Algebraic Geometry Problems

D. Zack Garza

Contents

1 Problem Set 1 2
2 Problem Set 2 7
3 Problem Set 3 11
4 Problem Set 4 (Tuesday, October 06) 14
5 Problem Set 5 (Monday, October 26) 15

Source: Section 1 of Gathmann

1 Problem Set 1

Exercise 1.0.1(Gathmann 1.19): Prove that every affine variety $X \subset \mathbb{A}^{n} / k$ consisting of only finitely many points can be written as the zero locus of n polynomials.

Abstract

Hint: Use interpolation. It is useful to assume at first that all points in X have different x_{1}-coordinates.

Solution:

Let $X=\left\{\mathbf{p}_{1}, \cdots, \mathbf{p}_{d}\right\}=\left\{\mathbf{p}_{j}\right\}_{j=1}^{d}$, where each $\mathbf{p}_{j} \in \mathbb{A}^{n}$ can be written in coordinates

$$
\mathbf{p}_{j}:=\left[p_{j}^{1}, p_{j}^{2}, \cdots, p_{j}^{n}\right]
$$

Remark 1.0.2: Proof idea: for some fixed k with $2 \leq k \leq n$, consider the pairs $\left(p_{j}^{1}, p_{j}^{k}\right) \in \mathbb{A}^{2}$.
Letting j range over $1 \leq j \leq d$ yields d points of the form $(x, y) \in \mathbb{A}^{2}$, so construct an interpolating polynomial such that $f(x)=y$ for each tuple. Then $f(x)-y$ vanishes at every such tuple.

Doing this for each k (keeping the first coordinate always of the form p_{j}^{1} and letting the second coordinate vary) yields $n-1$ polynomials in $k\left[x_{1}, x_{k}\right] \subseteq k\left[x_{1}, \cdots, x_{n}\right]$, then adding in the polynomial $p(x)=\prod_{j}\left(x-p_{j}^{1}\right)$ yields a system the vanishes precisely on $\left\{\mathbf{p}_{j}\right\}$.
Claim: Without loss of generality, we can assume all of the first components $\left\{p_{j}^{1}\right\}_{j=1}^{d}$ are distinct.

Todo: follows from "rotation of axes"?

We will use the following fact:
Theorem 1.0.3(Lagrange).
Given a set of d points $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{d}$ with all x_{i} distinct, there exists a unique polynomial of degree d in $f \in k[x]$ such that $\tilde{f}\left(x_{i}\right)=y_{i}$ for every i.
This can be explicitly given by

$$
\tilde{f}(x)=\sum_{i=1}^{d} y_{i}\left(\prod_{\substack{0 \leq m \leq d \\ m \neq i}}\left(\frac{x-x_{m}}{x_{i}-x_{m}}\right)\right)
$$

Equivalently, there is a polynomial f defined by $f\left(x_{i}\right)=\tilde{f}\left(x_{i}\right)-y_{i}$ of degree d whose roots are precisely the x_{i}.

Using this theorem, we define a system of n polynomials in the following way:

- Define $f_{1} \in k\left[x_{1}\right] \subseteq k\left[x_{1}, \cdots, x_{n}\right]$ by

$$
f_{1}(x)=\prod_{i=1}^{d}\left(x-p_{i}^{1}\right)
$$

Then the roots of f_{1} are precisely the first components of the points p.

- Define $f_{2} \in k\left[x_{1}, x_{2}\right] \subseteq k\left[x_{1}, \cdots, x_{n}\right]$ by considering the ordered pairs

$$
\left\{\left(x_{1}, x_{2}\right)=\left(p_{j}^{1}, p_{j}^{2}\right)\right\}
$$

then taking the unique Lagrange interpolating polynomial \tilde{f}_{2} satisfying $\tilde{f}_{2}\left(p_{j}^{1}\right)=p_{j}^{2}$ for all $1 \leq j \leq d$. Then set $f_{2}:=\tilde{f}_{2}\left(x_{1}\right)-x_{2} \in k\left[x_{1}, x_{2}\right]$.

