1, which has no R-points.

• x2 + y2 + 1/R vanishes nowhere, so its ring of functions is not R[x, y]/ ⟨x2 + y2 + 1⟩. The
problem: R is not algebraically closed.

• x2 − y2 = 0 over C is not a manifold (no chart at the origin):

Figure 2: A non-manifold curve.

• x+ y + 1/F3, which has 3 points over F2
3, but f(x, y) = (x3 −x)(y3 − y) vanishes at every point

– Not possible when algebraically closed. For example, is there a nonzero polynomial that
vanishes on every point in C?

– V (f) = F2
3, so the coordinate ring is zero instead of F3[x, y]/ ⟨f⟩ This is addressed by

scheme theory.

1.1 Coordinate Rings 11
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E 1.2 Harnack Curve Theorem e

Theorem 1.2.1(Harnack Curve Theorem).
If f ∈ R[x, y] is of degree d, thena

π1V (f) ⊆ R2 ≤ 1 + (d − 1)(d − 2)
2

aActual statement: the number of connected components is bounded above by this quantity.

Example 1.2.2: Take the curve

X = {(x, y, z) = (t3, t4, t5) ∈ C3 ∣ t ∈ C} .

Then X is cut out by three equations:

• y2 = xz
• x2 = yz
• z2 = x2y

Exercise 1.2.3
Show that the vanishing locus of the first two equations above is X ∪L where L is a line.

Compare to linear algebra: codimension d iff cut out by exactly d equations.

E 1.3 Connection to Riemann Surfaces e

Example 1.3.1: Given the Riemann surface

y2 = (x − 1)(x − 2)⋯(x − 2n),

how does one visualize its solution set?

Fact 1.3.2
On C with some slits, you can consistently choose a square root of the RHS.

1.2 Harnack Curve Theorem 12



2 Intro and Motivation (Friday, August 21)

Figure 3: Choosing a square root of a polynomial.

Away from x = 1,⋯,2n, there are two solutions for y given x.

After gluing along strips, obtain:

Figure 4: Glusing along strips to obtain a Riemann surface.

1.3 Connection to Riemann Surfaces 13



2 The Nullstellensatz (Tuesday, August 25)

2 The Nullstellensatz (Tuesday, August 25)

E 2.1 Radicals, Degrees, and Affine Varieties e

Given f ∈ k[x1,⋯, xn], we’ll denote by f(a) the value of f at the point (a1,⋯, an). Let k = k and
R a ring containing ideals I, J . Recall the definition of the radical of an ideal:

Definition 2.1.1 (Radical)
The radical of an ideal I ⊴ R is defined as

√
I = {r ∈ R ∣ rk ∈ I for some k ∈ N} .

Example 2.1.2: Let

I = (x1, x
2
2) ⊂ C[x1, x2]

= {f1x1 + f2x2 ∣ f1, f2 ∈ C[x1, x2]}

Then
√
I = (x1, x2), since x2

2 ∈ I Ô⇒ x2 ∈
√
I.

Definition 2.1.3 (Degree of an element of k[x1, x2,⋯, xn])
Define deg(f) as the largest value of i1 +⋯ + in such that the coefficient of ∏x

ij
j is nonzero.

Example 2.1.4: deg(x1 + x
2
2 + x1x

3
2) = 4

Definition 2.1.5 (Affine Variety)

1. Affine n-spacea An = Ank is defined as

An ∶= {(a1,⋯, an) ∣ ai ∈ k}

2. Let S ⊂ k[x1,⋯, xn] be a set of polynomials.b Then define the affine variety of S as

V (S) ∶= {x ∈ An ∣ f(x) = 0} ⊂ An

aNot kn, since we won’t necessarily use the vector space structure (e.g. adding points).
bWe don’t necessarily require S to be an ideal in this definition. We will shortly show that taking the ideal it
generates yields the same variety.

Example 2.1.6(Examples of affine varieties):
• Let f(x) = 0, then An = V ({f}) is an affine variety.

The Nullstellensatz (Tuesday, August 25) 14



2 The Nullstellensatz (Tuesday, August 25)

• Any point (a1,⋯, an) ∈ An is an affine variety, uniquely determined by

V (x1 − a1,⋯, xn − an) = {a1,⋯, an}

• For any finite set r1,⋯, rk ∈ A1, there exists a polynomial f ∈ k[x1] whose roots are ri.

Remark 2.1.7: We may as well assume S is an ideal by taking the ideal it generates,

S ⊆ ⟨S⟩ = {∑ gifi ∣ gi ∈ k[x1,⋯, xn], fi ∈ S} .

Claim:

V (S) = V (⟨S⟩) .

It’s clear that V (⟨S⟩) ⊂ V (S). Conversely, if f1, f2 vanish at x ∈ An, then f1+f2 and gf1 also vanish
at x for all g ∈ k[x1,⋯, xn]. Thus V (S) ⊂ V (⟨S⟩).

E 2.2 Ideals and Properties of V ( ⋅ ) e

See section 30.1 for a review of properties of ideals.

Proposition 2.2.1(Properties of V ).

S1 ⊆ S2 Ô⇒ V (S1) ⊇ V (S2) (1)
V (S1) ∪ V (S2) = V (S1S2) = V (S1 ∩ S2) (2)

⋂V (Si) = V (⋃Si) . (3)

We thus have a map

V ∶ {Ideals in k[x1,⋯, xn]} → {Affine varieties in An/k} .

Definition 2.2.2 (The Ideal of a Set)
Let X ⊂ An be any set, then the ideal of X is defined as

I(X) ∶= {f ∈ k[x1,⋯, xn] ∣ f(x) = 0∀x ∈X} .

Example 2.2.3: Let X be the union of the x1 and x2 axes in A2, then

I(X) = ⟨x1x2⟩ = {gx1x2 ∣ g ∈ k[x1, x2]} .

2.2 Ideals and Properties of V ( ⋅ ) 15
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Proposition 2.2.4(I is inclusion-reversing).

X1 ⊂X2 Ô⇒ I(X1) ⊃ I(X2).

Proof (?).
If f ∈ I(X2), then f(x) = 0 for all x ∈ X2. Since X1 ⊂ X2, we have f(x) = 0 for all x ∈ X1, so
f ∈ I(X2).

∎

Proposition 2.2.5(The Image of I is Radical).

I(X) =
√
I(X),

i.e. I(X) is a radical ideal.

Proof (?).
It’s clear that

I(X) ⊂
√
I(X) ∶= {f ∈ k[x1,⋯, xn] ∣ fk ∈ I(X)}

since we can simply take k = 1 in this definition.

Claim: For a fixed f ∈ k[x1,⋯, xn] and any k ∈ N,

f(x)k = 0 ∀x ∈X Ô⇒ f(x) = 0 ∀x ∈X.

Granting this claim, if f ∈
√
I(X) then fk ∈ I(X) and thus f ∈ I(X), completing the proof.

Proof (?).
Without loss of generality, we can take n = 1 and consider k[x1,⋯, xn] Toward a con-

tradiction, fix a k suppose f(x) ≠ 0 but f(x)k = 0. Then writing f(x) =
d

∑
j=1

αjx
j where

d ∶= deg(f), we have αd ≠ 0 and

f(x)k = αkdx
dk +⋯.

Equating coefficients, we have αkd = 0 in the base field. But fields have no nonzero
nilpotents, so we arrive at a contradiction.

∎

∎

These maps thus yield correspondences

{Ideals in k[x1,⋯,xn]}
V
Ð→ {Affine Varieties}

{Radical Ideals}
I
←Ð {Affine Varieties} .

2.2 Ideals and Properties of V ( ⋅ ) 16



2 The Nullstellensatz (Tuesday, August 25)

We’ll find that if we restrict to radical ideals, this will yield a bijective correspondence.

E
2.3 The Nullstellensatz: Statement and

Proof
e

Theorem 2.3.1(Hilbert Nullstellensatz (Zero Locus Theorem)).

a. For any affine variety X,

V (I(X)) =X.

b. For any ideal J ⊂ k[x1,⋯, xn],

I(V (J)) =
√
J.

Thus there is a bijection between radical ideals and affine varieties.

Recall the Hilbert Basis Theorem (Theorem 30.1.5): any ideal in a finitely generated polynomial
ring over a field is again finitely generated. We need to show 4 inclusions, 3 of which are easy.

Proof (X ⊂ V (I(X)) (a)).
If x ∈X then f(x) = 0 for all f ∈ I(X). So x ∈ V (I(X)), since every f ∈ I(X) vanishes at x.

∎

Proof (
√
J ⊂ I(V (J)) (b)).

If f ∈
√
J then fk ∈ J for some k. Then fk(x) = 0 for all x ∈ V (J). So f(x) = 0 for all x ∈ V (J).

Thus f ∈ I(V (J)).
∎

Proof (V (I(X)) ⊂X (c)).
Need to now use that X is an affine variety. Counterexample: X = Z2 ⊂ C2, then I(X) = 0.
But V (I(X)) = C2 /⊂ Z2. By (b), I(V (J)) ⊃

√
J ⊃ J . Since V ( ⋅ ) is order-reversing, taking V

of both sides reverses the containment. So V (I(V (J))) ⊂ V (J), i.e. V (I(X)) ⊂X.
∎

Thus the hard direction that remains is (d),

I(V (J)) ⊂
√
J

△! Warning 2.3.2 (Hard theorem from commutative algebra.):
We’ll need Noether Normalization (Theorem 30.1.4), which is perhaps more important than the
Nullstellensatz!

2.3 The Nullstellensatz: Statement and Proof 17



3 More Nullstellensatz (Thursday, August 27)

Theorem 2.3.3(1st Version of Nullstellensatz).
Suppose k is algebraically closed and uncountablea. Then the maximal ideals in k[x1,⋯, xn]
are given by

mSpec (k[x1,⋯, xn]) = {⟨x1 − a1,⋯, xn − an⟩ ∣ aj ∈ k} .

aStill true in countable case by a different proof.

Proof .
Let m be a maximal ideal, then by the Hilbert Basis Theorem (Theorem 30.1.5), m = ⟨f1,⋯, fr⟩
is finitely generated. Let L = Q[{ci}] where the ci are all of the coefficients of the fi if ch(K) = 0,
or Fp[{ci}] if ch(k) = p. Then L ⊂ k. Define

m0 = m ∩L[x1,⋯, xn]

Note that by construction, fi ∈ m0 for all i, and we can write m = m0 ⋅ k[x1,⋯, xn].

Claim: m0 is a maximal ideal.
If it were the case that

m0 ⊊ m′
0 ⊊ L[x1,⋯, xn],

then

m0 ⋅ k[x1,⋯, xn] ⊊ m′
0 ⋅ k[x1,⋯, xn] ⊊ k[x1,⋯, xn].

So far, we’ve constructed a smaller polynomial ring and a maximal ideal in it. Thus
L[x1,⋯, xn]/m0 is a field that is finitely generated over either Q or Fp. So L[x1,⋯, xn]/m0
is finite over some Q(t1,⋯, tn), and since k is uncountable, there exists an embedding
Q(t1,⋯, tn) ↪ k.a

This extends to an embedding of ϕ ∶ L[x1,⋯, xn]/m0 ↪ k since k is algebraically closed. Letting
ai be the image of xi under ϕ, then f(a1,⋯, an) = 0 by construction, fi ∈ (xi − ai) implies that
m = (xi − ai) by maximality.

∎
aHere we use the fact that there are only countably many polynomials over a countable field.

3 More Nullstellensatz (Thursday, August
27)

E 3.1 Consequence of the Nullstellensatz e

Recall Hilbert’s Nullstellensatz:

More Nullstellensatz (Thursday, August 27) 18
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a. For any affine variety, V (I(X)) =X.

b. For any ideal J ⊴ k[x1,⋯, xn], I(V (J)) =
√
J .

So there’s an order-reversing bijection

{Radical ideals k[x1,⋯,xn]}
I( ⋅ )
⇌
V ( ⋅ )

{Affine varieties in An} .

In proving I(V (J)) ⊆
√
J , we needed Noether Normalization and an important theorem (Theo-

rem 2.3.3): the maximal ideals of k[x1,⋯, xn] are of the form ⟨x − a1,⋯, x − an⟩.

Corollary 3.1.1(?).
If V (I) is empty, then I = ⟨1⟩.

Slogan 3.1.2
The only ideals that vanish nowhere are trivial.

Proof .
This is because no common vanishing locus Ô⇒ trivial ideal, so there’s a linear combination
that equals 1. By contrapositive, suppose I ≠ ⟨1⟩. By Zorn’s Lemma, these exists a maximal
ideals m such that I ⊂ m. By the order-reversing property of V ( ⋅ ), V (m) ⊆ V (I). By the
classification of maximal ideals, m = ⟨x − a1,⋯, x − an⟩, so V (m) = {a1,⋯, an} is nonempty.

∎

E
3.2 Proof of Remaining Part of

Nullstellensatz
e

We now return to the remaining hard part of the proof of the Nullstellensatz:

I(V (J)) ⊆
√
J

Proof (?).
Let f ∈ V (I(J)), we want to show f ∈

√
J . Consider the ideal

J̃ ∶= J + ⟨ft − 1⟩ ⊆ k[x1,⋯, xn, t]

Observation
f = 0 on all of V (J) by the definition of I(V (J)).

3.2 Proof of Remaining Part of Nullstellensatz 19
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However, if f = 0, then ft − 1 ≠ 0, so

V (J̃) = V (G) ∩ V (ft − 1) = ∅

Figure 5: Effect, a hyperbolic tube around V (J), so both can’t vanish

Applying the corollary J̃ = (1), so

1 = ⟨ft − 1⟩ g0(x1,⋯, xn, t) +∑ figi(x1,⋯, xn, t)

with fi ∈ J . Let tN be the largest power of t in any gi. Thus for some polynomials Gi, we have

fN ∶= (ft − 1)G0(x1,⋯, xn, ft) +∑ fiGi(x1,⋯, xn, ft)

noting that f does not depend on t. Now take k[x1,⋯, xn, t]/ ⟨ft − 1⟩, so ft = 1 in this ring.
This kills the first term above, yielding

fN = ∑ fiGi(x1,⋯, xn,1) ∈ k[x1,⋯, xn, t]/ ⟨ft − 1⟩ .

Claim: There is an inclusion

k[x1,⋯, xn] ↪ k[x1,⋯, xn, t]/ ⟨ft − 1⟩ .

Since this is injective, this identity also holds in k[x1,⋯, xn]. But fi ∈ J , so f ∈
√
J .

∎

Exercise 3.2.2 (?)
Why is the claim above true?

Example 3.2.3: Consider k[x]. If J ⊂ k[x] is an ideal, it is principal, so J = ⟨f⟩. We can factor

f(x) =
k

∏
i=1

(x − ai)
ni and V (f) = {a1,⋯, ak}. Then

I(V (f)) = ⟨(x − a1)(x − a2)⋯(x − ak)⟩ =
√
J ⊊ J,

so this loses information.

3.2 Proof of Remaining Part of Nullstellensatz 20
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Example 3.2.4: Let J = ⟨x − a1,⋯, x − an⟩, then I(V (J)) =
√
J = J with J maximal. Thus there

is a correspondence

{Points of An} ⇐⇒ {Maximal ideals of k[x1,⋯,xn]} .

Theorem 3.2.5(Properties of I).

I(X1 ∪X2) = I(X1) ∩ I(X2) (a)

I(X1) ∩ I(X2) =
√
I(X1) + I(X2). (b)

Proof .
We proved (a) on the variety side. For (b), by the Nullstellensatz we have Xi = V (I(Xi)), so

I(X1 ∩X2) = I (V I(X1) ∩ V I(X2))

= IV (I(X1) + I(X2))

=
√
I(X1) + I(X2).

∎

Example 3.2.6: Example of property (b):

Take X1 = V (y − x2) and X2 = V (y), a parabola and the x-axis.

Figure 6: Intersecting V (y − x2) and V (y)

Then X1 ∩X2 = {(0,0)}, and I(X1) + I(X2) = ⟨y − x2, y⟩ = ⟨x2, y⟩, but

I(X1 ∩X2) = ⟨x, y⟩ =
√

⟨x2, y⟩

Proposition 3.2.7(?).
If f, g ∈ k[x1,⋯, xn], and suppose f(x) = g(x) for all x ∈ An. Then f = g.

3.2 Proof of Remaining Part of Nullstellensatz 21
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Proof .
Since f − g vanishes everywhere,

f − g ∈ I(An) = I(V (0)) =
√

0 = 0

∎

More generally suppose f(x) = g(x) for all x ∈X, where X is some affine variety. Then by definition,
f − g ∈ I(X), so a “natural” space of functions on X is k[x1,⋯, xn]/I(X).

Definition 3.2.8 (Coordinate Ring)
For an affine variety X, the coordinate ring of X is

A(X) ∶= k[x1,⋯, xn]/I(X).

Elements f ∈ A(X) are called polynomial or regular functions on X.

Observation 3.2.9
The constructions V ( ⋅ ), I( ⋅ ) work just as well with A(X) instead of k[x1,⋯, xn] and X instead of
An.

Given any S ⊂ A(Y ) for Y an affine variety,

V (S) = VY (S) ∶= {x ∈ Y ∣ f(x) = 0 ∀f ∈ S} .

Given X ⊂ Y a subset,

I(X) = IY (X) ∶= {f ∈ A(Y ) ∣ f(x) = 0 ∀x ∈X} ⊆ A(Y ).

Example 3.2.10: For X ⊂ Y ⊂ An, we have I(X) ⊃ I(Y ) ⊃ I(An), so we have maps

A(An) A(Y ) A(X)

⋅ /I(X)

⋅ /I(Y ) ⋅ /I(X)

Theorem 3.2.11(Relative Nullstellensatz).
Let X ⊂ Y be an affine subvariety, then

a. A(X) = A(Y )/IY (X)

3.2 Proof of Remaining Part of Nullstellensatz 22



4 Zariski Topology (Tuesday, September 01)

b. There is a correspondence

{Affine subvarieties of Y } ⇐⇒ {Radical ideals in A(Y )}

X ↦ IY (X)

VY (J) ← [ J.

Proof .
Properties are inherited from the case of An, see exercise in Gathmann.

∎

Example 3.2.12: Let Y = V (y − x2) ⊂ A2/C and X = {(1,1)} = V (x − 1, y − 1) ⊂ A2/C.

Then there is an inclusion ⟨y − x2⟩ ⊂ ⟨x − 1, y − 1⟩, e.g. by Taylor expanding about the point (1,1).
and thus there is a map

A(An) A(Y ) A(X)

k[x, y] k[x, y]/ ⟨y − x2⟩ k[x, y]/ ⟨x − 1, y − 1⟩∃

4 Zariski Topology (Tuesday, September 01)

E 4.1 The Zariski Topology e

Last time:

V (I) = {x ∈ An ∣ f(x) = 0∀x ∈ I}

I(X) = {f ∈ k[x1,⋯, xn] ∣ f(x) = 0∀x ∈X} .

We proved the Nullstellensatz I(V (J)) =
√
J , defined the coordinate ring of an affine variety X

as

A(X) ∶= k[x1,⋯, xn]/I(X)

the ring of regular (polynomial) functions on X. Recall that a topology on X can be defined as a
collection of closed subsets of X that are closed under arbitrary intersections and finite unions. A
subset Y ⊂ X inherits a subspace topology with closed sets of the form Z ∩ Y for Z ⊂ X closed in
X.

Zariski Topology (Tuesday, September 01) 23
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Definition 4.1.1 (Zariski Topology)
Let X be an affine variety. The closed sets are affine subvarieties Y ⊂X.

Proposition 4.1.2(The Zariski topology is a topology).
This satisfies the axioms for a topological space.

Proof (?).

• We have ∅,X closed, since

1. VX(1) = ∅,
2. VX(0) =X

• Closure under finite unions:
Let VX(I), VX(J) be closed in X with I, J ⊂ A(X) ideals. Then VX(IJ) = VX(I) ∪
VX(J).

• Closure under intersections:

We have ⋂
i∈σ

VX(J) = VX (∑
i∈σ

Ji).

∎

Remark 4.1.3: There are few closed sets, so this is a “weak” topology.

Example 4.1.4(Closedness differs in the analytic topology): Compare the classical topology
on A1

/C to the Zariski topology. Consider the set

A ∶= {x ∈ A1
/C ∣ ∥x∥ ≤ 1}

which is closed in the classical topology. However, A is not closed in the Zariski topology, since the
closed subsets are finite sets or the whole space. In fact, the topology here is the cofinite topology.

Example 4.1.5: Let f ∶ A1
/k → A1

/k be any injective map. Then f is necessarily continuous wrt the
Zariski topology. Thus the notion of continuity is too weak in this situation.

△! Warning 4.1.6 (The topology on the product is not the product topology):
Consider X × Y a product of affine varieties. Then there is a product topology where open sets
are of the form

n

⋃
i=1
Ui × Vi with Ui, Vi open in X,Y respectively. This is the wrong topology! On

A1 × A1 = A2, the diagonal ∆ ∶= V (x − y) is closed in the Zariski topology on A2 but not in the
product topology.

E 4.2 Irreducibility and Connectedness e

4.1 The Zariski Topology 24
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Example 4.2.1: Consider A2
/C, so the closed sets are curves and points. Observation: V (x1x2) ⊂

A2
/C decomposed into the union of the coordinate axes X1 ∶= V (x1) and X2 ∶= V (x2). The Zariski

topology can detect these decompositions.

Definition 4.2.2 (Irreducibility and Connectedness)
Let X be a topological space.

a. X is reducible iff there exist nonempty proper closed subsets X1,X2 ⊂ X such that
X =X1 ∪X2. Otherwise, X is said to be irreducible.

b. X is disconnected if there exist X1,X2 ⊂ X such that X = X1∐X2. Otherwise, X is
said to be connected.

