# Problem Set 5 (Monday, October 26) :::{.problem title="Gathmann 4.13"} Let $f:X\to Y$ be a morphism of affine varieties and $f^*: A(Y) \to A(X)$ the induced map on coordinate rings. Determine if the following statements are true or false: a. $f$ is surjective $\iff f^*$ is injective. b. $f$ is injective $\iff f^*$ is surjective. c. If $f:\AA^1\to\AA^1$ is an isomorphism, then $f$ is *affine linear*, i.e. $f(x) = ax+b$ for some $a, b\in k$. d. If $f:\AA^2\to\AA^2$ is an isomorphism, then $f$ is *affine linear*, i.e. $f(x) = Ax+b$ for some $a \in \Mat(2\times 2, k)$ and $b\in k^2$. ::: :::{.solution} \hfill a. **True**. This follows because if $p, q\in A(Y)$, then \[ f* p &= f^* q \\ &\implies (p\circ f) = (q\circ f) && \text{by definition}\\ &\implies p = q ,\] where in the last implication we've used the fact that $f$ is surjective iff $f$ admits a right-inverse. ::: :::{.problem title="Gathmann 4.19"} Which of the following are isomorphic as ringed spaces over $\CC$? (a) $\mathbb{A}^{1} \backslash\{1\}$ (b) $V\left(x_{1}^{2}+x_{2}^{2}\right) \subset \mathbb{A}^{2}$ (c) $V\left(x_{2}-x_{1}^{2}, x_{3}-x_{1}^{3}\right) \backslash\{0\} \subset \mathbb{A}^{3}$ (d) $V\left(x_{1} x_{2}\right) \subset \mathbb{A}^{2}$ (e) $V\left(x_{2}^{2}-x_{1}^{3}-x_{1}^{2}\right) \subset \mathbb{A}^{2}$ (f) $V\left(x_{1}^{2}-x_{2}^{2}-1\right) \subset \mathbb{A}^{2}$ ::: :::{.problem title="Gathmann 5.7"} Show that a. Every morphism $f:\AA^1\smz \to \PP^1$ can be extended to a morphism $\hat f: \AA^1 \to \PP^1$. b. Not every morphism $f:\AA^2\smz \to \PP^1$ can be extended to a morphism $\hat f: \AA^2 \to \PP^1$. c. Every morphism $\PP^1\to \AA^1$ is constant. ::: :::{.problem title="Gathmann 5.8"} Show that a. Every isomorphism $f:\PP^1\to \PP^1$ is of the form \[ f(x) = {ax+b \over cx+d} && a,b,c,d\in k .\] where $x$ is an affine coordinate on $\AA^1\subset \PP^1$. b. Given three distinct points $a_i \in \PP^1$ and three distinct points $b_i \in \PP^1$, there is a unique isomorphism $f:\PP^1 \to \PP^1$ such that $f(a_i) = b_i$ for all $i$. ::: :::{.proposition title="?"} There is a bijection \[ \begin{array}{c} \{\text { morphisms } X \rightarrow Y\} \stackrel{1: 1}{\longleftrightarrow}\left\{K \text { -algebra homomorphisms } \mathscr{O}_{Y}(Y) \rightarrow \mathscr{O}_{X}(X)\right\} \\ f \longmapsto f^{*} \end{array} \] ::: :::{.problem title="Gathmann 5.9"} Does the above bijection hold if a. $X$ is an arbitrary prevariety but $Y$ is still affine? a. $Y$ is an arbitrary prevariety but $X$ is still affine? :::