Example 4.2.3: V (x1x2) is reducible but connected.

Example 4.2.4: A1
/C is not irreducible, since we can write

A1
/C = {∥x∥ ≤ 1} ∪ {∥x∥ ≥ 1}

Proposition 4.2.5(?).
Let X be a disconnected affine variety with X =X1∐X2. Then A(X) ≅ A(X1) ×A(X2).

Proof .
We have

X1 ∪X2 =X Ô⇒ I(X1) ∩ I(X2) = I(X) = (0) ∈ A(X),

recalling that the coordinate ring A(X) is a quotient by I(X). Since X1 ∩X1 = ∅, we have

I(X1 ∩X2) =
√
I(X1) + I(X2) = I(∅) = ⟨1⟩ .

Thus I(X1) + I(X2) = ⟨1⟩, and by the Chinese Remainder Theorem, the following map is an
isomorphism:

A(X) → A(X)/I(X1) ×A(X)/I(X2).

However, the codomain is precisely A(X1) ×A(X2).
∎
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4.2.1 Irreducibility on the Algebra Side

Proposition 4.2.6(?).
An affine variety X is irreducible ⇐⇒ A(X) is an integral domain.

Proof .
Ô⇒ : By contrapositive, suppose f1, f2 ∈ A(X) are nonzero with f1f2 = 0. Let Xi ∶= V (fi),
then

X = V (0) = V (f1f2) =X1 ∪X2

which are closed and proper since fi ≠ 0.

⇐Ô : Suppose X is reducible with X =X1∪X2 with Xi proper and closed. Define Ji ∶= I(Xi),
then by part (a) of the Nullstellensatz.

V (Ji) = V (I(Xi)) =Xi Ô⇒ Ji ≠ 0.

So there exists a nonzero fi ∈ Ji = I(Xi), so fi vanishes on Xi. But then

V (f1) ∪ V (f2) ⊃X1 ∪X2 =X,

so X = V (f1f2) and f1f2 ∈ I(X) = ⟨0⟩ and f1f2 = 0, and A(X) is thus not a domain.
∎

Example 4.2.7: Let X = {p1,⋯,pd} be a finite set in An. The Zariski topology on X is the
discrete topology, and X =∐

d

i=1 {pi}. So

A(X) = A(
d

∐
i=1

{pi}) =
d

∏
i=1
A ({pi}) =

d

∏
i=1

k[x1,⋯, xn]

⟨x1 − pi1,⋯, xn − p
i
n⟩

where pij is the jth component of pi.

Example 4.2.8: Set V (x1x2) =X, then A(X) = k[x1, x2]/ ⟨x1x2⟩. This not being a domain (since
x1x2 = 0) corresponds to X = V (x1) ∪ V (x2) not being irreducible.

Example 4.2.9: Let X1 be the xy-plane and X2 be the line parallel to the y-axis through [0,0,1],
and let X =X1∐X2:

4.2 Irreducibility and Connectedness 26
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Figure 7: Union of a plane and a parallel line.

Then X1 = V (z) and X2 = V (x, z − 1), and

I(X) = ⟨z⟩ ⋅ ⟨x, z − 1⟩ = ⟨xz, z2 − z⟩

The coordinate ring is then given by

A(X) =
C[x, y, z]

⟨xz, z2 − z⟩
=
C[x, y, z]

⟨z⟩
⊕

C[x, y, z]

⟨x, z − 1⟩

5 Irreducibility (Thursday, September 03)

E 5.1 Irreducibility and Prime Ideals e

Recall that the Zariski topology is defined on an affine variety X = V (J) with J ⊴ k[x1,⋯, xn] by
describing the closed sets.

Proposition 5.1.1(?).
X is irreducible if its coordinate ring A(X) is a domain.

Proposition 5.1.2(?).
There is a 1-to-1 correspondence

{Irreducible subvarieties
of X } ⇐⇒ {Prime ideals

in A(X) } .

Proof .

Irreducibility (Thursday, September 03) 27
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Suppose Y ⊂X is an affine subvariety. Then

A(X)/IX(Y ) = A(Y ).

By the Nullstellensatz, there is a bijection between subvarieties of X and radical ideals of
A(X) where Y ↦ IX(Y ). A quotient is a domain iff quotienting by a prime ideal, so A(Y ) is
a domain iff IX(Y ) is prime.

∎

Recall that p ⊴ R is prime when fg ∈ p ⇐⇒ f ∈ p or g ∈ p. Thus fg = 0 in R/p implies f = 0 or
g = 0 in R/p, i.e. R/p is a domain. Finally, note that prime ideals are radical (easy proof).

Example 5.1.3: Consider A2/C and some subvarieties Ci:

Figure 8: Subvarieties

Then irreducible subvarieties correspond to prime ideals in C[x, y]. Here C1,C3 correspond to
V (f), V (g) for f, g irreducible polynomials, whereas C2 corresponds to a maximal ideal, i.e. V (x1 −
a1, x2 − a2). Note that I(C1 ∪ C2 ∪ C3) is not a prime ideal, since the variety is reducible as the
union of 3 closed subsets.

Example 5.1.4: A finite set is irreducible iff it contains only one point.

Example 5.1.5: Any irreducible topological space is connected, since irreducible requires a union
but connectedness requires a disjoint union.

Example 5.1.6: An/k is irreducible: by prop 2.8, its irreducible iff the coordinate ring is a domain.
However A(An) = k[x1,⋯, xn], which is a domain.
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Example 5.1.7: V (x1x2) is not irreducible, since it’s equal to V (x1) ∪ V (x2).

Definition 5.1.8 (Noetherian Space)
A Noetherian topological space X is a space with no infinite strictly decreasing sequence of
closed subsets.

Proposition 5.1.9(?).
An affine variety X with the Zariski topology is a Noetherian space.

Proof .
Let X0 ⊋ X1 ⊋ ⋯ be a decreasing sequence of closed subspaces. Then I(X0) ⊊ I(X1) ⊊. Note
that these containments are strict, otherwise we could use V (I(X1)) =X1 to get an equality
in the original chain.
Recall that a ring R is Noetherian iff every ascending chain of ideals terminates. Thus it
suffices to show that A(X) is Noetherian.
We have A(X) = k[x1,⋯, xn]/I(X), and if this had an infinite chain I1 ⊊ I2 ⊊ ⋯ lifts to a
chain in k[x1,⋯, xn], which is Noetherian. A useful fact: R Noetherian implies that R[x] is
Noetherian, and fields are always Noetherian.

∎

Remark 5.1.10: Any subspace A ⊂ X of a Noetherian space is Noetherian. To see why, suppose
we have a chain of closed sets in the subspace topology,

A ∩X0 ⊋ A ∩X1 ⊋ ⋯.

Then X0 ⊋X1 ⊋ ⋯ is a strictly decreasing chain of closed sets in X. Why strictly decreasing:

∩nXi = ∩
n+1Xi Ô⇒ A ∩nXi = A ∩n+1 Xi,

yielding a contradiction.

Proposition 5.1.11(Important: Noetherian spaces are finite unions of closed irre-
ducibles).

Every Noetherian space X is a finite union of irreducible closed subsets, i.e. X =
k

⋃
i=1
Xi. If we

further assume Xi /⊂Xj for all i, j, then the Xi are unique up to permutation.

Remark 5.1.12: The Xi are the components of X. In the previous example C1 ∪ C2 ∪ C3 has
three components.

Proof .

Claim: Such a finite decomposition exists.
If X is irreducible, then X =X and this holds. Otherwise, write X =X1 ∪X2 with Xi proper
closed subsets. If X1 and X ′

1 are irreducible, we’re done, so otherwise suppose wlog X ′
1 is not

irreducible. Then we can express X = X1 ∪ (X2 ∪X
′
2) with X2,X

′
2 ⊂ X ′

1 closed and proper.
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Thus we can obtain a tree whose leaves are proper closed subsets:

Figure 9: Image

This tree terminates because X is Noetherian: if it did not, this would generate an infinite
decreasing chain of subspaces.

Claim: This decomposition is unique if no two components are contained in the other.
Suppose

X =
k

⋃
i=1
Xi =

`

⋃
j=1

X ′
j .

Note that Xi ⊂X implies that Xi =
`

⋃
j=1

Xi ∩X
′
j . But Xi is irreducible and this would express

Xi as a union of proper closed subsets, so some Xi ∩X
′
j is not a proper closed subset. Thus

Xi =Xi ∩X
′
j for some j, which forces Xi ⊂X

′
j . Applying the same argument to X ′

j to obtain
X ′
j ⊂ Xk for some k. Then Xi ⊂ X

′
j ⊂ Xk, but Xi /⊂ Xj when j ≠ i. So Xi = X

′
j = Xk, forcing

the Xi to be unique up to permutation.
∎

Recall from ring theory: for I ⊂ R and R Noetherian, I has a primary decomposition I =
k

⋂
i=1
Qi

with
√
Qi prime. Assuming the Qi are minimal in the sense that

√
Qi /⊂

√
Qj for any i, j, this

decomposition is unique.
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Applying this to I(X) ⊴ k[x1,⋯, xn] = R yields

I(X) =
k

⋂
i=1
Qi Ô⇒ X = V (I(X)) =

k

⋃
i=1
V (Qi).

Letting Pi =
√
Qi, noting that the Pi are prime and thus radical, we have V (Qi) = V (Pi). Writing

X = ⋃V (Pi), we have I(V (Pi)) = Pi and thus A(V (Pi)) = R/Pi is a domain, meaning V (Pi) are
irreducible affine varieties. Conversely, if we express X = ⋃Xi, we have I = I (⋃Xi) = ⋂ I(Xi) =

⋂Pi which are irreducible since they are prime.

Remark 5.1.13: There is a correspondence

{Irreducible components
of X } ⇐⇒ {Minimal prime ideals

in A(X) } ,

where here minimal is the condition that no pair of ideals satisfies a subset containment.

In what follows, let X be an irreducible topological space.

Proposition 5.1.14(1).
The intersection of nonempty two open sets is never empty.

Proof .
Let U,U ′ be open and X ∖U,X ∖U ′ closed. Then U ∩U ′ = ∅ ⇐⇒ (X ∖U) ∪ (X ∖U ′) = X,
but this is not possible since X is irreducible.a

∎
aIrreducible iff any two nonempty open sets intersect.

Proposition 5.1.15(?).
Any nonempty open set is dense, i.e. if U ⊂X is open then its closure clX(U) is dense in X.

Proof .
Write X = clX(U) ∪ (X ∖U). Since X ∖U ≠X and X is irreducible, we have clX(U) =X.

∎

6 Dimension (Tuesday, September 08)

Review: we discussed irreducible components. Recall that the Zariski topology on an affine variety
X has affine subvarieties as closed sets, and a Noetherian space has no infinitely decreasing chains
of closed subspaces. We showed that any Noetherian space has a decomposition into irreducible
components X = ∪Xi with Xi closed, irreducible, and unique such that no two are subsets of each
other. Applying this to affine varieties, a descending chain of subspaces X0 ⊋X1⋯ in X corresponds
to an increasing chain of ideals I(X0) ⊊ I(X1)⋯ in A(X). Since k[x1,⋯, xn] is a Noetherian ring,
this chain terminates, so affine varieties are Noetherian.
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E 6.1 Dimension e

Definition 6.1.1 (Dimensions)
Let X be a topological space.

1. The dimension dimX ∈ N ∪ {∞} is either ∞ or the length n of the longest chain of
irreducible closed subsets ∅ ≠ Y0 ⊊ ⋯ ⊊ Yn ⊂X where Yn need not be equal to X.a

2. The codimension of Y in X, codimX(Y ), for an irreducible subset Y ⊆X is the length
of the longest chain Y ⊂ Y0 ⊊ Y1⋯ ⊂X.

aNote that we count the number of nontrivial strict subset containments in this chain.

Example 6.1.2: Consider A1/k, what are the closed subsets? The finite sets, the empty set, and
the entire space.

What are the irreducible closed subsets? Every point is a closed subset, so sets with more than one
point are reducible. So the only irreducible closed subsets are {a} ,A1/k, since an affine variety is
irreducible iff its coordinate ring is a domain and A(A1/k) = k[x]. We can check

∅ {a} A1
k

Y0 Y1 Y2

which is of length 1, since there is one nontrivial containment Y1 ⊊ Y2, and so dim(A1/k) = 1.

Example 6.1.3: Consider V (x1x2) ⊂ A2/k, the union of the xi axes. Then the closed subsets are
V (x1), V (x2), along with finite sets and their unions. What is the longest chain of irreducible closed
subsets?

Note that k[x1, x2]/ ⟨x1⟩ ≅ k[x2] is a domain, so V (xi) are irreducible. So we can have a chain

∅ ⊊ {a} ⊊ V (x1) ⊂X,

where a is any point on the x2-axis, so dim(X) = 1.

The only closed sets containing V (x1) are V (x1) ∪ S for S some finite set, which can not be
irreducible.

Remark 6.1.4: You may be tempted to think that if X is Noetherian then the dimension is finite.
However, finite dimension requires a bounded length on descending/ascending chains, whereas
Noetherian only requires “termination”, which may not happen in a bounded number of steps. So
this is false!
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Example 6.1.5: Take X = N and define a topology by setting closed subsets be the sets {0,⋯, n}
as n ranges over N, along with N itself. Is X Noetherian? Check descending chains of closed sets:

N ⊋ {0,⋯,N} ⊋ {0,⋯,N − 1}⋯,

which has length at most N , so it terminates and X is Noetherian. But note that all of these
closed subsets XN ∶= {0,⋯,N} are irreducible. Why? If Xn = Xi ∪Xj then one of i, j is equal to
N , i.e Xi,Xj =XN . So for every N , there exists a chain of irreducible closed subsets of length N ,
implying that dim(N) = ∞.

Remark 6.1.6: Let X be an affine variety. There is a correspondence

{Chains of irreducible closed subsets
Y0⊊⋯⊊Yn in X }{Chains of prime ideals

P0⊋⋯⊋Pn in A(X) } .

Why? We have a correspondence between closed subsets and radical ideals. If we specialize to
irreducible, we saw that these correspond to radical ideals I ⊂ A(X) such that A(Y ) ∶= A(X)/I is
a domain, which precisely correspond to prime ideal in A(X).

We thus make the following definition:

Definition 6.1.7 (Krull Dimension)
The Krull dimension of a ring R is the length n of the longest chain of prime ideals

P0 ⊋ P1 ⊋ ⋯ ⊋ Pn.

Remark 6.1.8: This uses the key fact from commutative algebra: a finitely generated k-algebra
M satisfies

1. M has finite k-dimension
2. If M is a domain, every maximal chain has the same length.

Remark 6.1.9: From scheme theory: for any ring R, there is an associated topological space
SpecR given by the set of prime ideals in R, where the closed sets are given by

V (I) = {Prime ideals p ⊴ R ∣ I ⊆ p} .

If R is a Noetherian ring, then Spec(R) is a Noetherian space.

Example 6.1.10: Using the fact above, let’s compute dimAn/k. We can take the following chain
of prime ideals in k[x1,⋯, xn]:

0 ⊊ ⟨x1⟩ ⊊ ⟨x1, x2⟩⋯ ⊊ ⟨x1,⋯, xn⟩ .
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By applying V ( ⋅ ) we obtain

An/k ⊋ An−1/k⋯ ⊋ A0/k = {0} ⊋ ∅,

where we know each is irreducible and closed, and it’s easy to check that these are maximal:

If there were an ideal ⟨x1, x2⟩ ⊂ P ⊂ ⟨x1, x2, x3⟩, then take P ∩ k[x1, x2, x3]/ ⟨x1, x2⟩ which would
yield a polynomial ring in k[x1]. But we know the only irreducible sets in A1/k are a point and the
entire space.

So this is a chain of maximal length, implying dimAn/k = n.

7 Dimension (Thursday, September 10)

Recall that the dimension of a ring R is the length of the longest chain of prime ideals. Similarly,
for an affine variety X, we defined dimX to be the length of the longest chain of irreducible closed
subsets.

These notions of dimension of the same when taking R = A(X), i.e. dimAn/k = n.

Proposition 7.0.1(Dimensions).
Let k = k.

a. The dimension of k[x1,⋯, xn] is n.
b. All maximal chains of prime ideals have length n.

E 7.1 Proof of Dimension Proposition e

The case for n = 0 is trivial, just take P0 = ⟨0⟩. For n = 1, easy to see since the only prime ideals in
k[x] are ⟨0⟩ and ⟨x − a⟩, since any polynomial factors into linear factors.

Let P0 ⊊ ⋯ ⊊ Pm be a maximal chain of prime ideals in k[x1,⋯, xn]; we then want to show that
m = n. Assume P0 = ⟨0⟩, since we can always extend our chain to make this true (using maximality).
Then P1 is a minimal prime and Pm is a maximal ideal (and maximals are prime).

Claim: P1 is principle, i.e. P1 = ⟨f⟩ for some irreducible f .
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7.1.1 Proof That P1 is Principle

Claim: k[x1,⋯, xn] is a unique factorization domain. This follows since k is a UFD since it’s a
field, and R a UFD Ô⇒ R[x] is a UFD for any R.

See Gauss’ lemma.

Claim: In a UFD, minimal primes are principal. Let r ∈ P , and write r = u∏pni
i with pi

irreducible and u a unit. So some pi ∈ P , and pi irreducible implies ⟨pi⟩ is prime. Since 0 ⊊ ⟨pi⟩ ⊂ P ,
but P was prime and assumed minimal, so ⟨pi⟩ = P .

The idea is to now transfer the chain P0 ⊊ ⋯ ⊊ Pm to a maximal chain in k[x1,⋯, xn−1]. The first
step is to make a linear change of coordinates so that f is monic in the variable xn.

Example 7.1.1: Take f = x1x2 + x
2
3x4 and map x3 ↦ x3 + x4.

So write

f(x1,⋯, xn) = x
d
n + f1(x1,⋯, xn−1)x

d−1
n +⋯ + fd(x1,⋯, xn−1).

We can then descend to k[x1,⋯, xn] to k[x1,⋯, xn]/ ⟨f⟩:

P0 P1 ⋯ Pm

P1/P1 ⋯ Pm/P1

P1/P1 ∩ k[x1,⋯, xn−1] ⋯ (Pm/P1) ∩ k[x1,⋯, xn−1]

The first set of downward arrows denote taking the quotient, and the upward is taking inverse
images, and this preserves strict inequalities.

Definition 7.1.2 (Integral Extension)
An integral ring extension R ↪ R′ of R is one such that all r′ ∈ R′ satisfying a monic polynomial
with coefficients in R, where R′ is finitely generated.

In this case, also implies that R′ is a finitely-generated R module.

In this case, k[x1,⋯, xn−1] ↪ k[x1,⋯, xn]/ ⟨f⟩ is an integral extension. We want to show that the
intersection step above also preserves strictness of inclusions, since it preserves primality.

Lemma 7.1.3.
Suppose P ′,Q′ ⊂ R′ are distinct prime ideals with R ↪ R′ an integral extension. Then if
P ′ ∩R = Q′ ∩R, neither contains the other, i.e. P ′ /⊂ Q′ and Q′ /⊂ P ′.
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Proof .
Toward a contradiction, suppose P ′ ⊂ Q′, we then want to show that Q′ ⊃ P ′. Let a ∈ Q′ ∖ P ′

(again toward a contradiction), then

R/ (P ′ ∩R) ↪ R′/P ′

is integral.
Then a ≠ 0 in R′/P ′, and there exists a monic polynomial of minimal degree that a satisfies,

p(x) = xn +
n

∑
i=2
cix

n−i. This implies cn ∈ Q′/P ′ (which will contradict cn ∈ P ′), since if cn = 0

then factoring out x yields a lower degree polynomial that a satisfies.
But then an ∈ Q′ ∩R, so ???

∎

Question: Given R ↪ R′ is an integral extension, can we lift chains of prime ideals?

Answer: Yes, by the “Going Up” Theorem: given P ⊂ R prime, there exists P ′ ⊂ R′ prime such that
P ′ ∩R = P . Furthermore, we can lift P1 ⊂ P2 to P ′

1 ⊂ P
′
2, as well as “lifting sandwiches”:

Figure 10: Image

In this process, the length of the chain decreased since ⟨0⟩ was deleted, but otherwise the chains
are in bijective correspondence. So the inductive hypothesis applies. ∎

E 7.2 Using Dimension Theory e

Key fact used: the dimension doesn’t change under integral extensions, i.e. if R ↪ R′ is integral
then dimR = dimR′.
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Proposition 7.2.1.
Any affine variety has finite dimension.

Proof .
We have dimX = dimA(X), where A(X) ∶= k[x1,⋯, xn]I for some I(X) =

√
I(X).

The noether normalization lemma (used in proof of nullstellensatz) shows that a finitely
generated k-algebra is an integral extension of some polynomial ring k[y1,⋯, yd]. I.e., the
following extension is integral:

k[y1,⋯, yd] ↪ k[x1,⋯, xn]/I.

We can conclude that dimA(X) = d < ∞.
∎

Proposition 7.2.2(?).
Let X,Y be irreducible affine varieties. Then

a. dimX × Y = dimX + dimY .
b. Y ⊂X Ô⇒ dimX = dimY + codimX Y .
c. If f ∈ A(X) is nonzero, then any component of V (f) has codimension 1.

Proof .

Remark 7.2.3: Why is X × Y again an affine variety? If X ⊂ An/k, Y ⊂ Am/k with
X = V (I), Y = V (J), then X × Y ⊂ An/k × Am/k = An+m/k can be given by taking
I + J ⊴ k[x1,⋯, xn, y1,⋯, ym] using the natural inclusions of k[x1,⋯, x`].
Note that we can write

k[x1,⋯, xn, y1,⋯, ym] = k[x1,⋯, xn] ⊗k k[y1,⋯, yn]

where we think of xi = xi ⊗ 1, yj = 1 ⊗ yj . We thus map I, J to I ⊗ 1 + 1 ⊗ J and obtain
V (I ⊗ 1 + 1⊗ J) =X × Y and A(X × Y ) = A(X) ⊗k A(Y ).
In general, for k-algebras R,S,

R/I ⊗k S/J ≅ R⊗k S/ ⟨I ⊗ 1 + 1⊗ J⟩ .

Remark 7.2.4: For R,S finitely generated k-algebras, dimR⊗k S = dimR + dimS.
Part (a) is proved by the above remarks.
For part (b), the statement is equivalent to P ⊂ A(X) with I(Y ) ⊂ P is a member of some
maximal chain, along with the statement that all maximal chains are the same length.

∎
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8 Codimension and Hypersurfaces (Tuesday,
September 15)

Recall the dictionary in section 0.5, and the fact that A(X) ∶= k[x1,⋯, xn] contains no nilpotent
elements. We also had some results about dimension

1. dimX < ∞ and dimAn = n.
2. dimY + codimX Y = dimX when Y ⊂X is irreducible.
3. Only over k = k, codimX V (f) = 1.

Example 8.0.1: Take V (x2 + y2) ⊂ A2
/R.

Definition 8.0.2 (Curves, Surfaces, and Hypersurfaces)
An affine variety Y of

• dimY = 1 is a curve,
• dimY = 2 is a surface,
• codimX Y = 1 is a hypersurface in X

Question: Is every hypersurface the vanishing locus of a single polynomials f ∈ A(X)?

Answer: This is true iff A(X) is a UFD.

E 8.1 Codimension e

Definition 8.1.1 (Codimension in a Ring)
codimR p is the length of the longest chain

P0 ⊊ P1 ⊊ ⋯ ⊊ Pn = p.

Recall that f is irreducible if f = f1f2 Ô⇒ fi ∈ R
× for one i, and f is prime iff ⟨f⟩ is a prime ideal,

or equivalently f ∣ ab Ô⇒ f ∣ a or f ∣ b.

Note that prime implies irreducible, since f divides itself.

Proposition 8.1.2(?).
Let R be a Noetherian domain, then TFAE

a. All prime ideals of codimension 1 are principal.

b. R is a UFD.
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Proof .
a Ô⇒ b:
Let f be a nonzero non-unit, we’ll show it admits a prime factorization. If f is not irreducible,
then f = f1f

′
1, both non-units. If f ′1 is not irreducible, we can repeat this, to get a chain

⟨f⟩ ⊊ ⟨f ′1⟩ ⊊ ⟨f ′2⟩ ⊊ ⋯,

which must terminate.
This yields a factorization f = ∏ fi with fi irreducible. To show that R is a UFD, it thus
suffices to show that the fi are prime. Choose a minimal prime ideal containing f . We’ll
use Krull’s Principal Ideal Theorem: if you have a minimal prime ideal p containing f , its
codimension codimR p is one. By assumption, this implies that p = ⟨g⟩ is principal. But g ∣ f
with f irreducible, so f, g differ by a unit, forcing p = ⟨f⟩. So ⟨f⟩ is a prime ideal.

b Ô⇒ a:
Let p be a prime ideal of codimension 1. If p = ⟨0⟩, it is principal, so assume not. Then there
exists some nonzero non-unit f ∈ p, which by assumption has a prime factorization since R is
assumed a UFD. So f =∏ fi.
Since p is a prime ideal and f ∈ p, some fi ∈ p. Then ⟨fi⟩ ⊂ p and p minimal implies ⟨fi⟩ = p,
so p is principal.

∎

Corollary 8.1.3(?).
Every hypersurface Y ⊂X is cut out by a single polynomial, so Y = V (f), iff A(X) is a UFD.

E 8.2 Hypersurfaces and Prime Ideals e

Example 8.2.1: Apply this to R = A(X), we find that there is a bijection

codim 1 prime ideals ⇐⇒ codim 1 closed irreducible subsets Y ⊂X, i.e. hypersurfaces.

Taking A(X) = C[x, y, z]/ ⟨x2 + y2 − z2⟩, whose real points form a cone:
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Figure 11: Image

Note that x2 + y2 = (x − iy)(x + iy) = z2 in this quotient, so this is not a UFD.

Then taking a line through its surface is a codimension 1 subvariety not cut out by a single polynomial.
Such a line might be given by V (x + iy, z), which is 2 polynomials, so why not codimension 2?

Note that V (z) is the union of the lines

• z = 0, x + iy = 0,
• z = 0, x − iy = 0.

Note that it suffices to show that this ring has an irreducible that is not prime. Supposing z = f1f2,
some fi is a unit, then z is not prime because z ∣ xy but divides neither of x, y.

Example 8.2.2: Note that k[x1,⋯, xn] is a UFD since k is a UFD. Applying the corollary, every
hypersurface in An is cut out by a single irreducible polynomial.

Definition 8.2.3 (Pure Dimension of Affine Varieties)
An affine variety X is of pure dimension d iff every irreducible component Xi is of dimension
d.

Remark 8.2.4: Note that X is a Noetherian space, so has a unique decomposition X = ∪Xi. Given
X ⊂ An/k of pure dimension n − 1, X = ∪Xi with Xi hypersurfaces with I(Xj) = ⟨fj⟩, I(X) = ⟨f⟩
where f =∏ fi.

Definition 8.2.5 (Degree of a Hypersurface)
Given such an X, define the degree of a hypersurface as the degree of f where I(X) = ⟨f⟩.
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9 Regular Functions (Thursday, September
17)

See chapter 3 in the notes.

We’ll next want to attach certain rings of functions to a space.

Example 9.0.1(Some examples of regular functions):
• X a manifold or an open set in Rn has a ring of C∞ functions.
• X ⊂ C has a ring of holomorphic functions.
• X ⊂ R has a ring of real analytic functions

These all share a common feature: it suffices to check if a function is a member on an arbitrary
open set about a point, i.e. they are local.

E 9.1 Defining Regular Functions e

Definition 9.1.1 (Regular Functions)
Let X be an affine variety and U ⊆X open. A regular function on U is a function ϕ ∶ U → k
such that ϕ is “locally a fraction”, i.e. a ratio of polynomial functions. More formally, for
all p ∈ U there exists a Up with p ∈ Up ⊆ U such that ϕ(x) = g(x)/f(x) for all x ∈ Up with
f, g ∈ A(X).

Example 9.1.2: For X an affine variety and f ∈ A(X), consider the open set U ∶= V (f)c. Then 1
f

is a regular function on U , so for p ∈ U we can take Up to be all of U .

Example 9.1.3: For X = A1, take f = x − 1. Then x

x − 1
is a regular function on A1 ∖ {1}.

Example 9.1.4: Let X + V (x1x4 − x2x3) and

U ∶=X ∖ V (x2, x4) = {[x1, x2, x3, x4] ∣ x1x4 = x2x3, x2 ≠ 0 or x4 ≠ 0} .

Define

ϕ ∶ U →K

[x1, x2, x3, x4] ↦

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

x1
x2

if x2 ≠ 0
x3
x4

if x4 ≠ 0
.
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This is well-defined on {x2 ≠ 0} ∩ {x4 ≠ 0}, since x1
x2

=
x3
x4

. Note that this doesn’t define an element
of k at [0,0,0,1] ∈ U . So this is not globally a fraction.

Notation: we’ll let OX(U) is the ring of regular function on U .

Proposition 9.1.5(?).
Let U ⊂ X be an affine variety and ϕ ∈ OX(U). Then V (ϕ) ∶= {x ∈ U ∣ ϕ(x) = 0} is closed in
the subspace topology on U .

Proof .
For all a ∈ U there exists Ua ⊂ U such that ϕ = ga/fa on Ua with fa, ga ∈ A(X) with fa ≠ 0 on
Ua. Then

{x ∈ Ua ∣ ϕ(x) ≠ 0} = Ua ∖ V (ga) ∩Ua

is an open subset of Ua, so taking the union over a again yields an open set. But this is
precisely V (ϕ)c.

∎

Proposition 9.1.6.
Let U ⊂ V be open in X an irreducible affine variety. If ϕ1, ϕ2 ∈ OX(V ) agree on U , then they
are equal.

Proof .
V (ϕ1−ϕ2) contains U and is closed in V . It contains U ∩V , by an earlier lemma, X irreducible
implies that U =X and so V (ϕ1 − ϕ2) = V .

∎

Question 9.1.7
Let U ⊂ V ⊂ Rn be open. If ϕ1, ϕ2 ∈ C

∞(V ) such that ϕ1, ϕ2 are equal when restricted U ⊂ V . Does
this imply ϕ1 = ϕ2?

Answer 9.1.8
For Rn, no, there exist smooth bump functions. You can make a bump function on V ∖ U and
extend by zero to U . For C and holomorphic functions, the answer is yes, by the uniqueness of
analytic continuation.

E 9.2 Distinguished Open Sets e
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Definition 9.2.1 ((Important) Distinguished Open Sets)
A distinguished open set in an affine variety is one of the form

D(f) ∶=X ∖ V (f) = {x ∈X ∣ f(x) ≠ 0} .

Proposition 9.2.2.
The distinguished open sets form a base of the Zariski topology.

Proof .
Given f, g ∈ A(X), we can check:

1. Closed under finite intersections: D(f) ∩D(g) =D(fg).
2.

U =X ∖ V (f1,⋯, fk) = V ∖⋂V (fi) = ⋃D(fi),

and any open set is a finite union of distinguished opens by the Hilbert basis theorem.

∎

Proposition 9.2.3(?).
The regular functions on D(f) are given by

OX(D(f)) = {
g

fn
∣ g ∈ A(X), n ∈ N} = A(X)⟨f⟩,

the localization of A(X) at ⟨f⟩.

Note that if f = 1, then OX(X) = A(X).

Proposition 9.2.4(?).
Note that g

fn
∈ OX(D(f)) since fn ≠ 0 on D(f). Let ϕ ∶D(f) → k be a regular function. By

definition, for all a ∈D(f) there exists a local representation as a fraction ϕ = ga/fa on Ua ∋ a.
Note that Ua can be covered by distinguished opens, one of which contains a. Shrink Ua if
necessary to assume it is a distinguished open set Ua =D(ha).

Now replace

ϕ =
ga
fa

=
gaha
faha

,

which makes sense because ha ≠ 0 on Ua. We can assume wlog that ha = fa. Why? We
have ϕ =

ga
fa

on D(fa). Since fa doesn’t vanish on Ua, we have V (faha) = V (ha) since

V (fa) ⊂ D(ha)
c = V (ha). Consider Ua = D(fa) and Ub = D(fb), on which ϕ =

ga
fa

and ϕ =
gb
fb
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respectively. On Ua∩Ub =D(fafb), these are equal, i.e. fbga = fagb in the coordinate ring A(X).

Then D(f) = ⋃
a
D(fa), so take the component V (f) = ∩V (fa) by the Nullstellensatz f ∈

I(V (fa)) = I(V (ga, a ∈Df)) =

√

fa ∣ a ∈Df . Then there exists an expression fn = ∑kafa as
a finite sum, so set g −∑ gaka.

Claim: ϕ = g/fn on D(f).
This follows because on D(fb), we have ϕ =

gb
fb
, and so gfb = ∑kagafb.

Finish next class

10 Distinguished Opens (Tuesday, September
22)

E 10.1 Computing the Regular Functions e

Given an affine variety X and U ⊆ X open, a regular function ϕ ∶ U → k is one locally (wrt the
Zariski topology) a fraction. We write the set of regular functions as OX .

Example 10.1.1: X = V (x1x4 − x2x3) on U = V (x2, x4)
c, the following function is regular:

ϕ ∶ U → k

x↦

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

x1
x2

x2 ≠ 0

x3
x4

x4 ≠ 0
.

Note that this is not globally a fraction.

E 10.2 Distinguished Opens e

Definition 10.2.1 (Distinguished Open Sets)
A distinguished open set D(f) ⊆X for some f ∈ A(X) is V (f)c ∶= {x ∈X ∣ f(x) ≠ 0}.

These are useful because the D(f) form a base for the Zariski topology.

Proposition 10.2.2(?).

Distinguished Opens (Tuesday, September 22) 44



10 Distinguished Opens (Tuesday, September 22)

For X an affine variety, f ∈ A(X), we have

OX(D(f)) = {
g

fn
∣ g ∈ A(X), n ∈ N} .

Proof .
The first reduction we made was that ϕ ∈ OX(D(f)) is expressible as ga/fa on distinguished
opens D(fa) covering D(f). We also noted that

ga
fa

=
gb
fb

on D(fa) ∩D(fb) Ô⇒ fbga = fagb in A(X).

The second step was writing D(f) = ∪D(fa), and so V (f) = ∩aV (fa) implies that f ∈

I (V ({fa ∣ a ∈ U})). By the Nullstellensatz, f ∈

√

⟨fa ∣ a ∈ U⟩, so fN = ∑kafa for some N .
So construct g = ∑kaga, then compute

gfb = ∑
a

kagafb = ∑
a

kagbfa = gb∑kafa = gbf
N .

Thus g/fN = gb/fb for all b, and we can thus conclude

ϕ ∶= {
gb
fb

on D(fb)} = g/fN .

∎

Corollary 10.2.3(?).
For X an affine variety, OX(X) = A(X).

△! Warning 10.2.4 (Things go wrong when k ≠ k):
For k not algebraically closed, the proposition and corollary are both false. Take X = A1/R, then

1
x2 + 1

∈ R(x), but OX(X) ≠ A(X) = R[x].

E
10.3 Structure Sheaf of Distinguished

Opens e

Definition 10.3.1 (Localization)
Let R be a ring and S a set closed under multiplication, then the localization at S is defined
by

RS ∶= {r/s ∣ r ∈ R,s ∈ S} / ∼ .

where r1/s1 ∼ r2/s2 ⇐⇒ s3(s2r1 − s1r2) = 0 for some s3 ∈ S.
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Example 10.3.2: Let f ∈ R and take S = {fn ∣ n ≥ 1}, then Rf ∶= RS .

Corollary 10.3.3(?).
OX(D(f)) = A(X)f is the localization of the coordinate ring.

These requires some proof, since the LHS literally consists of functions on the topological space
D(f) while the RHS consists of formal symbols.

Proof .
Consider the map

A(X)f → OX(D(f))

“g/fn”↦ g/fn ∶D(f) → k.

By definition, there exists a k ≥ 0 such that

fk(fmg − fng′) = 0 Ô⇒ fk(fmg − fng′) = 0 as a function on D(f).

Since fk ≠ 0 on D(f), we have fmg = fng′ as a function on D(f), so g/fn = g′/gm as functions
on D(f).

Surjectivity: By the proposition, we have surjectivity, i.e. any element of ∣OOx(D(f)) can
be represented by some g/fn.

Injectivity: Suppose g/fn defines the zero function on D(f), then g = 0 on D(f) implies that
fg = 0 on X (i.e. fg = 0 ∈ A(X)), and we can write f(g ⋅1−fn ⋅0) = 0. Then g/fn ∼ 0/1 ∈ A(X)f ,
which forces g/fn = 0 ∈ A(X)f .

∎

E 10.4 Presheaves and Sheaves e

Idea: spaces on functions on topological spaces.

Definition 10.4.1 (Presheaf)
A presheaf (of rings) F on a topological space is

1. For every open set U ⊂X a ring F(U).

2. For any inclusion U ⊂ V a restriction map ResV U ∶ F(V ) → F(U) satisfying

a. F(∅) = 0.
b. ResUU = idF(U).
c. ResVW ○ResUV = ResUW .

Example 10.4.2: The smooth functions on R with the standard topology, F = C∞ where C∞(U) is
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the set of smooth functions U → R. It suffices to check the restriction condition, but the restriction
of a smooth function is smooth: if f is smooth on U , it is smooth at every point in U , i.e. all
derivatives exist at all points of U . So if V ⊂ U , all derivatives of f will exist at points x ∈ V , so f
will be smooth on V .

Note that this also works with continuous functions.

Definition 10.4.3 (Sheaf)
A sheaf is a presheaf satisfying an additional gluing property: given ϕi ∈ F(Ui) such that
ϕi∣Ui∩Uj

= ϕj ∣Ui∩Uj
, then there exists a unique ϕ ∈ F(∪iUi) such that ϕ∣Ui

= ϕi.

11 Categories and Presheaves (Thursday,
September 24)

E
11.1 Regular Functions vs Holomorphic

Functions
e

Recall that we defined the regular functions OX(U) on an open set U ⊂X an affine variety as the set
of functions ϕ ∶ U → k such that ϕ is locally a fraction, i.e. for all p ∈ U there exists a neighborhood
of p, say Up ⊂ U , such that ϕ restricted to Up is given by gp

fp
for some fp, gp ∈ A(X).

We proved that on a distinguished open set D(f) = V (f)c, we have OX(D(f)) = A(X)f . An
important example was that OX(X) = A(X).

Question 11.1.1
If X is a variety over C, does A(X) = Hol(X)?

Answer 11.1.2
The answer is no, since taking A1/C ≅ C =X we obtain A(X) = C[x] but for example ez ∈ Hol(X).
On the other hand, if you require that f ∈ Hol(X) is meromorphic at ∞, i.e. f(1

z
) is meromorphic

at zero, then you do get C[z]. This is an example of GAGA!

Review: what is a category?

Review: what is a presheaf?
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12 Sheafifying (Tuesday, September 29)

E 12.1 Presheaves That Are Not Sheaves e

Recall the definition of a presheaf: a sheaf of rings on a space is a contravariant functor from its
category of open sets to ring, such that

1. F (∅) = 0
2. The restriction from U to itself is the identity,
3. Restrictions compose.

Example 12.1.1(?):
• Smooth functions on Rn
• Holomorphic functions on C

Recall the definition of sheaf: a presheaf satisfying unique gluing: given fi ∈ F(Ui), such that
fi∣Ui∩Uj

= fj ∣Ui∩Uj
implies that there exists a unique f ∈ F(∪Ui) such that f ∣Ui

= fi.

Question 12.1.2
Are the constant functions on R a presheaf and/or a sheaf?

Answer 12.1.3
This is a presheaf but not a sheaf. Set F(U) = {f ∶ U → R ∣ f(x) = c} ≅ R with F(∅) = 0. Can
check that restrictions of constant functions are constant, the composition of restrictions is the
overall restriction, and restriction from U to itself gives the function back.

Given constant functions fi ∈ F(Ui), does there exist a unique constant function F(∪Ui) restricting
to them? No: take f1 = 1 on (0,1) and f2 = 2 on (2,3). Can check that they both restrict to the
zero function on the intersection, since these sets are disjoint.

E 12.2 Locally Constant Sheaves e

How can we make this into a sheaf? One way: weaken the topology. Another way: define another
presheaf G on R given by locally constant function, i.e. {f ∶ U → R ∣ ∀p ∈ U,∃Up ∋ p, f ∣Up

is constant}.
Reminiscent of definition of regular functions in terms of local properties.

Example 12.2.1: Let X = {p, q} be a two-point space with the discrete topology, i.e. every subset
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is open. Then define a sheaf by

∅ ↦ 0
{p} ↦ R

{q} ↦ S

Ô⇒ {p, q} ↦ R × S,

where the sheaf condition forces the assignment of the whole space to be the product. Note that
the first 3 assignments are automatically compatible, which means that we need a unique f ∈ F(X)

restricting to R and S. In other words, F(X) needs to be unique and have maps to R,S, but this
is exactly the universal property of the product.

Example 12.2.2: Consider the presheaf on X given by F(X) = R × S × T . Taking T = Z/2Z, we
can force uniqueness to fail: by projecting to R,S, there are two elements in the fiber, namely
(r, s,0) ↦ r, s and (r, s,1) ↦ r, s.

Example 12.2.3: Let X = {a, b, c} and τ = {∅,{a} ,{a, b} ,{a, c}}. Can check that it’s closed under
finite intersections and arbitrary unions, so this forms a topology. Now make the assignments

{a} ↦ A

{b} ↦ B

{a, b} ↦ C

X ↦?.

We have a situation like the following:

F(X)

B C

A

∅

Unique gluing says that given r ∈ B,s ∈ C such that ϕB(r) = ϕC(s), there should exist a unique
t ∈ F(X) such that t∣{a,b} = r and t∣{a,c} = s. This recovers exactly the fiber product.

B ×A C ∶= {(r, s) ∈ B ×C ∣ ϕB(r) = ϕC(s) ∈ A} .
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E 12.3 The Structure Sheaf is a Sheaf e

Example 12.3.1: Let X be an affine variety with the Zariski topology and let F ∶= OX be the
sheaf of regular functions:

OX(U) ∶= {f ∶ U → k ∣ ∀p ∈ U, ∃Up ∋ p, f ∣Up
=
gp

hp
} .

Is this a presheaf? We can check that there are restriction maps:

OX(U) → OX(V )

{f ∶ U →K} ↦ {f ∣V (x) ∶= f(x) for x ∈ V } .

This makes sense because if V ⊂ U , any x ∈ V is in the domain of f . Given that f is locally a
fraction, say ρ = gp/hp on Up ∋ p, is ϕ∣V locally a fraction? Yes: for all p ∈ V ⊂ U , ϕ = gp/fp on Up
and this remains true on Up ∩ V .

To check that OX is a sheaf, given a set of regular functions {ϕi ∶ Ui → k} agreeing on intersections,
define

ϕ ∶ ∪Ui → k

ϕ(x) ∶= ϕi(x) if x ∈ Ui.

This is well-defined, since if x ∈ Ui ∩Uj , ϕi(x) = ϕj(x) since both restrict to the same function on
Ui ∩Uj by assumption.

Why is ϕ locally a fraction? We need to check that for all p ∈ U ∶= ∪Ui there exists a Up ∋ p with
ϕ∣Up

= gp/hp. But any p ∈ ∪Ui implies p ∈ Ui for some i. Then there exists an open set Ui,p ∋ p in Ui
such that ϕ∣Ui,p

= gp/hp by definition of a regular function. So take Up = Ui,p and use the fact that
ϕ∣Ui

= ϕi along with compatibility of restriction.

Remark 12.3.2: General observation: any presheaf of functions is a sheaf when the functions are
defined by a local property, i..e any property that can be checked at p by considering an open set
Up ∋ p.

As in the examples of smooth or holomorphic functions, these were local properties. E.g. checking
that a function is smooth involves checking on an open set around each point. On the other hand,
being a constant function is not a local property.
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E 12.4 Restriction, Stalks, Sections e

Definition 12.4.1 (Restriction of a (Pre)sheaf)
Given a sheaf F on X and an open set U ⊂ X, we can define a sheaf F∣U on U (with the
subspace topology) by defining F∣U(V ) ∶= F(V ) for U ⊆ V .

Definition 12.4.2 (Stalks)
Let F be a sheaf on X and p ∈X a point. The stalk of F at p, denoted Fp for p ∈ U , is defined
by

Fp ∶= {(U,ϕ) ∣ ϕ ∈ F(U)} / ∼

where (U,ϕ) ∼ (V,ϕ′) iff there exists a W ⊂ U ∩ V and p ∈W such that ϕ∣W = ϕ∣W
′.

Example 12.4.3: What is the stalk of Hol(C) at p = 0?

Examples of equivalent elements in this stalk:

Figure 12: O

In this case

Hol(C)0 = {ϕ = ∑
i>0
ciz

i ∣ ϕ has a positive radius of convergence} .

Definition 12.4.4 (Sections and Germs)
An element f ∈ F(U) is called a section over U , and elements of the stalk f ∈ Fp are called
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germs at p.

13 Stalks and Localizations (Thursday,
October 01)

E 13.1 Review e

Recall that a sheaf of rings on a topological space X is a ring F(U) for all open sets U ⊂X satisfying
four properties:

1. Initial to terminal: the empty set is mapped to zero.1

2. Identities: the morphism F(U) → F(U) is the identity.

3. Composition: given W ⊂ V ⊂ U we have a commutative diagram

F(U) F(V )

F(W )

ResUV

ResUW ResV W

4. Gluing: given sections si ∈ F(Ui) which agree on overlaps (restrict to the same function on
Ui ∩Uj), there is a unique s ∈ F(∪Ui).

Example 13.1.1: If X is an affine variety with the Zariski topology, OX is a sheaf of regular
functions, where we recall OX(U) are the functions ϕ ∶ U → k that are locally a fraction.

E 13.2 Computing Stalks e

Recall that the stalk of a sheaf F at a point p ∈X, is defined as

Fp ∶= {(U,ϕ) ∣ p ∈ U open , ϕ ∈ F(U)} / ∼ .

where (U,ϕ) ∼ (U ′, ϕ′) if there exists a p ∈W ⊂ U ∩U ′ such ϕ,ϕ′ restricted to W are equal.

1The initial object in the category of Sets is the empty set, and the terminal object in the category of Rings is the
zero ring. This “swap” comes from the fact that presheaves should be contravariant.
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Recall that a local ring is a ring with a unique maximal ideal m. Given a prime ideal p ∈ R, so
ab ∈ p Ô⇒ a, b ∈ p, the complement R ∖ P is closed under multiplication. So we can localize to
obtain

Rp ∶= {a/s ∣ s ∈ R ∖ P,a ∈ R} / ∼

where a′/s′ ∼ a/s ⇐⇒ ∃t ∈ R ∖ P such that t(a′s − as′) = 0

△! Warning 13.2.1 (Notation for localizations):
Note that Rf is localizing at the powers of f , whereas Rp is localizing at the complement of p.

Since maximal ideals are prime, we can localize any ring R at a maximal ideal m ∈ mSpec(R) to
obtain Rm, and this will be a local ring. Why? The ideals in Rm biject with ideals in R contained
in m. Thus all ideals in Rm are contained in the maximal ideal generated by m, i.e. mRm.

Lemma 13.2.2(Stalks are isomorphic to localizations).
Let X be an affine variety, then

OX,p ∶= (OX)p ≅ A(X)mp .

In words: the stalk of the sheaf of regular functions OX,p ∶= (OX)p is isomorphic to the
localization A(X)mp where mp ∶= I({p}).

Proof .
We can write

A(X)mp ∶= {
g

f
∣ g ∈ A(X), f ∈ A(X) ∖mp} / ∼

where g1/f1 ∼ g2/f2 ⇐⇒ ∃h(p) ≠ 0 where 0 = h(f2g1 − f1g2).

where the f are regular functions on X such that f(p) = 0.
We can also write

OX,p ∶= {(U,ϕ) ∣ p ∈ U, ϕ ∈ OX(U)} / ∼

where (U,ϕ) ∼ (U ′, ϕ′) ⇐⇒ ∃p ∈W ⊂ U ∩U ′ s.t. ϕ∣W = ϕ′∣
W
.

So we can define a map

Φ ∶ A(X)mp → OX,p
g

f
↦ (Df ,

g

f
) .

Step 1: There are equivalence relations on both sides, so we need to check that things are
well-defined.
We have

g/f ∼ g′/f ′ ⇐⇒ ∃g such that h(p) ≠ 0, h(gf ′ − g′f) = 0 ∈ A(X)

⇐⇒ the functions g
f
,
g′

f ′
agree on W ∶=D(f) ∩D(f ′) ∩D(h)

Ô⇒ (Df , g/f) ∼ (Df ′ , g
′/f ′),
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since there exists a W ⊂Df ∩Df ′ such that g/f, g′/f ′ are equal.

Step 2: Surjectivity, since this is clearly a ring map with pointwise operations.
Any germ can be represented by (U,ϕ) with ϕ ∈ OX(U). Since the sets Df form a base for
the topology, there exists a Df ⊂ U containing p. By definition, (U,ϕ) = (Df , ϕ∣Df

) in OX,p.
Using the proposition that OX(D(f)) = A(X)f , this implies that ϕ∣Df

= g/fn for some n and
f(p) ≠ 0, so (U,ϕ) is in the image of Φ.

Step 3: Injectivity. We want to show that g/f ↦ 0 implies that g/f = 0 ∈ A(X)mp .
Suppose that (Df , g/f) = 0 ∈ OX,p and (U,ϕ) = 0 ∈ OX,p, then there exists an open W ⊂ Df

containing p such that after passing to some distinguished open Dh ∋ p such that ϕ = 0 on Dh.
Wlog we can assume ϕ = 0 on U , since we could shrink U (staying in the same equivalence
class) to make this true otherwise. Then ϕ = g/f on Dh, using that OX(Df) = A(X)f , so
g/f = 0 here. So there exists a k such that

fk(g ⋅ 1 − 0 ⋅ f) = 0 ∈ A(X) Ô⇒ fkg = 0 ∈ A(X)mp .

We can thus conclude that

OX,p ≅ A(X)mp .

∎

Example 13.2.3: Let X = {p, q} with the discrete topology with the sheaf F given by

p↦ R

q ↦ S

X ↦ R × S.

Then Fp = R, since if U is open and p ∈ U then either U = {p} or U = X. We can check that for
(r, s) a section of F , we have an equivalence of germs

(X, (r, s)) ∼ ({p} , r) since {p} ⊂X ∩ {p}

Here X plays the role of U , {p} of U ′, and the last {p} the role of W ⊂ U ∩U ′.

OX,p → A(X)

({p} , r) ↦ r

Fp ≅ R.

Example 13.2.4: Let M be a manifold and consider the sheaf C∞ of smooth functions on M .
Then the stalk C∞

p at p is defined as the set of smooth functions in a neighborhood of p modulo
functions being equivalent if they agree on a small enough ball Bε(p). This contains a maximal
ideal mp, the smooth functions vanishing at p. Then m2

p is again an ideal, and as sets,

m2 = {f ∣ ∂i∂jf ∣
p
= 0, ∀i, j} .

Thus mp/m
2
p ≅ {∂v}

∨, the dual of the set of directional derivatives.
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E 13.3 Morphisms of Affine Varieties e

Problem: what should a map of affine varieties be? A bad definition would be just taking the
continuous maps: for example, any bijection A1

C is a homeomorphism in the Zariski topology. Why?
This coincides with the cofinite topology, and the preimage of a cofinite set is cofinite.

Question 13.3.1
How do we fix this?

Answer 13.3.2

1. f ∶X → Y should be continuous, i.e. f−1(U) is open whenever U is open.

2. Given U ⊂ Y open and ϕ ∈ OY (U), the function ϕ ○ f ∶ f−1(U) → k should be regular.

We’ll take these conditions to be the definition of a morphism X → Y .

Example 13.3.3: For smooth manifolds, we similarly require that there is a pullback that preserves
smooth functions:

f∗ ∶ C∞(U) → C∞(f−1(U)).

14 Ringed Spaces (Ch. 4, Tuesday, October
06)

Definition 14.0.1 (Ringed Spaces)
A ringed space is a topological space X together with a sheaf OX of rings.

Example 14.0.2:
1. X an affine variety and OX its ring of regular functions.

2. X a manifold over Rn with OX a ring of smooth or continuous functions on X.

3. X = {p, q} with the discrete topology and OX given by p↦ R, q ↦ S.

4. Let U ⊂X an open subset of X an affine variety. Then declare OU to be OX ∣U .

Recall that the restriction of a sheaf F to an open subset U ⊂X is defined by F∣U(V ) = F(V ).
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Example 14.0.3(Skyscraper Sheaf): Let X be a topological space and p ∈ X a point. The
skyscraper sheaf at p is defined by

kp(U) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

k p ∈ U

0 p /∈ U
.

Remark 14.0.4: As a convention, we’ll always assume that OX is a sheaf of functions, so OX(U)

is a subring of all k-valued functions on U . Moreover, ResUV is restriction of k-valued functions.

E 14.1 Morphisms of Ringed Spaces e

Definition 14.1.1 (Morphisms of Ringed Spaces)
A morphism of ringed spaces

(X,OX)
f
Ð→ (Y,OY )

is a continuous map X → Y such that for all opens U ⊂ Y and any ϕ ∈ OY (U), the pullback
satisfies f∗ϕ ∈ OX(f−1(U)).

Slogan 14.1.2
Pullbacks of regular functions are regular.

Remark 14.1.3: We’ll need to use th convention that OX is a sheaf of K-valued functions in order
to make sense of pullbacks. In general, for schemes with U ⊂ Y and f−1(U) ⊂ X, we’ll need some
analog of f∗ ∶ OY (U) → OX(f−1(U)) to make sense of “composing” or “restricting” sections. We
still need continuity, however, so that f−1(U) is open when U is open and thus OX(f−1(U)) makes
sense.

Example 14.1.4: If (X,OX) is a ringed space associated to an affine variety, then we assume
OX(U) are literally functions on U . Morphisms of open subsets is again defined by morphisms of
ringed spaces.

Example 14.1.5: Let X = A1/k and U ∶= D(x), then D(f) = A1 ∖ {0}. Then ι ∶ U ↪ X is
continuous. Given an arbitrary distinguished open set D(f) ⊂ A1, we know from previous results
that

OX(D(f)) ∶= OA1(D(f)) = A(A1)⟨f⟩ = k[x]⟨f⟩ ∶= {g/fn ∣ g ∈ k[x]} .

We want to show that ι ∶ (U,OU) ↪ (X,OX) is a morphism of ringed spaces where OU(V ) ∶= OX(V ).
Does ι∗ pull back regular functions to regular functions? Yes, since

ι−1(D(f)) =D(f) ∪D(x) =D(xf)
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and thus

g/fn ∈ OU(ι
−1(D(f))) = OU(D(xf))

where we’ve used that fn ≠ 0 Ô⇒ xf ≠ 0.

Example 14.1.6: A non-example: take

h ∶ A1 → A1

x↦

⎧⎪⎪
⎨
⎪⎪⎩

x x ≠ ±1
−x x = ±1

.

This is continuous because the Zariski topology on A1 is the cofinite topology (since the closed sets
are finite), so any injective map is continuous since inverse images of cofinite sets are again cofinite.

Question 14.1.7
Does h define a morphism of ringed spaces? I.e., is the pullback of a regular function on an open
still regular?

Answer 14.1.8
Take U = A1 and the regular function x ∈ OA1(A1). Then h∗x = x ○ h, so

(x ○ h)(p) =

⎧⎪⎪
⎨
⎪⎪⎩

p p ≠ ±1
−p p = ±1

/∈ k[x]

since this is clearly not a polynomial: if two polynomials agree on an infinite set of points, they are
equal.

Example 14.1.9: Consider

ι ∶ (R2,C∞) ↪ (R3,C∞)

is the inclusion of a coordinate hyperplane. To say that this is a morphism of ringed spaces, we
need that for all U ⊂ R3 open and f ∶ U → R a smooth function, we want i∗f ∈ C∞(ι−1(U)). But
this is the same as f ○ ι ∈ C∞(R2 ∩U), which is true.

E 14.2 Gluing Morphisms e

Proposition 14.2.1(Ringed spaces form a category).

1. They can be composed: if ϕ ∈ OZ(U), then g∗ϕ ∈ OY (g−1(U)) and so f∗g∗ϕ ∈

OX(f−1g−1(U)).
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2. The identity is a morphism.

Thus ringed spaces form a category, since composition is associative.

Lemma 14.2.2(Gluing for Morphisms).
Let f ∶X → Y be a continuous map between ringed spaces. Assume there exists an open cover
{Ui}i∈I ⇉X such that f ∣Ui

is a morphism, then f is a morphism.

Remark 14.2.3: Slogan: it suffices to check a morphism on an open cover.

Proof (of part (a)).
Part a: Need to check that f is continuous, can compute

f−1(V ) = ⋃
i∈I

Ui ∩ f
−1(V ) = ⋃

i∈I

f ∣Ui

−1(V ).

but the latter is open as a union of open sets, where each constituent set is open by assumption.
∎

15 Morphisms Glue (Thursday, October 08)

We continue the proof that morphisms glue.

Proof (part b).
We want to show that f∗ sends sections of OY to sections of OX (e.g. regular functions
pullback). Let V ⊂ Y be open and ϕ ∈ OY (V ), then

f∗ϕ∣Ui∩f−1(V ) (f
∗ϕ∣Ui∩f−1(V ))

∗

ϕ ∈ OX(Uif
−1(V )).

Since pullback commutes with restriction, f∗ϕ is the unique k-valued function for which

f∗ϕ∣Ui∩f−1V = f ∣Ui∩f−1V
∗ϕ.

and all of the latter functions agree on overlaps Ui ∩ Uj . This by unique gluing, f∗ϕ ∈

OX(f−1(V )).
∎
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E 15.1 Morphisms Have Regular Components e

Proposition 15.1.1(Morphisms between affine varieties have regular functions as
components).
Let U ⊂ X be open in an affine variety and let Y ⊂ An be another affine variety. Then the
morphisms U → Y of ringed spaces are the maps of the form f = [f1,⋯, fn] ∶ U → An such that
f(U) ⊂ Y and fi ∈ OX(U) for all i.

Proof (Ô⇒ ).
Assume that f ∶ U → Y is a morphism. Then the coordinate functions Y yi

Ð→ A1 are regular
functions, since they generate OY (Y ) = k[y1,⋯, yn]/I(Y ). Then f∗yi is a regular function, so
define fi ∶= f∗yi. But then f = [f1,⋯, fn].

∎

Proof (⇐Ô ).
Conversely suppose f ∶= [f1,⋯, fn] ∶ U → Y ⊂ An is a map such that fi ∈ OU(U). We want to
show that f is a morphism, i.e. that the pullback of every regular function is regular. We thus
need to show the following:

Claim:
1. f is continuous, and
2. f∗ pulls back regular functions.

Proof (of (1)).
Suppose Z is closed, then it suffices to show f−1(Z) is closed. Then Z = V (g1,⋯, gn) for
some gi ∈ A(Y ). So we can write

f−1(Z) = {x ∈ U ∣ gi(f1(x),⋯, fn(x)) = 0∀i} .

The claim is that the functions gi are regular, i.e. inOU(U), because the gi are polynomials
in regular functions, which form a ring. This is the common vanishing locus of m regular
functions on U . By lemma 3.4, the vanishing locus of a regular function is closed, so
f−1(Z) is closed.

∎
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Proof (of (2)).
For 2, let ϕ ∈ OY (W ) be a regular function on W ⊂ Y open. Then

f∗ϕ = ϕ ○ f ∶ f−1(W ) →K

x↦ ϕ(f1(x),⋯, fn(x)).

We want to show that this is a regular function. Since the fi are regular functions, they
are locally fractions, so for all x ∈ f−1(W ) there is a neighborhood of Ux ∋ x such that (by
intersecting finitely many neighborhoods) all of the fi are fractions ai/bi. Then at a point
p = [fi(x)] in the image, there exists an open neighborhood Wp in W such that ϕ = U/V .
But then ϕ[ai/bi] = (U/V )([ai/bi]), which is evaluation of a fraction of functions on
fractions.

∎

∎

Example 15.1.2: Let Y ∶= V (xy − 1) ⊂ A2 and U ∶=D(x) = A1 ∖ {0} ⊂ A1. Note that

A(Y ) =
k[x, y]

⟨xy − 1⟩
A(A1) = k[t],

and if f1 ∶= t, f2 ∶= t
−1, then f1, f2 ∈ OU(U). So we can define a map

[f1, f2] ∶ U → Y

p↦ [p,
1
p
]

whose image lies in Y . Conversely, there is a map

V (xy − 1) → U =D(0) ⊂ A1

[x, y] ↦ x.

This a morphism from V (xy−1) to A1, since the coordinates are regular functions. Since the image
is contained in U , the definitions imply that this is in fact a morphism of ringed spaces. We thus
have mutually inverse maps

U
x←[[x,y]
⇌

t↦[t,t−1]
V (xy − 1)

,

so U ≅ V (xy − 1) as ringed spaces.

Slogan 15.1.3
Maps of affine varieties (or their open subsets) are given by functions whose coordinates are regular.
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E
15.2 Morphisms of Varieties on the Algebra

Side
e

Corollary 15.2.1(Morphisms of varieties corresponds to k-algebra morphisms of
coordinate rings).
Let X,Y be affine varieties, then there is a correspondence

{Morphisms X→Y } ⇐⇒ {k-algebra morphisms A(Y )→A(X)}

X → Y ↦ A(Y ) → A(X)

f ↦ f∗OY (Y ) = OX(X).

Thus there is an equivalence of categories between reduceda k-algebras and affine varieties.
aAn algebra is reduced iff it has no nonzero nilpotent elements.

Proof .
We have a map in the forward direction. Conversely, given a k-algebra morphism g ∶ A(Y ) →

A(X), we need to construct a morphism f such that f∗ = g. Let Y ⊂ An with coordinate
functions y1,⋯, yn. Then fi = g(yi) ∈ A(X) = OX(X). Set f = [f1,⋯, fn]. Then by the
proposition, f is a morphism to An. Letting h ∈ A(An), we have

(f∗h)(x) = h(f(x))

= h([f1(x),⋯, fn(x)])

= h(g(y1),⋯, g(yn))

= g(h)(x) since g is an algebra morphism, h is a polynomial

which follows since fi(x) = g(yi)(x), where g ∶ A(Y ) → A(X). So f∗(h) = g(h) for all
h ∈ A(An), so the pullback of f is g. We now need to check that it’s contained in the image.
Let h ∈ I(Y ), then f∗(h) = g(h) = 0 since h = 0 ∈ A(Y ). So im f ⊂ Y . Since the coordinate fi
are regular, this is a morphism, and we have f∗ = g as desired.

∎

16 Isomorphisms of Affine Varieties (Tuesday,
October 13)

Last time: proved that if X,Y are affine varieties then there is a bijection

{Morphisms
f ∶X→Y } ⇐⇒ {k-algebra morphisms

A(Y )→A(X) }

f ↦ f∗ ∶ OY (Y ) → OX(X).
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Remark 16.0.1: A morphism f ∶ X → Y is by definition a morphism of ringed spaces where
OX ,OY are the sheaves of regular functions. This shows X ≅ Y as ringed spaces iff A(X) ≅ A(Y )

as k-algebras.

E
16.1 Counterexample: Isomorphisms Are

Not Just Bijective Morphisms e

△! Warning 16.1.1 (Isomorphisms are not necessarily bijective morphisms):
Let X = V (y2 − x3) ⊂ A2 and define a map

f ∶ A1 →X

t↦ [t2, t3],

This is a morphism by proposition 4.7 in [1], since the coordinates t2, t3 are regular functions. Then
f is a bijection, since we can define a piecewise inverse

f−1 ∶X → A1

[x, y] ↦

⎧⎪⎪
⎨
⎪⎪⎩

y/x x ≠ 0
0 else.

However, f−1 is not a morphism, since it is not in A(X) and thus not a regular function on X. For
instance, pulling back the function g(t) = t yields

((f−1)∗g) ([x, y]) =

⎧⎪⎪
⎨
⎪⎪⎩

y/x x ≠ 0
0 x = y = 0

/∈ A(X).

Since f is a morphism, however, we can still consider the corresponding map of k-algebras:

f∗ ∶ A(X) =
k[x, y]

⟨y2 − x3⟩
→ A(A1) = k[t]

x↦ t2

y ↦ t3,

but even though f is a bijective morphism, it’s not an isomorphism of rings: this can be seen from
the fact that t /∈ im f∗.

E 16.2 Categorical Products e

Review of introductory category theory.

We’ll define a category AffVark whose objects are affine varieties over k and morphisms in hom(X,Y )

will be morphisms of ringed spaces. There is a contravariant functor A into reduced2 finitely
2An algebra is reduced iff it has no nonzero nilpotent elements.

16.1 Counterexample: Isomorphisms Are Not Just Bijective Morphisms 62



17 Prevarieties (Thursday, October 15)

generated k-algebras which sends X to A(X) and sends morphisms f ∶ X → Y to their pullbacks
f∗ ∶ A(Y ) → A(X).

Review of the universal property of the product.

Remark 16.2.1: If we have X,Y affine varieties, we take X × Y to be the categorical product
instead of the underlying product of topological spaces. We have

A(X × Y ) ≅ A(X) ⊗k A(Y ) ≅
k[x1,⋯, xn, y1,⋯, ym]

I(X) ⊗ 1 + 1⊗ I(Y )
.

This recovers the product, since we have

Z

X × Y X

Y

∃!H=(f,g)

f

g

Remark 16.2.2: Products of spaces are sent to the tensor product of k-algebras, i.e. pullbacks are
sent to pushouts.

Remark 16.2.3: Note that the groupoid associated to a group does not have products: there can
only be one element, but the outer triangles will not necessarily simultaneously commute.

17 Prevarieties (Thursday, October 15)

This corresponds to the end of Chapter 4.

Recall that we had a proposition: morphisms between affine varieties are in bijection with k-algebra
morphisms between their coordinate rings. As a result, we’ll redefine an affine variety to be a
ringed space isomorphic to an affine variety (using the previous definition of affine variety). This
provides a way of saying when affine varieties embedded in different ways are the “same”.

Example 17.0.1: A2 vs V (x) ⊂ An. In fact, the map

f ∶ A2 → A3(y, z) ↦ (0, y, z).

This is continuous and the pullback of regular functions are again regular.

Remark 17.0.2: With the new definition, there is a bijection between affine varieties up to iso-
morphisms and finitely generated k-algebras up to algebra isomorphism.
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Proposition 17.0.3(Distinguished opens are ringed spaces).
Let D(f) ⊂ X be a distinguished open, then D(f) is a ringed space. This follows because
(X,OX) is a ringed space, and we can restrict the structure sheaf to any open subset of X.

Proof .
Set

Y ∶= {(x, t) ∈X ×A1 ∣ tf(x) = 1} ⊂X ×A1.

This is an affine variety, since Y = V (I + ⟨ft − 1⟩). This is isomorphic to D(f) by the map

Y →D(f)

[x, t] ↦ x.

with inverse

D(f) → Y

x↦ [x,
1

f(x)
]

Figure 13: Image

Note that π ∶ X × A1 → X is regular, using prop 3.8 in [1], if the coordinates of a map are
regular functions, then the entire map is a morphism of ringed spaces. We can then note that

1
f(x) is regular on D(f), since f ≠ 0 on this set.

∎

Example 17.0.4: A2 ∖ {0} is not an affine variety. Note that this is also not a distinguished open.
We showed on a HW problem that the regular functions on A2 ∖ {0} are k[x, y], which are also the

Prevarieties (Thursday, October 15) 64



17 Prevarieties (Thursday, October 15)

regular functions on A2. So there is a map inducing a pullback

ι ∶ A2 ∖ {0} → A2

ι∗ ∶ k[x, y]
∼
Ð→ k[x, y].

Note that ι∗ is an isomorphism on the space of regular functions, but ι itself is not an isomorphism
of topological spaces. Why? i−1 is not defined at zero.

E 17.1 Prevarieties (Chapter 5) e

Definition 17.1.1 (Prevariety)
A prevariety is a ringed spaced X with a finite open cover by affine varieties. This is a
topological space X with an open cover {Ui}

n
i=1 ⇉ X such that (Ui, OX ∣Ui

) is isomorphic to
an affine variety. We’ll call OX the sheaf of regular functions and Ui ⊂X affine open sets.

One way to construct prevarieties from affine varieties is by gluing:

Definition 17.1.2 (Glued Spaces)
Let X1,X2 be prevarieties which are themselves actual varieties, and let U12 ⊂X1, U21 ⊂X2 be
opens with f ∶ U12 → U21 an isomorphism of ringed spaces.

Figure 14: Image

As a set, take X =X1∐X2/ ∼ where a ∼ f(a) for all a ∈ U12. As a topological space, U ⊂X is
open iff Ui ∶= U ∩Xi are open in Xi. As a ringed space, we take

OX(U) ∶= {ϕ ∶ U → k ∣ ϕ∣Ui
∈ OXi}

Example 17.1.3: The prototypical example is P1
/k constructed from two copies of A1

/k. Set X1 =

A1,X2 = A2, with U12 ∶=D(x) ⊂X1 and U21 ∶=D(y) ⊂X2. Then let

f ∶ U12 → U21

x↦
1
x
.
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This defines a regular function on U12 so defines a morphism U12
∼
Ð→ A1.

Figure 15: Gluing two affine lines to obtain projective space.

Over C, topologically this yields a sphere

Figure 16: Complex projective space is a sphere.

Given a ringed space X =X1 ∪X2 with a structure sheaf OX , what is OX(X)? By definition, it’s

OX(X) ∶= {ϕ ∶X → k ∣ ϕ∣X1
, ϕ∣X2

are regular} .

Then if ϕ∣X1
= f(x) and ϕ∣X2

= g(y), we have y = 1/x on the overlap and so

f(x)∣D(x) = g(1/x)∣D(x)

Since f, g are rational functions agreeing on an infinite set, f(x) = g(1/x) both being polynomial
forces f = g = c for some constant c ∈ k. Thus OX(X) = k.

What about OX(X1)? This is just k[x], and similarly OX(X2) = k[y]. We can also consider
OX(X1 ∩X2) =D(x) ⊂X, so this yields k[x,1/x]. We thus have a diagram
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OX(X1) = k[x]

OX(X) OX(X1 ∩X2) = k[x,1/x]

OX(X2) = k[y]

x↦x

y↦1/x

18 Prevarieties (Tuesday, October 20)

E 18.1 Gluing Two Opens in a Prevariety e

Recall that a prevariety is a ringed space that is locally isomorphic to an affine variety, where we
recall that (X,OX) is locally isomorphic to an affine variety iff there exists an open cover Ui ⇉X
such that (Ui,OUi). We found one way of producing these: the gluing construction. Given two
ringed spaces (X1,OX1) and (X2,OX2) and open sets U12 ∈X1 and U21 ∈X2 and an isomorphism
(U12,OU12)

f
Ð→ (U21,OU21), we defined

• The topological space as X1∐f
X2

• The sheaf of rings as OX = {ϕ ∶ U → k ∣ ϕ∣U∩Xi
is regular for i = 1,2}.

Example 18.1.1: P1
/k =X1 ∪X2 where X1 ≅X2 ≅ A1

/k. Take U12 ∶=D(x) and U21 ∶=D(y) with

f ∶ U12 → U21

x↦ y ∶=
1
x
.
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Figure 17: Supposing ch(k) ≠ 2. Note that for C this recovers S2 in the classical topology.

Example 18.1.2: Let Xi = A1 and U12 =D(x), U21 =D(y) with

f ∶ U12 → U21

x↦ y ∶= x.

Figure 18: Line with the doubled origin.

Define X ∶=X1∐f
X2, then OX = {ϕ ∶X → k ∣ ϕ∣Xi

is regular} ≅ k[x].

E 18.2 More General Gluing e

18.1 Gluing Two Opens in a Prevariety 68
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Now we want to glue more than two open sets. Let I be an indexing set for prevarieties Xi. Suppose
that for an ordered pair (i, j) we have open sets Uij ⊂ Xi and isomorphisms fij ∶ Uij

∼
Ð→ Uji such

that

a. fji = f−1
ij

b. fjk ○ fij = fik (cocycle condition)

Figure 19: Opens with isomorphisms.

Then the gluing construction is given by

1. X ∶= ∐Xi/ ∼ where x ∼ fij(x) for all i, j and all x ∈ Uij .

2. Ox(U) ∶= {ϕ ∶ U → k ∣ ϕ∣U∩Xi
∈ OXi}.

Every prevariety arises from the gluing construction applied to affine varieties Xi, since a prevariety
(X,OX) by definition has an open affine cover {Xi} ⇉ X and X is the result of gluing the Xi by
the identity.

Example 18.2.1: Let X1 =X2 =X3 ∶= A2/k. Glue by the following instructions:

18.2 More General Gluing 69



18 Prevarieties (Tuesday, October 20)

[x1, x2] ∈X1 [z1, z2] ∈X3

[y1, y2] ∈X2

[y1,y2]=[
1

x1
,

x2
x1

]

[z1,z2]=[
1

x2
,

x1
x2

]

f

where f is a map with whatever formula is required to make the diagram commute. Here

• D(x1x2) ⊆X1
• U12 =D(x1)
• U21 =D(x2).

Figure 20: Yields P2

Here X1 = [1 ∶ y/x ∶ z/x], X2 = [x/y ∶ 1 ∶ z/y].

Example 18.2.2: From Gathmann 5.10, open and closed subprevarieties. Let X be a prevariety
and suppose U ⊂ X is open. Then (U,OU) is a prevariety where OU = OX ∣U . How can we write
U as (locally) an affine variety? Since the Ui are covered by distinguished opens Dij in Xi where
X = ∪Xi with Xi affine varieties, we can write U = ⋃

i

Ui = ⋃
i,j

Dij .

Example 18.2.3: Let Y ⊂ X be a closed subset of a prevariety X. We need to define OY (U) for
all U ⊂ Y open, so we set

OY (U) = {ϕ ∶ U → k ∣ ∀p ∈ U, ∃Vp with p ∈ Vp ⊆
open

X and ψ ∈ OX(Vp) s.t. ψ∣U∩V = ϕ} .

What’s the picture?
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Figure 21: Sheaf for a closed subset.

Exercise 18.2.4 (?)
Show that this is a prevariety.

Remark 18.2.5: If U ⊂ X is an open subprevariety or Y ⊂ X is a closed subprevariety, then the
inclusions are morphisms. We’d need to show that a pullback of a function is regular, but this is
set up by definition.

Remark 18.2.6: Define ÕX(U) as the set of all functions U → k. Then the inclusion (X,OX) ↪

(X, ÕX) given by the identity on X is a morphism, but the identity in the reverse direction is not.

19 Separatedness (Thursday, October 22)

Example 19.0.1: Consider A1, whose polynomial functions are k[x]. Consider now D(x) ⊂ A1,
which is isomorphic to the affine variety V (xy − 1). Then the regular functions on D(x) are given
by

A(D(x)) =
k[x, y]

⟨xy − 1⟩
≅ k[x,x−1].

E 19.1 Products of Prevarieties e

Recall that a prevariety is a ringed space (X,OX) such that X has a finite open cover by affine
varieties (Ui, OX ∣Ui

), and a morphism of prevarieties is a morphism of ringed spaces. We saw that
one can construct prevarieties by gluing finite collections of prevarieties or affine varieties along
open sets, and all prevarieties arise this way. Similar to varieties, the product P of prevarieties
X,Y will satisfy a universal property:
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P

Z X

Y

πX

πY

∃!

Link to Diagram

Proposition 19.1.1(?).
The product is unique up to unique isomorphism, i.e. there is a unique isomorphism between
any two products.

Proof .
Standard exercise in category theory.

∎

19.1.1 Constructing the product of prevarieties

Example 19.1.2: Consider A1 ×A1, then the product is (and should be) A2, but A2 does not have
the product topology. For example, one problem is that the Zariski open set D(x−y) is not covered
by products of open sets in A1.

This happens because the Zariski topology is too weak. Strategy to fix: use gluing. Let X,Y
be prevarieties and {Ui} ,{Vi} be open affine covers of X and Y respectively. We can construct
the product Ui × Vj ⊂ An+m, which is an affine variety and satisfies the universal property for
products. We then glue two such products Ui1 × Vj1 and Ui2 × Vj2 along their common open subset
in (Ui1 ∩Ui2) ∩ (Vj1 ∩ Vj2) ⊆X × Y .

Let Ũ ∶= Ui1 ∩Ui2 × Vj1 ∩ Vj2 , we then need that

(Ũ , OUi1×Vj1
∣
Ũ
) ≅ (Ũ , OUi2×Vj2

∣
Ũ
) .

This follows from the universal property of products, since the open set (U × V, OX×Y ∣U×V ) is a
categorical product of ringed spaces, and the identity provides a unique isomorphism. By the gluing
construction, this produces a ringed space (X × Y,OX×Y ), we just need to check that this satisfies
the universal property. We have projections πX , πY set-theoretically, which restrict to morphisms
on every Ui × Vj . For any prevariety Z, we get a unique set map h ∶ Z → X × Y which commutes,
so it suffices to check that h is a morphism of ringed spaces.

So consider h−1(Ui × Vj) ⊂ Z, which is an open subset of Z given by f−1(U) × f−1(V ). Take an
open cover and let W be an element in it. We can then restrict f and g to get f ∣W ∶W → Ui and
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g∣W ∶W → Vj and their product is a morphism of ringed spaces. So Z is covered by open sets for
which h is a morphism of ringed spaces, making h itself a morphism.

What was the point of constructing the product? We want some notion analogous to being Hausdorff
to distinguish spaces like P1/k from the line with the doubled origin. The issue is that these spaces
with the Zariski topology are never Hausdorff. So we make the following definition:

Definition 19.1.3 (Separated)
A prevariety is separated iff the diagonal morphism

∆X ∶X →X ×X

x↦ (idX × idX)(x) ∶= (x,x)

is a closed embedding.

Definition 19.1.4 (Variety)
A variety is a separated prevariety.

20 General Varieties and Completeness
(Tuesday, October 27)

Recall the following:

• An affine variety is given by X = V (I) ⊂ An/k, and we have sheaves of rings of regular
functions OX on X.

• A prevariety is a ringed space that is covered by finitely many affine spaces.

• A morphism of prevarieties f ∶X → Y is a continuous map such that the pullbacks of regular
functions are regular, i.e. for all ϕ ∈ OX(U) we have f∗ϕ ∈ OX(f−1(U)).

• We can form a category PreVark of prevarieties over k, where we have several important
constructions

1. Gluing

2. Products: Given X,Y , there is a unique prevariety X × Y such that
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Z

X × Y X

Y

fx

fy

∃!h

πX

πY

• We had an analogue of being Hausdorff: the diagonal ∆X is closed.

Example 20.0.1(The line with double origins is not separated): Glue D(x) ⊂ A1 to D(y) ⊂
A1 by the isomorphism

D(x)
∼
Ð→D(y)

x↦ y.

This yields an affine line with two origins:

Figure 22: Line with two origins.

Consider the product:

Figure 23: Product of lines with two origins

Since the diagonal is given by ∆X = {(x,x) ∣ x ∈X}, we have the following situation in blue:
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Figure 24: The diagonal has four copies of the origin.

We claim that ∆X is not closed, and for example (0,0′) ∈ ∆X . Consider U × U ′ ⊂ X ×X where
U,U ′ are the two copies of A1 in X. This is an affine open set, since it’s isomorphic to A1 ×A1. If
∆X were closed, then S ∶= ∆X ∩ (U ×U ′) = {(x,x) ∣ x ≠ 0} would be closed in U ×U ′:

Figure 25: Open diagonal in a product.

This is because any polynomial vanishing on S must vanish at (0,0), so S is an affine variety. But
then V (I(S)) = ∆A1 .

Lemma 20.0.2(Affine varieties and affine subvarieties are varieties).

a. Any affine variety is a variety.

b. Open and closed subprevarieties of a variety X are themselves varieties.

Thus it makes since to consider open and closed subvarieties.

Proof (of a).
We need to check that ∆X ⊂X2 is closed for any affine X ⊂ An. Note that we can write.

∆X =X2 ∩ V ({xj − yj ∣ 1 ≤ j ≤ n}) ⊂ An ×A2

∎
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Proof (of b).
Let ι ∶ Y →X be the inclusion of either an open or closed subset. Then we have a morphism
(ι, ι) ∶ Y 2 → X2 by the universal property. Then ∆Y = (ι, ι)−1(∆X), so is closed by the
continuity of (ι, ι) and the fact that ∆X . Thus Y is a variety.

∎

E 20.1 Properties of Varieties e

Proposition 20.1.1(Properties of Varieties).
Let f, g ∶X → Y be morphisms of prevarieties and assume Y is a variety.

a. The graph of f , given by Γf ∶= {(x, f(x)) ∣ x ∈X}, is closed in X × Y .

b. The set {x ∈X ∣ f(x) = g(x)} is closed in X.

Proof (of a).
Consider the product morphism (f, id) ∶ X × Y → Y 2. Since ∆Y is closed, (f, id)−1(∆Y ) is
closed, and is the locus where f(x) = y, so this is Γf .

∎

Proof (of b).
Consider (f, g) ∶X → Y 2. Since ∆Y ⊂ Y 2 is closed,

(f, g)−1(∆Y ) = {x ∈X ∣ f(x) = g(x)} ⊂X

is closed.
∎

E 20.2 Chapter 6: Projective Varieties e

Note that affine varieties of positive dimension over C are not compact in the classical topology,
but are compact in the Zariski topology. Similarly, they are Hausdorff classically, but not in the
Zariski topology. We want to find notions equivalent to being Hausdorff and compact that coincide
with these notions in the classical topologies but generalize to varieties. The fix for being Hausdorff
case was “separatedness”, and the fix for compactness will be the following:

Definition 20.2.1 (Complete)
A variety X is complete iff for any variety Y the projection map

πY ∶X × Y → Y
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is a closeda map.
aRecall that this means that πY (U) is closed whenever U is closed.

Example 20.2.2(A1 is not complete): Let X = Y = A1 and set Z ∶= V (xy − 1) ⊂ X × Y . Then
πY (Z) =D(y) ⊂ Y ⊂ A1 is not closed.

21 Projective Space & Homogeneous
Polynomials (Thursday, October 29)

E 21.1 Projective Space e

Definition 21.1.1 (Projective Space)
Let n ∈ N, and define projective n-space over k by

Pn/k = {lines through the origin in kn+1} .

Remark 21.1.2: For notation, given L ∈ Pn/k, it is spanned by any nonzero points [x0,⋯, xn] ∈ L,
and L is uniquely determined by this point up to scaling by elements in k×. In this case, we write
L = [x0 ∶ ⋯ ∶ xn] = [λx0 ∶ ⋯ ∶ λxn]. We can then alternatively define Pn/k ∶= (kn+1 ∖ {0}) / ∼ where
we mod out by scalar multiplication x ∼ λx for λ ∈ k×. We call [x1 ∶ ⋯ ∶ xn] the homogeneous
coordinates on Pn/k.

Remark 21.1.3: Consider the map

An → Pn

[x1,⋯, xn] ↦ [1 ∶ x1 ∶ ⋯ ∶ xn].

This is injective. Conversely, consider

”D(x0)” ⊂ Pn ∶= {[x0 ∶ ⋯ ∶ xn] ∣ x0 ≠ 0} .

This is a well-defined subset of Pn, since it only depends on the equivalence class of a point. In this
case, there is a unique λ(x0,⋯, xn), namely λ = 1/x0, such that each point in this set is of the form
[1 ∶ x1

x0
∶ ⋯ ∶

xn
x0

], yielding a copy of An ⊂ Pn given by points [
x1
x0
,⋯,

xn
x0

]. What is its complement?

It’s given by {[0 ∶ x1 ∶ ⋯ ∶ xn]} ⊂ Pn, which is equal (as a set) to a copy of Pn−1 defined by the set of
lines in kn defined by x0 = 0.

Example 21.1.4(?): Note that P1 contains a copy of A1 where x0 ≠ 0 and a second copy where
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x1 ≠ 0, yielding maps

f1 ∶ P1 → A1

[x0 ∶ x1] ↦ [
x0
x1

]

f2 ∶ P1 → A1

[x0 ∶ x1] ↦ [
x1
x0

],

since every point in P1 corresponds to some line in A2, and thus has either x0 ≠ 0 or x1 ≠ 0. These
two copies cover P1, and the “transition map” is inversion.

Remark 21.1.5: More generally, there are n + 1 projection Pn↠ An given by dividing by the jth
coordinate, and the union of their images is the entire space. The gluing construction gives Pn the
structure of a prevariety: we can consider D(xj) ⊂ Pn where each has the structure of a ringed space
(An,OAn). We have D(xi) ∩D(xj) ⊂ D(xi), which has coordinate {xk/xi, k ≠ i}, and similarly
D(xi) ∩D(xj) ⊆D(xj) with coordinates {xk/xj , k ≠ j}. Their intersection is D(xi/xj) ≅ An−1.

Example 21.1.6(?): Consider P1, then D(x0) ≅ A1 with which contains a copy of A1 with coordi-
nate ring k[x1/x0] and a subset D(x1/x0) with coordinate ring k[y, y−1], and similarly, D(x1) ≅ A1

has coordinate ring k[x0
x1]

and contains D(x0/x1) with coordinate ring k[z, z−1]. Consider their
overlap D(x0) ∩D(x1).

Might be mistakes here.

When do y, z denote the same point in P1? When y = z−1. We can conclude that the n + 1 copies
D(xi) ⊂ Pn are affine varieties isomorphic as ringed spaces on the overlaps, so the gluing construction
makes Pn a prevariety.

E 21.2 Homogeneous Polynomials e

Definition 21.2.1 (Homogeneous Degrees of Polynomials)
A polynomial f is homogeneous of degree d if every monomial in f has total degree d.

Example 21.2.2(?): The polynomial

f(x0, x1, x2) = x
3
0 + x1x

2
2 + x0x1x2.

has homogeneous degree 3.

Remark 21.2.3: If f is homogeneous of degree d, then for all λ ∈ k×,

f(λx0,⋯, λxn) = λ
df(x0,⋯, xn).
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If f is homogeneous, V (f) ⊂ Pn is a well-defined subset, since

f(x0,⋯, xn) = 0 ⇐⇒ λdf(x0,⋯, xn) = 0 ⇐⇒ f(λx0,⋯, λxn) = 0

Definition 21.2.4 (Graded Rings)
A graded ring R is a ring R with abelian subgroups Rd ⊂ R with

• R = ⊕
d≥0

Rd, and

• For all f ∈ Rd and g ∈ Rd′ , we have fg ∈ Rd+d′ and Rd +Rd ⊂ Rd.

22 Projective Nullstellensatz (Tuesday,
November 02)

E 22.1 Quotients of Graded Rings e

Proposition 22.1.1(Quotients of graded rings by homogeneous ideals are again
graded).
If R is a graded ring and I ⊴ R is a homogeneous ideal, then R/I is a graded ring.

E 22.2 Cones and Projectivization e

Definition 22.2.1 (Cones)
An affine variety X ⊆ An+1 is a cone iff

• 0 ∈X
• kX ⊆X

Remark 22.2.2: This says that X is the origin and a union of lines through the origin. For the
following definitions, we define a map

π ∶ An+1 ∖ {0} → Pn

[x0,⋯, xn] ↦ [x0 ∶ ⋯ ∶ xn].

Definition 22.2.3 (Projectivization of a Cone)
For a cone X ⊆ An+1, the projectivization of X is defined as

P(X) ∶= π(X ∖ {0}) = {[x0 ∶ ⋯ ∶ xn] ∈ Pn ∣ [x0,⋯, xn] ∈X} ⊆ Pn.
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Definition 22.2.4 (Cone Over a Projective Variety)
For a projective variety X ⊆ Pn, the cone over X is the cone defined by

C(X) ∶= {0} ∪ π−1(X) = {0} ∪ {[x0,⋯, xn] ∣ [x0 ∶ ⋯ ∶ xn] ∈X} ⊆ An+1.

Remark 22.2.5: We have
PVa(S) = Vp(S)and C(Vp(S)) = Va(S).

E 22.3 Projective Nullstellensatz e

Proposition 22.3.1(Projective Nullstellensatz Construction).
Define

Vp(J) ∶= {x ∈ Pn ∣ f(x) = 0 for all homogeneous f ∈ J} ⊆ Pn

Ip(X) ∶= ⟨f ∈ k[x0,⋯, xn] homogeneous ∣ f(x) = 0 ∀x ∈X⟩ ⊴ k[x0,⋯, xn].

Missing some info, fill in.

23 Projective Spaces (Thursday, November
05)

We defined Pn/k ∶= (kn+1 ∖ {0}) / ∼ where x ∼ λx for all x ∈ k×, which we identified with lines
through the origin in kn+1. We have homogeneous coordinates p = [x0 ∶ ⋯ ∶ xn]. We say an ideal is
homogeneous iff for all f ∈ I, the homogeneous part fd ∈ I for all d. In this case Vp(I) ⊂ Pn/k defined
as the vanishing locus of all homogeneous elements of I is well-defined, and we think of this as the
“projective version” of a vanishing locus. Similarly we defined Ip(S) defined as the ideal generated
by all homogeneous f ∈ k[x1,⋯, xn] such that f(x) = 0 for all x ∈ S.

Remark 23.0.1: Observe that Va(I) defined as the cone over Vp(I) is the set of points in An+1 ∖
{0} ∪ {0} which map to Vp(I).

We have an alternative definition of a cone in An+1, characterized as a closed subset C which is
closed under scaling, so kC ⊆ C. The following proposition(s) show that these notions are related.

Proposition 23.0.2.

• If S ⊂ k[x1,⋯, xn] is a set of homogeneous polynomials, then Va(S) is a cone since it is
closed and closed under scaling. This follows from the fact that f(x) = 0 ⇐⇒ f(λx) = 0
for λ ∈ k× when f is homogeneous.
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• If C is a cone, then its affine ideal Ia(C) is homogeneous.

Proof (?).
Let f ∈ Ia(C), then f(x) = 0 for all x ∈ C. Since C is closed under scaling, f(λx) = 0 for all
x ∈ C and λ ∈ k×. Decompose f = ∑

d

fd into homogeneous pieces, then

x ∈ C Ô⇒ 0 = f(λx) = ∑λdfd(x).

Fixing x ∈ C, the quantities fd(x) are constants, so the resulting polynomial in λ vanishes for
all λ. But since k is infinite, this forces fd(x) = 0 for all d, which shows that fd ∈ Ia(C).

∎

Lemma 23.0.3(?).
There is a bijective correspondence

{Cones} ⇐⇒ {Projective Varieties}

An+1 ⊃X ↦ PX ⊂ Pn

An+1 ⊃ CX ← [ X ⊂ Pn

.

Proof (?).
PVa(S) = Vp(S) for any set S of homogeneous polynomials, and C(Vp(S)) = Va(S), where
Vp(S) is a cone by part (a) of the previous proposition. Conversely, every cone is the variety
associated to some homogeneous ideal.

∎

E 23.1 Projective Nullstellensatz e

Definition 23.1.1 (Irrelevant Ideal)
The homogeneous ideal I0 ∶= (x0,⋯, xn) ⊂ k[x1,⋯, xn] is denoted the irrelevant ideal. This
corresponds to the origin in An+1, which does not correspond to any point in Pn.

Proposition 23.1.2(Projective Nullstellensatz).

a. For all X ⊆ Pn,

Vp(Ip(X)) =X

b. For all homogeneous ideal J ⊂ k[x1,⋯, xn] such that (importantly)
√
J ≠ I0,

Ip(Vp(J)) =
√
J
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Proof (of a).
⊃: If we let I denote the ideal of all homogeneous polynomials vanishing on X, then this
certainly contains X.
⊂: This follows from part (b), since X = Vp(J) implies that

(VpIpVp)(J) = Vp(
√
J) = Vp(J) =X

since taking roots of homogeneous polynomials doesn’t change the vanishing locus.
∎

Proof (of b).
That Ip(Vp(J)) ⊃

√
J is obvious, since f ∈

√
J vanishes on Vp(J).

Check

It remains to show
√
J ⊂ Ip(Vp(J)) , but we can write Ip(Vp(J)) as ⟨f ∈ k[x1,⋯, xn]⟩ the

set of homogeneous polynomials vanishing on Vp(S), which is equal to those vanishing on
Va(J)∖{0}. But since Ip(⋯) is closed, this is equal to the f that vanish on Va(J) ∖ {0}, which
is only equal to Va(J) iff Va(J) ≠ {0}.

Figure 26: Projective Varieties as Cones in An

By the affine Nullstellensatz,

Va(J) = {0} ⇐⇒
√
J = I0.

Thus

Ip(Vp(J)) = ⟨f ∣ homogeneous vanishing on Va(J)⟩

Using the fact that Va(J) is a cone, its ideal is homogeneous and thus generated by homoge-
neous polynomials by part (b) of the previous proposition. Thus

Ip(Vp(J)) = Ia(Va(J)) =
√
J,

where the last equality follows from the affine Nullstellensatz.
∎
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Corollary 23.1.3(?).
There is an order-reversing bijection

{Projective varieties
X⊂Pn } ⇐⇒ {Homog non-irrelevant radical ideals

J∈k[x1,⋯,xn] }

X ↦ Ip(X)

Vp(J) ← [ J.

Remark 23.1.4: A better definition of a cone over X ⊂ Pn/k is

C(X) ∶= π−1(X) ⊂ An+1
/k

where
π ∶ An+1 ∖ {0} → Pn

[x0,⋯, xn] ↦ [x0 ∶ ⋯ ∶ xn].

E 23.2 Projective Coordinate Ring e

Definition 23.2.1 (Homogeneous / Projective Coordinate Ring)
Given X ⊂ Pn a projective variety, the projective coordinate ring of X is given by

S(X) ∶= k[x1,⋯, xn]/Ip(X).

Remark 23.2.2: This is a graded ring since Ip(X) is homogeneous. This follows since the quotient
of a graded ring by a homogeneous ideal yields a grading on the quotient.

Remark 23.2.3: We have relative versions of everything. Projective subvarieties of projective
varieties are given by Y ⊂X ⊂ Pn where X is a projective variety. We have a topology on X where
the closed subsets are projective subvarieties.

Remark 23.2.4: Given J ⊂ S(X), where S(X) is the projective coordinate ring of X and has a
grading, we can take Vp(J) ⊂ X. Conversely, given a set Y ⊂ S(X), we can take Ip(Y ) ⊂ S(X)

those homogeneous elements vanishing on Y . Thus there is an order-reversing bijection

{Projective subvarieties
Y ⊂X

} ⇐⇒ {Homogeneous radical ideals
I≠I0 ⊴ S(X) }

and S(X) = k[x1,⋯, xn]/J ⊂ I0.

Remark 23.2.5: Every nontrivial homogeneous ideal J contains the irrelevant ideal I0. Why?
Suppose f ∈ J ∖ I0 and f0 ≠ 0. Then f0 ∈ J but f0 ∈ k ⊂ k[x1,⋯, xn], implying that 1 ∈ J and thus
J = ⟨1⟩.

Check?
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Remark 23.2.6: It is sometimes useful to know that a projective variety is cut out by homogeneous
polynomials all of equal degree, so X = V (f1,⋯, fm) with each fi homogeneous of degree di. Then
there is some maximum degree d. We can write

V (f1) = V (xk0f1,⋯, x
k
nf1) ∀k ≥ 0

X = ⋂V (f1) ∪ V (xi).

This follows because V of a product is a union of the vanishing loci, but ⋂V (xi) = ∅. The equality
follows because for all points [x0,⋯, xn] ∈ Pn, some xi is nonzero.

24 Homogenization and Dehomogenization
(Tuesday, November 10)

Last time: projective varieties V (fi) ⊂ Pn/k with fi homogeneous. We proved the projective nullstel-
lensatz: for any projective variety X, we have Vp(Ip(X)) and for any homogeneous ideal I with√
I ≠ I0 the irrelevant ideal, Ip(Vp(I)) =

√
I. Recall that I0 = ⟨x0,⋯, xn⟩. We had a notion of

a projective coordinate ring, S(X) ∶= k[x1,⋯, xn]/Ip(X), which is a graded ring since Ip(X) is a
homogeneous ideal.

Remark 24.0.1: Note that S(X) is not a ring of functions on X: e.g. for X = Pn, S(X) =

k[x1,⋯, xn] but x0 is not a function on Pn. This is because f ([x0 ∶ ⋯ ∶ xn]) = f ([λx0 ∶ ⋯ ∶ λxn])
but x0 ≠ λx0. It still makes sense to ask when f is zero though, so Vp(f) is a well-defined object.

E 24.1 Dehomogenization e

Definition 24.1.1 (Dehomogenization of functions and ideals)
Let f ∈ k[x1,⋯, xn] be a homogeneous polynomial, then we define its dehomogenization as

f i ∶= f(1, x1,⋯, xn) ∈ k[x1,⋯, xn].

For a homogeneous ideal, we define

J i ∶= {f i ∣ f ∈ J} .

Example 24.1.2: The dehomogenization is usually not homogeneous. Take

f ∶= x3
0 + x0x

2
1 + x0x1x2 + x

2
0 + x1

Ô⇒ f i = 1 + x2
1 + x1x2 + x1,

which has terms of mixed degrees.
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Remark 24.1.3:

(fg)i = f igi

(f + g)i = f i + gi.

In other words, evaluating at x0 = 1 is a ring morphism.

E 24.2 Homogenization e

Definition 24.2.1 (Homogenization of a function)
Let f ∈ k[x1,⋯, xn], then the homogenization of f is defined by

fh ∶= xd0f (
x1
x0
,⋯,

xn
x0

)

where d ∶= deg(f).

Example 24.2.2(?): Set

f(x1, x2) ∶= 1 + x2
1 + x1x2 + x

3
2

Ô⇒ fh(x0, x1, x2) = x
3
0 + x0x

2
1 + x0x1x2 + x

3
2,

which is a homogeneous polynomial of degree 3. Note that (fh)i = f .

Example 24.2.3(?): It need not be the case that (f i)h = f . Take f = x3
0+x0x1x2, then f i = 1+x1x2

and (f i)h = x2
0 + x1x2. Note that the total degree dropped, since everything was divisible by x0.

Remark 24.2.4:

(f i)h = f ⇐⇒ x0 ∤ f.

Definition 24.2.5 (Homogenization of an ideal)
Given J ⊂ k[x1,⋯, xn], define its homogenization as

Jh ∶= {fh ∣ f ∈ J} .

Example 24.2.6: This is not a ring morphism, since (f +g)h ≠ fh+gh in general. Taking f = x2
0+x1

and g = −x2
0 + x2, we have

fh + gh = x0x1 + x0x2

(f + g)h = x1 + x2.

What is the geometric significance?
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Proposition 24.2.7(Geometric significance of homogenization).
Set

U0 ∶= {[x0 ∶ ⋯ ∶ xn] ∈ Pn/k ∣ x0 ≠ 0} ≅ An/k

with coordinates [
x1
x0

∶ ⋯ ∶
xn
x0

]. Then U0 with the subspace topology is equal to An with the
Zariski topology.

Proof (?).
If we define the Zariski topology on Pn as having closed sets Vp(I), we would want to check
that An ≅ U0 ⊂ Pn is closed in the subspace topology. This amounts to showing that Vp(I)∩U0
is closed in An ≅ U0. We can check that

Vp (f ∣ f ∈ I) = {x ∶= [x0 ∶ ⋯ ∶ xn] ∣ f(x) = 0 ∀f ∈ I} .

Intersecting with U0 yields

Vp (f ∣ f ∈ I)⋂U0 = {[x1 ∶ ⋯ ∶ xn] ∣ f(x) = 0, x0 ≠ 0} .

Equivalently, we can rewrite this set S as

S = {[x1 ∶ ⋯ ∶ xn] ∣ f ([1, x1
x0
,⋯,

xn
x0

]) = 0, f homogeneous}

Since these are coordinates on A1, we have Vp(I) ∩ U0 = Va(I
i) which is closed. Conversely,

given a closed set V (I), we can write this as V (I) = U0 ∩ Vp(I
h).

∎

Corollary 24.2.8(Projective space is irreducible).
Pn/k is irreducible of dimension n.

Proof (?).
This follows from the fact that Pn is covered by irreducible topological spaces of dimension n
with nonempty intersection, along with a fact from the exercises.

∎

Example 24.2.9(?): Consider f(x1, x2) = x
2
1 − x

2
2 − 1 and consider V (f) ⊂ A2

/C:
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Figure 27: The variety V (x2
1 − x

2
2 − 1)

Note that for real projective space, we can view this as a sphere with antipodal points identified.
We can thus visualize this in the following way:

Figure 28: Projective 2-space as sphere with anitpodal points identified

We can normalize the x0 coordinate to one, hence the plane. We can also project V (f) from the
plane onto the sphere, mirroring to antipodal points:
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Figure 29: Projecting a variety onto a sphere

This misses some points on the equator, since we aren’t including points where x0 = 0. Consider
the homogenization V (fh) ⊂ P2

/C:

V (fh) = V (x2
1 − x

2
2 − x

2
0).

Then

V (fh) ∩ V (x0) = {[0 ∶ x1 ∶ x2] ∣ fh(0, x1, x2) = 0} = {[0 ∶ 1 ∶ 1], [0 ∶ 1 ∶ −1]} ,

which can be seen in the picture as the points at infinity:
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Figure 30: Homogenization and points at infinity

Note that the equator is V (x0) = P2
/C ∖ U0 ≅ P2 ∖ A2. So we get a circle of points at infinity,

i.e. V (x0) = P1 = {[0 ∶ v1 ∶ v2]}.

Example 24.2.10(?): Consider V (f) where f is a line in A2
/C, say f(x1, x2) = ax1 + bx2 + c. This

yields fh = ax1 + bx2 + cx0 and we can consider V (fh) ≅ P2
C. We know P1

C is topologically a sphere
and A1

/C is a point:

Figure 31: P1
C
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The points at infinity correspond to

V (fh) = V (fh) ∩ V (x0) = {[0 ∶ −b ∶ a]} ,

which is a single point not depending on c.

Remark 24.2.11: P2
/k for any field k is a projective plane, which satisfies certain axioms:

1. There exists a unique line through any two distinct points,

2. Any two distinct lines intersect at a single point.

A famous example is the Fano plane:

Figure 32: Fano Plane

Why is this true? P2
/k is the set of lines in k3, and the lines in P2

/k are the vanishing loci of
homogeneous polynomials and also planes in k3, since any two lines determine a unique plane and
any two planes intersect at the origin.

Proposition 24.2.12(?).
Let J ⊂ k[x1,⋯, xn] be an ideal. Let X ∶= Va(J) ⊂ An where we identify An = U0 ⊂ Pn. Then
the closure X ⊂ Pn is given by X = Vp(J

h). In particular,

Va(J) = Vp(J
h)

Proof (?).
⊇: It’s clear that Vp(Jh) is closed and contains Va(J).
⊆ Let Y ⊇ X be closed; we want to show that Y ⊇ Vp(J

h). Since Y is closed, Y = Vp(J
′)

where J ′ is some homogeneous ideal. Any element f ′ ∈ J ′ satisfies f ′ = xdf for some maximal
d where xd0f vanishes on X. We also have f = 0 on X since X ⊂ U0. We can compute

f ∈ Ia(X) = Ia(Va(J)) =
√
J,
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so fm ∈ J . Then (fh)m ∈ Jh for some m, and this fh ∈
√
Jh. So J ′ ⊂

√
J , which shows that

Vp(J
′) ⊇ Vp(J

h) as desired.
∎

Definition 24.2.13 (Projective Closure)
The projective closure of X = Va(J) is the smallest closed subset containing X and is given
by

X = Vp(J
h).

25 Projective Closures (Thursday, November
12)

Recall that if f ∈ k[x1,⋯, xn] is a homogeneous degree d polynomial, then

f i ∶= f(1, x1,⋯, xn) ∈ k[x1,⋯, xn]

is the dehomogenization of f . Conversely,

fh ∶= xd0f (
x1
x0
,⋯,

xn
x0

)

is the homogenization. This is related to looking at the open subset U0 ∶= {x ∈ Pn/k ∣ x0 ≠ 0} ⊆ Pn/k,
where we found that U0 ≅ An/k.

Proposition 25.0.1(Projective Closure).
Let V (I) ⊂ U0 be an affine variety, then V (I) ⊂ Pn/k is given by

V (Ih) ∶= {fh ∣ f ∈ I} ,

the projective closure.

Remark 25.0.2: Projective varieties are better! They’re closed in the classical topology, and
subsets of projective space and thus compact.

△! Warning 25.0.3 (It doesn’t suffice to just homogenize the individual generators of
an ideal I):
Take J ∶= ⟨x1, x2 − x

2
1⟩. We have V (J) ⊂ A2 given by {(0,0)}, and by the proposition, V (Jh) =

{[1 ∶ 0 ∶ 0]} since the single point at the origin is closed in P2.

On the other hand,

Vp(x1, x0x2 − x
2
1) = {[1 ∶ 0 ∶ 0], [0 ∶ 0 ∶ 1]} ⊂ P2.
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Note that x2 ∈ J , so this needs to be homogenized too.3

Remark 25.0.4: An aside: how do you implement algebraic geometry? For example, when is
⟨fi⟩ = ⟨1⟩? This is generally a somewhat difficult problem, since checking that their corresponding
varieties are equal isn’t so tractable.

E 25.1 Chapter ? e

Goal: understand and define the sheaf of regular functions on projective varieties. Given an open
subset U ⊂ Vp(J), what are the regular functions on it?

Definition 25.1.1 (Regular Functions on Projective Varieties)
Let U ⊂X be an open subset of a projective variety, and define

OX(U) ∶= {ϕ ∶ U → k ∣ ϕ is locally of the form
gp

fp
∈ S(X)d} .

i.e. the functions in the homogeneous coordinate ring of the same degree d.

Remark 25.1.2: Note that gp/fp is well-defined on V (fp)
c since

gp(λx)

fp(λx)
=
λdgp(x)

λdfp(x)
=
gp(x)

fp(x)

Recall that “locally of the form ⋯” means that for all p ∈ U , there exists an open neighborhood Up
on which ϕ∣Up

= gp/fp.

Definition 25.1.3 (Projective Variety as a Ringed Space)
Note that if X ⊂ Pn is closed, then X ∩Ui is closed and thus an affine variety.

ÕX(U) ∶= {ϕ ∶ U → k ∣ ϕ∣U∩Ui
is a regular function} .

Proposition 25.1.4(?).
These two definitions are equivalent.

Proof (?).
It suffices to check that OX∩Ui = ÕX∩Ui as sheaves on X ∩Ui, i.e. checking on an open cover,
since then they’d both arise from the gluing construction. We have

X ∩Ui = {[x0 ∶ ⋯ ∶ xn] ∣ xi ≠ 0} .

Let V ⊂ X ∩ U0 be an open subset, we then want to show that OX(V ) are the regular
functions on V when V as a subset of an affine variety. So let ϕ ∈ OX(V ), so that locally

3It is possible to get around this issue computationally by using Gröbner bases, a special type of generating set for
ideals.
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ϕ = gp/fp ∈ S(X)d as a ratio of two homogeneous polynomials. We want to know if ϕ can be
written as the ratio of two polynomials in one additional variable, so we just dehomogenize to
obtain ϕ = gip/f

i
p locally where both are in A(X ∩U0). So ϕ is a regular function on the open

subset V of the affine variety X ∩U0.

Conversely, suppose that ϕ = gp/fp ∈ A(X ∩X0) locally around p. It’s not necessarily the case
that ϕ = ghp /f

h
p , but it is true that

ϕ =
xd0g

h
p

fhp
=

ghp

x−d0 fhp
,

where d = deg fh − deg gh. This is locally a ratio of two homogeneous polynomials of equal
degree, so OX and ÕX define the same sheaf of functions on X.

∎

E 25.2 Morphisms of Projective Varieties e

Lemma 25.2.1(?).
Let X be a projective variety and f0,⋯, fm ∈ S(X)d. Then on the open subset X ∖ V (fi),
there is a morphism

f ∶ U → Pm

p↦ [f0(p) ∶ ⋯ ∶ fm(p)].

Proof (?).
This map is well-defined, since letting p = [x0 ∶ ⋯ ∶ xn] we have

[λx0 ∶ ⋯ ∶ λxn] ↦ [λdf0(p) ∶ ⋯ ∶ λdfm(p)] = f(p).

We need to check that

1. f is continuous, and

2. The pullback of a regular function on any open set is again regular.

Claim: f is continuous.
Consider f−1(V (h)) with h ∈ k[y0,⋯, ym] homogeneous. We can check that

f−1(Vp(h)) = Vp(h(f0,⋯, fm)),

which is closed, so f is continuous.

Claim: f pulls back regular functions.
Let h1, h2 ∈ S(Pm) be homogeneous polynomials of equal degree in k[y0,⋯, ym]. Then on
V (h2)

c, we have

f∗ (
h1
h2

) =
h1(f0,⋯, fm)

h2(f0,⋯, fm)
.
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This is a ratio of homogeneous polynomials of equal degree in the xi, the pullback is again
locally homogeneous ratios of functions of equal degree.

∎

26 Projections and Embeddings (Tuesday,
November 17)

E 26.1 Projecting From a Point e

We have Pn ∶= An+1∖{0} / ∼ where x ∼ λx, and projective varieties V (I) ⊂ Pn where I ⊴ k[x0,⋯, xn]
is a homogeneous ideal. We defined a sheaf of rings OX on X = V (I) by

OX(U) ∶= {ϕ ∶ U → k ∣ ϕ is locally a ratio of two homogeneous polynomials of equal degree} .

We showed that this was the same as the sheaf ÕX defined by gluing ringed spaced (X ∩Ui,OX∩Ui)

where Ui =D(xi). We also showed that S(X) ∶= k[x0,⋯, xn]/I(X) is homogeneous, i.e. the quotient
by a homogeneous ideal is again homogeneous. Moreover, if {fi}mi=0 ⊆ S(X)d and V ({fi}) = ∅. then
the map

(f0,⋯, fm) ∶X → Pm

x↦ [f0(x),⋯, fm(x)].

Recall that a variety is separated iff ∆↪X is closed. Let A ∈ GLn+1(k) and define a map

A ∶ Pn → Pn

⎡
⎢
⎢
⎢
⎢
⎢
⎣

x0
⋮

xn

⎤
⎥
⎥
⎥
⎥
⎥
⎦

↦ A

⎡
⎢
⎢
⎢
⎢
⎢
⎣

x0
⋮

xn

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

This is a morphism because

⎡
⎢
⎢
⎢
⎢
⎢
⎣

− A⃗0 −

− ⋮ −

− A⃗n −

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

x0
⋮

xn

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

A0 ⋅ x
⋮

An⋯x

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

which are linear homogeneous polynomials.

Then Vp(Ai ⋅ x) = ∅, and thus Va(Ai ⋅A) = {0}. So we should view A ∈ PGLn+1(k). Note that this
is a group, since A−1 again forms a morphism. Thus PGLn+1(k) ⊂ Aut(Pn), and it turns out that
these are in fact equal.
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Definition 26.1.1 (Projection from a point)
Let a = [1 ∶ 0 ∶ ⋯ ∶ 0] ∈ Pn, then there is a morphism

Pn ∖ {a} → Pn−1

[x0 ∶ ⋯ ∶ xn] ↦ [x1 ∶ ⋯ ∶ xn].

Note that this morphism does not extend to Pn. More generally, given any point p ∈ Pn, we
can project from it by making a linear change of coordinates to p = [1 ∶ 0 ∶ ⋯ ∶ 0].

Let x ∈ Pn ∖ {a}, then there is a unique line through a and x. It can be described parametrically
as follows: writing x = [x0 ∶ ⋯ ∶ xn], we take the plane they span and projectivize to obtain
s[x0 ∶ ⋯ ∶ xn] + t[1 ∶ 0 ∶ ⋯ ∶ 0] where we range over [s ∶ t] ∈ P1. In fact, this defines a morphism
P1 → Pn.

Consider now Pn−1 = V (x0), this copy of Pn−1 intersects any such line at a unique point:

Figure 33: Copy of Pn−1 intersecting a line.

Example 26.1.2(?): Consider X = V (x0x2 − x
2
1) ⊂ P2, which defines a conic, and the projection

P2 ∖ {[1 ∶ 0 ∶ 0]} → P1:
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Figure 34: Projection from V (x0x2 − x
2
1) onto V (x0).

This morphism can be restricted to ϕ ∶ X ∖ {[1 ∶ 0 ∶ 0]} → P2, and the claim is that this morphism
extends to all of X. The secant lines approach a tangent line at [1 ∶ 0 ∶ 0], which V (x0) at a unique
point. So we define

ϕ(x) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

[x1 ∶ x2] x ≠ [1 ∶ 0 ∶ 0]
[x0 ∶ x1] x ≠ [0 ∶ 0 ∶ 1]

.

This locally writes ϕ as a morphism, so we only need to check that they agree on the overlap. Note
that on X, we have [x1 ∶ x2] = [x0 ∶ x1] wherever both are well-defined. In fact, ϕ is an isomorphism,
since an inverse can be explicitly written. Thus X ≅ P1, and in fact all nondegenerate4 conics are
isomorphic to P1 as well. Note that such a Q is a quadratic form, so Q(x) = B(x,x) for some
bilinear form, and Q is nondegenerate iff detB ≠ 0 where Bij = B(ei, ej).

E 26.2 The Segre Embedding e

Definition 26.2.1 (Segre Embedding)

4Here nondegenerate means that if Q is a quadratic polynomials in x0, x1, x2, then Q does not factor as a product
of linear factors.
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Letting N = (n + 1)(m + 1) − 1, the Segre embedding is the morphism

f ∶ Pn × Pm → PN

([x0 ∶ ⋯ ∶ xn], [y0 ∶ ⋯ ∶ ym]) ↦ [x0y0 ∶ ⋯ ∶ zij ∶= xiyj ∶ xnym].

Note that Pn,Pm are prevarieties and we thus know how to construct their product as a prevariety.
Check that this is well-defined!

Proposition 26.2.2(Properties of the Segre embedding).

a. The image X is a projective variety.

b. f ∶ Pn × Pm →X is a morphism.

Proof (of (a)).
It suffices to write polynomials in the coordinate zij that cut out f(Pn ×Pm). Given zij = xiyj ,
we have zijzkl = zilzkj and (xiyj)(xkyl) = (xiyl)(xkyj). The former quadric equations in zij
variables vanish on f(Pn × Pm).

Claim: V (zijzkl − zilzkj) works.
Without loss of generality, we can assume z00 = 1, in which case zijz00 = zij = zi0z0j on X.
Setting xi = zi0 and yj = z0j , we’ve now constructed a point in the preimage, so f surjects onto
X.

∎

Proof (of (b)).
That f is a morphism to Pn is easy, and since im f ⊂X, f ∶ Pn × Pm →X is a morphism. On
D(z00) ⊂ X, the inverse described above is a morphism. Since this works for any zij , f−1 is
well-defined and a morphism, making f an isomorphism.

∎

Example 26.2.3(of the Segre embedding being isomorphic to a variety): Take

f ∶ P1 × P1 → P3

([x0 ∶ x1], [y0 ∶ y1]) ↦ [z00 ∶ z01 ∶ z10 ∶ z11] ∶= [x0y0 ∶ x0y1 ∶ x1y0 ∶ x1y1].

Restricting to im(f) yields an isomorphism to X ⊆ P3 given by the quadric5 X = V (z00z11 − z10z01).

27 Projective Varieties (Thursday, November
19)

E 27.1 Why use projective varieties? e
5A quadric is the vanishing locus of a degree 4 polynomial.
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For e.g. a manifold, there is a well-defined intersection pairing, and the same way that [µ] ∈

H1(T,Z) = 1 in the torus, we have [L]2 = 1 in P2
/C, so every two lines intersect in a unique point.

Also, Bezout’s theorem: any two curves of degrees d, e in projective space intersect in d ⋅ e points.
Also note that we have a notion of compactness that works in the projective setting but not for
affine varieties.

E 27.2 Projective Varieties are Varieties e

Last time: we saw the Segre embedding (x,y) ↦ [xiyj], which was an isomorphism onto its image
X = V (zijzkl − zikzkj), which exhibits Pn × Pm as a projective variety.

Example 27.2.1(?): For P1 ×P1 → P3, its image is X = Vp(xy− zw), which is a quadric (vanishing
locus of a degree 4 polynomial).

Figure 35: P1 × P1 is ruled.

The projection map has fibers, which induce a ruling6 which we can see from the real points:

6A family of copies of P1.
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Figure 36: Its image, a quadric surface, is also ruled.

Corollary 27.2.2(?).
Every projective variety is a separated prevariety, and thus a variety.

Proof (?).
It suffices to show that ∆X ⊂X ×X is closed. We can write

∆Pn = {[x0 ∶ ⋯ ∶ xn], [y0 ∶ ⋯ ∶ yn] ∣ xiyj − xjyi = 0∀i, j} .

This says that x,y differ by scaling. We know that ∆Pn ↪ Pn ×Pn, which is isomorphic to the
Segre variety SV in P(n+1)2−1, and we can write zij = xiyj and thus

∆Pn = SV ∩ V (zij − zji).

Note that the Segre variety is closed. The conclusion is that Pn is a variety, and any closed
subprevariety of a variety is also a variety by taking ∆Pn ∩ (X ×X) = ∆X , which is closed as
the intersection of two closed subsets.

∎

Definition 27.2.3 (Closed Maps)
Recall that a map f ∶X → Y is topological spaces is closed if whenever U ⊂X is closed, then
f(U) is closed in Y .

Definition 27.2.4 (Complete Varieties)
A variety X is complete if the projection πY ∶X × Y ↠ Y is a closed map for any Y .

27.2 Projective Varieties are Varieties 99



27 Projective Varieties (Thursday, November 19)

Slogan 27.2.5
Completeness is the analog of compactness for varieties.

Proposition 27.2.6(Projection maps from products of projective spaces are
closed.).
The projection Pn × Pm → Pm is closed.

Proof (?).
Let Z ⊂ Pn × Pm, and write Z = V (fi) with fi ∈ S(SV ). Note that if the fi are homogeneous
of degree d in zij , the pulling back only the isomorphism Pn × Pm → SV yields zij = xiyj and
polynomials hi which are homogeneous polynomials in xi, yj which have degree d in both the
x and y variables individually. Consider a ∈ Pm, we want to determine if a ∈ π(Z) and show
that this is a closed condition. Note that a /∈ π(Z)

• ⇐⇒ there does not exists an x ∈ Pn such that (x, a) ∈ Z

• ⇐⇒ Vp(fi(x, a))
r
i=1 = ∅

• ⇐⇒
√

⟨fi(x, a)⟩
r
i=1 = ⟨1⟩ or the irrelevant ideal I0

• ⇐⇒ there exist ki ∈ N such that xki
i ∈ ⟨fi(x, a)⟩

r
i=1

• ⇐⇒ k[x1,⋯, xn]k ⊂ ⟨fi(x, a)⟩
r
i=1 (where this is the degree k part)

• ⇐⇒ the map

Φa ∶ k[x1,⋯, xn]d−deg f2 ⊕⋯⊕ k[x1,⋯, xn]d−deg fr → k[x1,⋯, xn]d

(g1,⋯, gr) ↦∑ fi(x, a)gi(x, a)

is surjective.

Recap: we have a closed subset of Pn × Pm, want to know its projection is closed. We looked
at points not in the closed set, this happens iff the degree d part of the polynomial is not
contained in the part where we evaluate by a. This reduces to a linear algebra condition: tak-
ing arbitrary linear combinations yields a surjective map. Thus a ∈ π(Z) iff Φa is not surjective.

Expanding in a basis, we can write Φa as a matrix whose entries are homogeneous polynomials
in the coordinates of a. Moreover, Φa is not surjective iff all d × d determinants of Φa are
nonzero (since this may not be square). This is a polynomial condition, so a ∈ π(Z) iff a bunch
of homogeneous polynomials vanish, making π(Z) is closed.

∎

Corollary 27.2.7(Pn is complete.).
The projection π ∶ Pn × Y → Y is closed for any variety Y and thus Pn is complete.
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Proof (?).
How to prove anything for varieties: use the fact that they’re glued from affine varieties, so
prove in that special case. So first suppose Y is affine. Let Z ⊂ Pn × Y be closed, and consider
Y ssPm and

Z ⊂ Pn × Y ⊂ Pn × Pm

as a closed subset. Then we know that the projection π ∶ Pn×Pm → Pm is closed, so π(Z) ⊂ Pm
is closed. But we can write

π(Z) = π(Z ∩ Pn × Y ) = π(Z) ∩ Y

which is closed. So π(Z) is closed in Y , which proves this for affine varieties.

Supposing now that Y is instead glued from affines, it suffices to check that the set is closed
in an open cover. So Z ⊂ X is closed if when we let X = ∪Ui, we can show Z ∩ Ui is closed.
But this essentially follows from above.

∎

Corollary 27.2.8(Projective varieties are complete.).
Any projective variety is complete.

Proof (?).
If X ⊂ Pn is closed and if Pn × Y → Y is a closed map for all Y , then restricting to X × Y → Y
again yields a closed map.

∎

Corollary 27.2.9(Images of varieties under morphisms are closed.).
Let f ∶ X → Y be a morphism of (importantly) varieties and suppose X is complete. Then
f(X) is closed in Y .

Proof (?).
Consider the graph of f ,

Γf = {(x, f(x))} ⊂X × Y

From a previous proof, we know Γf is closed when Y is a variety (by pulling back a diagonal).
So Γf is closed in X × Y , and thus πY (Γf) = f(X) is closed because X is complete.

∎

The next result is an analog of the maximum modulus principle: if X is a compact complex manifold,
then any function that is holomorphic on all of X is constant.

Corollary 27.2.10(Maximum modulus principle for varieties).
Let X be complete, then OX(X) = k, i.e. every global regular function is constant.
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Proof (?).
Suppose ϕX → A1 is a regular function. Since A1 ⊂ P1, extend ϕ to a morphism ϕ̂ ∶X → PP 1.
By a previous corollary, ϕ(X) is closed, but ∞ /∈ ϕ(X) implies ϕ(X) ≠ P2, so ϕ(X) is finite.
Since X is connected, ϕ(X) is a point, making ϕ a constant map.

∎

28 Embeddings and Smoothness (Tuesday,
November 24)

E 28.1 The Veronese Embedding e

Definition 28.1.1 (Veronese Embedding)
Let n, d > 0 and let f0,⋯, fn be the monomials of degree d in k[x1,⋯, xn]. There is a morphism

Pn ∖ V (f0,⋯, fn) → PN

x ↦ [f0(x),⋯, fN(x)],

where N + 1 is the number of monomials, and is equal to (
n + d

d
).

Remark 28.1.2: It is true that V (f0,⋯, fN) ≠ ∅, since V (xd0, x
d
1,⋯, x

d
n) = V (x0,⋯, xn). This

will be the Veronese embedding, although we need to prove it is an embedding. On an open set
D(x0) ⊂ P2 one can define an inverse. Suppose we have a coordinate zj = xd−1

i xj and zi = xdi on PN .
Then we can take the point

[
z1
zi
,⋯,

zi
zi
,⋯,

zn
zi

].

This defines an inverse on D(zi). Since the open sets D(xi) cover PN , we have an inverse on the
entire image.

28.1.1 Exchanging Hypersurface Sections for Hyperplane Sections

Remark 28.1.3: This embedding converts hypersurfaces of degree d into hyperplanes. The
Veronese is an isomorphism onto its image. Consider some arbitrary degree d element of S(Pn).

Consider X ∶= V (
N

∑
j=1

ajfj) ⊂ Pn, where aj ∈ k, which is equal to ϕ−1(V (
N

∑
j=1

ajwj)).

Probably not right.
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We have a picture: embedding Pn ↪ PN in some curved way sends a hypersurface to the intersection
of a hyperplane with the embedded image:

Figure 37: Embedding a hypersurface into a hyperplane.

Definition 28.1.4 (Hyperplane Sections)
Let X ⊂ Pn be a projective variety. A hyperplane section is the intersection of X with some
hyperplane H ∶= V (f) for f some linear homogeneous polynomial.

Example 28.1.5(of the Veronese embedding): Let n = 1, then we get the embedding

P1 ↪ Pd

[x0 ∶ x1] ↦ [xd0 ∶ x
d−1
0 x1 ∶ ⋯ ∶ x0x

d−1
1 ∶ xd1].

Note that there are d+ 1 such monomials, and not all can simultaneously vanish. The image of this
P1 is called the twisted normal curve.

Example 28.1.6(?): Take

P1 ↪ P2

[x0 ∶ x1] ↦ [x2
0 ∶ x0x1 ∶ x

2
1].

What homogeneous polynomials cut out ϕ(P1)? I.e., what is I(ϕ(P1)) ⊂ S(P2)? Note that
w0w2 −w

2
1 ∣ϕ(P1), so this is an element. Is it a generator? I.e., given any p ∈ V (w0w2 −w

2
1) is of the

form p = [x2
0 ∶ x0x1 ∶ x

2
1] for some x), x1 ∈ k? The answer is yes, by choosing signs of

√
w0,

√
w2.

Example 28.1.7(?): Take

ϕ ∶ P1 ↪ P3

[x0 ∶ x1] ↦ [x3
0 ∶ x

2
0x1 ∶ x0x

2
1 ∶ x

3
1].

What are some elements of this ideal?
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• w0w3 −w1w2
• w0w2 −w

2
1

• w1w3 −w
2
2

Note that the first is not a k-linear combination of the other two. There is also a pattern: w0/w1 =
w1/w2 = w2/w3 = ⋯. However, there will be issues when the denominators are zero.

In this case, ϕ(P1) is the twisted cubic. What is V (w0w2 −w
2
1,w1w3 −w

2
2)∖ϕ(P

1)? Note that being
in ϕ(P1) means w1,w2,w3 ≠ 0, and similarly if w0,w1,w2 ≠ 0. We can conclude that V (w1,w2) ⊂
V (w0w2 −w

2
1,w1w3 −w

2
2):

Figure 38: Image

This variety has two components: the twisted cubic, and a line. This variety has degree 4, since
any generic hyperplane intersects it at 4 points. Why? Pulling back a hyperplane yields a cubic,
which generally vanishes at three points in affine space.

Remark 28.1.8: ϕ(P1) is a nice example of a curve in P3 that can not be cut out by two homoge-
neous polynomials.

Remark 28.1.9: This is usually used to embed intersections like X ∩ V (f) to X ∩H, exchanging
a hypersurface section for a hyperplane section. This is useful for induction:

1. Prove for Pn.
2. Induction: If it’s true for X ⊂ Pn, then it’s true for X ∩H for some hyperplane H ⊂ PN .

This will prove it for any projective variety by taking X = V (f1,⋯, fn) and embedding.

E 28.2 The Tangent Space (Chapter 10) e
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Motivation: we want to distinguish between things like V (xy) and V (xy − 1). Over C, we can
distinguish these: one is a complex manifold, and the other is not.

Figure 39: V (xy − 1) is a manifold in C2

This means we want each point to have a neighborhood biholomorphic to a disc.

Definition 28.2.1 (Tangent Space)
Let a ∈X be a point on a variety X. Choose an affine open set containing a and a chart such
that a is the origin, then define

TaX ∶= V (f1 ∣ f ∈ I(X)),

where f1 denotes the linear part of f .
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Figure 40: Tangent space at a point.

Remark 28.2.2: Since 0 = a, any f ∈ I(X) has no constant term – otherwise f would not vanish
at the origin.

Example 28.2.3(?): Consider T(1,1)V (xy − 1). First translate (1,1) to the origin, so

T(1,1)V (xy − 1) = T(0,0) = V ((x − 1)(y − 1) − 1) = T(0,0)V (xy − x − y) = V (−x − y)

On the other hand, T(0,0)V (xy) = V (0) = C2.

Figure 41: Image
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29 The Tangent Space and Smoothness
(Tuesday, December 01)

Definition 29.0.1 (Tangent Space)
The tangent space TpX of a variety X at a point p ∈X is defined as

V ({f1 ∣ f ∈ I(Ui), Ui ∋ p = 0 affine })

where f1 denotes the degree 1 part.

Figure 42: Image

Remark 29.0.2: We’ve really only defined it for affine varieties and p = 0, but this is a local
definition. Note that this is also not a canonical definition, since it depends on the affine chart Ui.

E 29.1 Computing Tangent Spaces e

Example 29.1.1(?): Consider

T0V (xy) = V (f1 ∣ f ∈ ⟨xy⟩) = V (0) = A2,

since every polynomial in this ideal has degree at least 2. Letting X = V (xy), note that we could
embed X ↪ A3 as X ≅ V (xy, z). In this case we have

T0X = V (f1 ∣ f ∈ ⟨xy, z⟩) = V (z) ≅ A2

So we get a vector space of a different dimension from this different affine embedding, but dimT0X
is the same.

Example 29.1.2(?): Let X = Vp(xy − z
2) ⊂ P2, which is a projective curve. What is TpX for

p = [0 ∶ 1 ∶ 0]? Take an affine chart {y ≠ 0} ∩X, noting that {y ≠ 0} ≅ A2. We could dehomogenize
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the ideal ⟨xy − z2⟩∣
y=1 = ⟨x − z2⟩. Thus X ∩D(y) = V (x− z2) ⊂ A2 and the point [0 ∶ 1 ∶ 0] ∈X gives

(0,0) in this affine chart. Then

TpX = V (f1 ∣ f ∈ ⟨x − z2⟩) = V (x)

Then f = (x − z2)g implies that f1 = (xg)1 = g0x, the constant term of g multiplied by x, since z2

kills any degree 1 part of g. So TpX is a line.

Example 29.1.3(?): Take X to be the union of the coordinate axes in A3:

Figure 43: The coordinate axes in A3.

Then I(X) = ⟨xy, yz, xz⟩ and

T0X = V (f1 ∣ f ∈ I(X)) = V (0) = A3

since the minimal degree of any such polynomial is 2. Note that dimX = 1 but dimT0X = 3

Example 29.1.4(?): Take Y = V (xy(x − y)) ⊂ A2:

Figure 44: V (xy(x − y)) in A2.
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Then T0X = V (0) = A2.

Remark 29.1.5: Note that X and Y both consists of 3 copies of A1 intersecting at a single point.

Figure 45: Comparing X and Y .

Note that dimT0X = 3 but dimT0Y = 2, and interestingly X /≅ Y as affine varieties. There is a
bijective morphism that is not invertible.

Remark 29.1.6: We will prove that dimTpX is invariant under choice of affine embedding.

Example 29.1.7(How to compute T(1,0,0)V (xy, yz, xz)): First move (1,0,0) to the origin, yield-
ing T(0,0,0)V ((x + 1)y, yz, (x + 1)z). This is a different choice of affine embedding into A3 which
sends (1,0,0) ↦ (0,0,0). Taking the vanishing locus of linear parts, it suffices to take the linear
parts of the generators, which yields the x-axis V (y, z), making the dimension of the tangent space
1.

E
29.2 Identifying the Cotangent Space as

m/m2 e

Lemma 29.2.1(The tangent space is given by I/I2).
Let X ⊂ An be an affine variety and let 0 = p ∈X. Then

T0(X)∨ ∶= homk(T0X,k) ≅ IX(p)/IX(p)2

Remark 29.2.2: Note that the hom involves an affine embedding, but the quotient of ideals does
not. We know that the category of affine varieties is equivalent to the category of reduced k-algebras,
since the points of X biject with the maximal ideals of the coordinate ring A(X). IX(p) is the
maximal ideal in A(X) of regular functions vanishing at p.
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Proof (?).
Consider the map

ϕ ∶ IX(p) → T0(X)∨

f ↦ f1∣T0(X).

E.g. given x1 − x
2
2 ∈ A(X), we first lift to x1 − x

2
2 ∈ A(An), restrict to the linear part x1, then

restrict to T0(X). Note that IX(p) = ⟨x1,⋯, xn⟩ ∈ k[x1,⋯, xn]/I(X), and we need to check
that this well-defined since there is ambiguity in choosing the above lift.

Claim: ϕ is well-defined.
Consider two lifts f, f ′ of f ∈ A(X) = k[x1,⋯, xn]/I(X). Then f−f ′ ∈ I(X), so (f−f ′)1 = f1−f

′
1

is the linear part of some element in I(X). The definition of T0(X) was the vanishing locus
of linear parts of elements in I(X), which contains f1 − f

′
1, and thus (f1 − f

′
1)∣T0(X)

= 0. So
f1 = f

′
1 on T0(X).

Claim: IX(p)2 → 0.
We know IX(p) = ⟨x1,⋯, xn⟩, and so IX(p)2 = ⟨xixj⟩. Giving any f ∈ IX(p)2, we can lift this
to some f ∈ ⟨xixj⟩, in which case f1 = 0.
So ϕ descends to

ϕ ∶ IX(p)/IX(p2) → T0(X)∨

Claim: ϕ is injective and surjective.
That ϕ is surjective follows from the fact that if x1,⋯, xn ∈ IX(p), then the restrictions
x1∣T0X

,⋯, xn∣T0X
are in imϕ These elements generate T0(X)∨, since T0(X) ⊂ An. For in-

jectivity, suppose ϕ(f) = 0, then f1∣T0(X) = 0, so f1 is the linear part of some f ′ ∈ I(X).
Then f ′ ∈ I(X) and f, f ′ have the same linear part f1, and f − f ′ has no linear part. Thus
f −f ′ ∈ ⟨xixj⟩, which implies that f −f ′ ∈ IP (X)2 and f ≡ f ′ ∈ Ip(X)/Ip(X)2. But f ′ ≡ 0 since
f ′ ∈ I(X).

∎

Remark 29.2.3: So for X an affine variety, the cotangent space has a more intrinsic description,
and we can recover the tangent space by dualizing:

Tp(X) ∶= (mp/m
2
p)
∨

where mp = IX(p) is the maximal ideal of regular functions vanishing at p. So how can we get rid
of the word affine? Given X any variety, we can define Tp(X) ∶= (m/m2)

∨ where m is the maximal
ideal of the local ring OX,p. This allows us to work on affine patches and localize. Moreover, this
will be left invariant under the localization.
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We showed last time that if X is an affine variety, then TpX = V (f1 ∣ f ∈ I(X)) for p = 0 ∈ An, and
we showed this is naturally isomorphic to (mp/m

2
p). Then there was a claim that generalizing this

definition to an arbitrary variety X involved taking np ≤ OX,p, a maximal ideal in this local ring
of germs of regular functions, given by {(U,ϕ) ∣ p ∈ U, ϕ ∈ OX(U)}. In this case, Tp = (np/n

2
p). To

prove this, it suffices to show that mp/m
2
p ≅ np/n

2
p. Note that for any affine open Ui ∋ p, we have

OX,p = OUi,p.

WhenX is affine, we haveOX,p = A(X)mp ∶= {f/g ∣ f ∈ A(X), g /∈ mp} / ∼. Note that this localization
makes sense, since the complement of a maximal ideal is multiplicatively closed since it is prime.
The equivalence relation was f/g = f ′/g′ if there exists an s /∈ mp such that s(fg′ − f ′g) = 0. We
want to show that mp/m

2
p = mpA(X)mp/mpA(X)2

mp
, i.e. this doesn’t change when we localize. In

other words, we want to show that mp/m
2
p ≅ S

−1m[/(S
−1mp)

2.

Let f ∈ S so f(p) ≠ 0. Then f ∈ A(X)/mp ≅ K is a nonzero element in a field and thus invertible.
Thus c ∶= 1/f is an element of K×, and for all g ∈ mp we have g/f ≅ cg in mp/m

2
p. So multiplying by

elements of S is invertible in mp/m
2
p. Thus S−1 (mp/m

2
p) ≅ mp/m

2
p, where the LHS is isomorphic to

S−1mp/ (S
−1m2

p).

E 30.1 Defining Smoothness e

Definition 30.1.1 (Smooth/Regular Varieties)
A connected varietyX is smooth (or regular) if dimTpX = dimX for all p ∈X. More generally,
an arbitrary (potentially disconnected) variety is smooth if every connected component is
smooth.

Example 30.1.2(?): An is smooth since TpAn = kn for all points p, which has dimension n.

Example 30.1.3(?): An∐An−1 is also smooth since each connected component is smooth.

Definition 30.1.4 (Singular Varieties)
A variety that is not smooth is singular at p if dimTpX ≠ dimX.

Fact 30.1.5
dimTpX ≥ dimX for X equidimensional, i.e. every component has the same dimension. This rules
out counterexamples like the following in A3:
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Figure 46: Union of Plane and Axis

Example 30.1.6(?): Consider X ∶= V (y2 − x3) ⊂ A2:

Figure 47: V (y2 − x2)

Note that dimT0X = 2 is easy to see since it’s equal to V (f1 ∣ f ∈ ⟨y2 − x3⟩) = V (0) = k2. Thus
p ≠ 0 are smooth points and p = 0 is the unique singular point. So X is not smooth, but X ∖ {0} is.

Definition 30.1.7 (Regular Ring)
A local ring R over a field k is regular iff dimkm/m2 = dimR, the length of the longest chain
of prime ideals. Note that we’ll add the additional assumption that R/m ≅ k.

Remark 30.1.8: A variety X is thus smooth iff dimkmp/m
2
p = dimpX = dimOX,p.

Theorem 30.1.9(A hard theorem from commutative algebra (Auslan-
der–Buchsbaum, 1940s)).
A regular local ring is a UFD.
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Corollary 30.1.10(?).
Each connected component of a smooth variety is irreducible.

Proof (?).
If a connected componentX is not irreducible, then there exists a point p ∈X such that OX,p
is not a domain, and thus a nonzero pair f, g ∈ OX,p such that fg = 0. These exist by simply
taking an indicator function on each component. So 0 doesn’t have a unique factorization. So
OX,p is not regular, and thus dimTpX > dimpX, which is a contradiction.

∎

Remark 30.1.11: How can we check if a variety X is smooth then? Just checking dimensions
from the definitions is difficult in general.

E 30.2 Checking Smoothness e

Proposition 30.2.1(Jacobi Criterion).
Let p ∈X an affine variety embedded in An, and suppose I(X) = ⟨f1,⋯, fr⟩. Then X is smooth

at p ⇐⇒ the matrix (
∂f

∂xj
) ∣
p
has rank n − dimX.

Example 30.2.2(?): Is V (x2 − y2 − 1) ⊂ A2 smooth? We have I(X) = ⟨f1⟩ ∶= ⟨x2 − y2 − 1⟩, so let
p ∈X. Then consider the matrix

[J ∶=
∂f

∂x

∂f

∂y
] = [2x −2y] .

We want to show that at any p ∈X, we have rank(J) = 1. This is true for p ≠ (0,0), but this is not
a point in X.

Example 30.2.3(?): Consider X ∶= V (y2 − x3 + x2) ⊂ A2:
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Figure 48: Image

Then I(X) = ⟨y2 − x3 + x2⟩ = ⟨f⟩, and

J = [2y −3x2 + 2x] .

Then rank(J) = 0 at p = (0,0), which is a point in X, so X is not smooth.

Example 30.2.4(?): Consider X ∶= V (x2 + y2,1 + z3) ⊂ A3, then I(X) = ⟨x2 + y2,1 + z3⟩ ⟨f, g⟩
which is clearly a radical ideal.

We then have

J = [
fx fy fz
gx gy gz

] = [
2x 2y 0
0 0 3z2] ,

and thus

rank(J) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

0 x = y = z = 0
1 x = y = 0 xor z = 0
2 else.

We can check that dimX = 1 and codimA3 X = 3 − 1 = 2, so a point (x, y, z) ∈ X is smooth iff
rank(J) = 2. The singular locus is where x = y = 0 and z = ζ6 is any generator of the 6th roots of
unity, i.e. ζ6, ζ

3
6 , ζ

5
6 , along with the point 0. Note that z = 0 is not a point on X, since 1 + z3 ≠ 0 in

this case.

Thus the singular locus is V (x2 + y2) = V ((x + iy)(x − iy)) ∩ V (1 + z3), which results in 3 singular
points after intersecting:
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Figure 49: Image

Note that it doesn’t matter that V (1 + z3) was intersected here, as long as it’s anything that
intersects the z-axis nontrivially we will still get something singular.

Appendix: Commutative Algebra

E 30.1 Useful Algebra Facts e

Fact 30.1.1

• p ⊴ R is prime ⇐⇒ R/p is a domain.
• p ⊴ R is maximal ⇐⇒ R/p is a field.
• Maximal ideals are prime.
• Prime ideals are radical.
• If R is a PID and ⟨f⟩ ⊴ R is generated by an irreducible element f , then ⟨f⟩ is maximal

Proposition 30.1.2(Finitely generated polynomial rings are Noetherian).
A polynomial ring k[x1,⋯, xn] on finitely many generators is Noetherian. In particular, every
ideal I ⊴ k[x1,⋯, xn] has a finite set of generators and can be written as I = ⟨f1,⋯, fm⟩.

Proof (?).
A field k is both Artinian and Noetherian, since it has only two ideals and thus any chain
of ideals necessarily terminates. By Hilbert’s basis theorem (Theorem 30.1.5), k[x1,⋯, xn] is
thus Noetherian.

∎
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Proposition 30.1.3(Properties and Definitions of Ideal Operations).

I + J ∶= {f + g ∣ f ∈ I, g ∈ J}

IJ ∶= {
N

∑
i=1
figi ∣ fi ∈ I, gi ∈ J,N ∈ N}

I + J = ⟨1⟩ Ô⇒ I ∩ J = IJ (coprime or comaximal) ⟨a⟩ + ⟨b⟩ = ⟨a, b⟩ .

Theorem 30.1.4(Noether Normalization).
Any finitely-generated field extension k1 ↪ k2 is a finite extension of a purely transcendental
extension, i.e. there exist t1,⋯, t` such that k2 is finite over k1(t1,⋯, t`).

Theorem 30.1.5(Hilbert’s Basis Theorem).
If R is a Noetherian ring, then R[x] is again Noetherian.

31 Appendix: Course Exercises

E 31.1 Problem Set 1 e

Exercise 31.1.1 (Gathmann 1.19)
Prove that every affine variety X ⊂ An/k consisting of only finitely many points can be written
as the zero locus of n polynomials.

Hint: Use interpolation. It is useful to assume at first that all points in X have different x1-coordinates.

Exercise 31.1.2 (Gathmann 1.21)
Determine

√
I for

I ∶= ⟨x3
1 − x

6
2, x1x2 − x

3
2⟩ ⊴ C[x1, x2].

Exercise 31.1.3 (Gathmann 1.22)
Let X ⊂ A3/k be the union of the three coordinate axes. Compute generators for the ideal
I(X) and show that it can not be generated by fewer than 3 elements.

Exercise 31.1.4 (Gathmann 1.23: Relative Nullstellensatz)
Let Y ⊂ An/k be an affine variety and define A(Y ) by the quotient

π ∶ k[x1,⋯, xn] → A(Y ) ∶= k[x1,⋯, xn]/I(Y ).

a. Show that VY (J) = V (π−1(J)) for every J ⊴ A(Y ).

b. Show that π−1(IY (X)) = I(X) for every affine subvariety X ⊆ Y .
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c. Using the fact that I(V (J)) ⊂
√
J for every J ⊴ k[x1,⋯, xn], deduce that IY (VY (J)) ⊂√

J for every J ⊴ A(Y ).

Conclude that there is an inclusion-reversing bijection

{Affine subvarieties
of Y } ⇐⇒ {Radical idealsin A(Y ) } .

Exercise 31.1.5 (Extra)
Let J ⊴ k[x1,⋯, xn] be an ideal, and find a counterexample to I(V (J)) =

√
J when k is not

algebraically closed.

E 31.2 Problem Set 2 e

Exercise 31.2.1 (Gathmann 2.17)
Find the irreducible components of

X = V (x − yz, xz − y2) ⊂ A3/C.

Exercise 31.2.2 (Gathmann 2.18)
Let X ⊂ An be an arbitrary subset and show that

V (I(X)) =X.

Exercise 31.2.3 (Gathmann 2.21)
Let {Ui}i∈I ⇉X be an open cover of a topological space with Ui ∩Uj ≠ ∅ for every i, j.

a. Show that if Ui is connected for every i then X is connected.

b. Show that if Ui is irreducible for every i then X is irreducible.

Exercise 31.2.4 (Gathmann 2.22)
Let f ∶X → Y be a continuous map of topological spaces.

a. Show that if X is connected then f(X) is connected.

b. Show that if X is irreducible then f(X) is irreducible.

Exercise 31.2.5 (Gathmann 2.23)
Let X be an affine variety.

a. Show that if Y1, Y2 ⊂X are subvarieties then

I(Y1 ∖ Y2) = I(Y1) ∶ I(Y2).
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b. If J1, J2 ⊴ A(X) are radical, then

V (J1) ∖ V (J2) = V (J1 ∶ J2).

Exercise 31.2.6 (Gathmann 2.24)
Let X ⊂ An, Y ⊂ Am be irreducible affine varieties, and show that X × Y ⊂ An+m is irreducible.

E 31.3 Problem Set 3 e

Exercise 31.3.1 (Gathmann 2.33)
Define

X ∶= {M ∈ Mat(2 × 3, k) ∣ rankM ≤ 1} ⊆ A6/k.

Show that X is an irreducible variety, and find its dimension.

Exercise 31.3.2 (Gathmann 2.34)
Let X be a topological space, and show

a. If {Ui}i∈I ⇉X, then dimX = sup
i∈I

dimUi.

b. If X is an irreducible affine variety and U ⊂X is a nonempty subset, then dimX = dimU .
Does this hold for any irreducible topological space?

Exercise 31.3.3 (Gathmann 2.36)
Prove the following:

a. Every noetherian topological space is compact. In particular, every open subset of an
affine variety is compact in the Zariski topology.

b. A complex affine variety of dimension at least 1 is never compact in the classical topology.

Exercise 31.3.4 (Gathmann 2.40)
Let

R = k[x1, x2, x3, x4]/ ⟨x1x4 − x2x3⟩

and show the following:

a. R is an integral domain of dimension 3.

b. x1,⋯, x4 are irreducible but not prime in R, and thus R is not a UFD.

c. x1x4 and x2x3 are two decompositions of the same element in R which are nonassociate.

d. ⟨x1, x2⟩ is a prime ideal of codimension 1 in R that is not principal.
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Exercise 31.3.5 (Problem 5)
Consider a set U in the complement of (0,0) ∈ A2. Prove that any regular function on U
extends to a regular function on all of A2.

E 31.4 Problem Set 4 e

Exercise 31.4.1 (Gathmann 3.20)
Let X ⊂ Anbe an affine variety and a ∈X. Show that

OX,a = OAn,a/I(X)OAn,a,

where I(X)OAn,a denotes the ideal in OAn,a generated by all quotients f/1 for f ∈ I(X).

Exercise 31.4.2 (Gathmann 3.21)
Let a ∈ R, and consider sheaves F on R with the standard topology:

1. F ∶= the sheaf of continuous functions
2. F ∶= the sheaf of locally polynomial functions.

For which is the stalk Fa a local ring?
Recall that a local ring has precisely one maximal ideal.

Exercise 31.4.3 (Gathmann 3.22)
Let ϕ,ψ ∈ F(U) be two sections of some sheaf F on an open U ⊆X and show that

a. If ϕ,ψ agree on all stalks, so (U,ϕ) = (U,ψ) ∈ Fa for all a ∈ U , then ϕ and ψ are equal.

b. If F ∶= OX is the sheaf of regular functions on some irreducible affine variety X, then if
ψ = ϕ on one stalk Fa, then ϕ = ψ everywhere.

c. For a general sheaf F on X, (b) is false.

Exercise 31.4.4 (Gathmann 3.23: Geometry of a Certain Localization)
Let Y ⊂X be a nonempty and irreducible subvariety of an affine variety X, and show that the
stalk OX,Y of OX at Y is a k-algebra which is isomorphic to the localization A(X)I(Y ).

Exercise 31.4.5 (Gathmann 3.24)
Let F be a sheaf on X a topological space and a ∈X. Show that the stalk Fa is a local object,
i.e. if U ⊂X is an open neighborhood of a, then Fa is isomorphic to the stalk of F∣U at a on
U viewed as a topological space.

E 31.5 Problem Set 5 e
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Exercise 31.5.1 (Gathmann 4.13)
Let f ∶ X → Y be a morphism of affine varieties and f∗ ∶ A(Y ) → A(X) the induced map on
coordinate rings. Determine if the following statements are true or false:

a. f is surjective ⇐⇒ f∗ is injective.

b. f is injective ⇐⇒ f∗ is surjective.

c. If f ∶ A1 → A1 is an isomorphism, then f is affine linear, i.e. f(x) = ax + b for some
a, b ∈ k.

d. If f ∶ A2 → A2 is an isomorphism, then f is affine linear, i.e. f(x) = Ax + b for some
a ∈ Mat(2 × 2, k) and b ∈ k2.

Exercise 31.5.2 (Gathmann 4.19)
Which of the following are isomorphic as ringed spaces over C?

(a) A1/{1}

(b) V (x2
1 + x

2
2) ⊂ A2

(c) V (x2 − x
2
1, x3 − x

3
1) /{0} ⊂ A3

(d) V (x1x2) ⊂ A2

(e) V (x2
2 − x

3
1 − x

2
1) ⊂ A2

(f) V (x2
1 − x

2
2 − 1) ⊂ A2

Exercise 31.5.3 (Gathmann 5.7)
Show that

a. Every morphism f ∶ A1 ∖ {0} → P1 can be extended to a morphism f̂ ∶ A1 → P1.

b. Not every morphism f ∶ A2 ∖ {0} → P1 can be extended to a morphism f̂ ∶ A2 → P1.

c. Every morphism P1 → A1 is constant.

Exercise 31.5.4 (Gathmann 5.8)
Show that

a. Every isomorphism f ∶ P1 → P1 is of the form

f(x) =
ax + b

cx + d
a, b, c, d ∈ k.

where x is an affine coordinate on A1 ⊂ P1.

b. Given three distinct points ai ∈ P1 and three distinct points bi ∈ P1, there is a unique
isomorphism f ∶ P1 → P1 such that f(ai) = bi for all i.
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Proposition 31.5.5(?).
There is a bijection

{ morphisms X → Y }
1∶1
↔ {K-algebra morphisms OY (Y ) → OX(X)}

f ↦ f∗

Exercise 31.5.6 (Gathmann 5.9)
Does the above bijection hold if

a. X is an arbitrary prevariety but Y is still affine?
b. Y is an arbitrary prevariety but X is still affine?
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