- Define $f_{3} \in k\left[x_{1}, x_{3}\right] \subseteq k\left[x_{1}, \cdots, x_{n}\right]$ by considering the ordered pairs

$$
\left\{\left(x_{1}, x_{3}\right)=\left(p_{j}^{1}, p_{j}^{3}\right)\right\}
$$

then taking the unique Lagrange interpolating polynomial \tilde{f}_{3} satisfying $\tilde{f}_{2}\left(p_{j}^{1}\right)=p_{j}^{3}$ for all $1 \leq j \leq d$. Then set $f_{3}:=\tilde{f}_{3}\left(x_{1}\right)-x_{3} \in k\left[x_{1}, x_{3}\right]$.

- ...

Continuing in this way up to $f_{n} \in k\left[x_{1}, x_{n}\right]$ yields a system of n polynomials.

Proposition 1.0.4.

$V\left(f_{1}, \cdots, f_{n}\right)=X$.

Proof .

Claim: $X \subseteq V\left(f_{i}\right)$:
This is essentially by construction. Letting $p_{j} \in X$ be arbitrary, we find that

$$
f_{1}\left(p_{j}\right)=\prod_{i=1}^{d}\left(p_{j}^{1}-p_{i}^{1}\right)=\left(p_{j}^{1}-p_{j}^{1}\right) \prod_{\substack{i \leq d \\ i \neq j}}\left(p_{j}^{1}-p_{i}^{1}\right)=0 .
$$

Similarly, for $2 \leq k \leq n$,

$$
f_{k}\left(p_{j}\right)=\tilde{f}_{k}\left(p_{j}^{1}\right)-p_{j}^{k}=0
$$

which follows from the fact that $\tilde{f}_{k}\left(p_{j}^{1}\right)=p_{j}^{k}$ for every k and every j by the construction of \tilde{f}_{k}.

Claim: $\quad X^{c} \subseteq V\left(f_{i}\right)^{c}$:
This follows from the fact the polynomials f given by Lagrange interpolation are unique, and thus the roots of \tilde{f} are unique. But if some other point was in $V\left(f_{i}\right)$, then one of its coordinates would be another root of some \tilde{f}.

Exercise 1.0.5(Gathmann 1.21): Determine \sqrt{I} for

$$
I:=\left\langle x_{1}^{3}-x_{2}^{6}, x_{1} x_{2}-x_{2}^{3}\right\rangle \unlhd \mathbb{C}\left[x_{1}, x_{2}\right]
$$

Solution:

For notational purposes, let \mathcal{I}, \mathcal{V} denote the maps in Hilbert's Nullstellensatz, we then have

$$
(\mathcal{I} \circ \mathcal{V})(I)=\sqrt{I}
$$

So we consider $\mathcal{V}(I) \subseteq \mathbb{A}^{2} / \mathbb{C}$, the vanishing locus of these two polynomials, which yields the system

$$
\left\{\begin{array}{l}
x^{3}-y^{6}=0 \\
x y-y^{3}=0
\end{array}\right.
$$

In the second equation, we have $\left(x-y^{2}\right) y=0$, and since $\mathbb{C}[x, y]$ is an integral domain, one term must be zero.

1. If $y=0$, then $x^{3}=0 \Longrightarrow x=0$, and thus $(0,0) \in \mathcal{V}(I)$, i.e. the origin is contained in this vanishing locus.
2. Otherwise, if $x-y^{2}=0$, then $x=y^{2}$, with no further conditions coming from the first equation.

Combining these conditions,

$$
P:=\left\{\left(t^{2}, t\right) \mid t \in \mathbb{C}\right\} \subset \mathcal{V}(I)
$$

where $I=\left\langle x^{3}-y^{6}, x y-y^{3}\right\rangle$.
We have $P=\mathcal{V}(I)$, and so taking the ideal generated by P yields

$$
(\mathcal{I} \circ \mathcal{V})(I)=\mathcal{I}(P)=\left\langle y-x^{2}\right\rangle \in \mathbb{C}[x, y]
$$

and thus $\sqrt{I}=\left\langle y-x^{2}\right\rangle$.

Exercise 1.0.6(Gathmann 1.22): Let $X \subset \mathbb{A}^{3} / k$ be the union of the three coordinate axes. Compute generators for the ideal $I(X)$ and show that it can not be generated by fewer than 3 elements.

Solution:

Claim:

$$
I(X)=\left\langle x_{2} x_{3}, x_{1} x_{3}, x_{1} x_{2}\right\rangle
$$

We can write $X=X_{1} \cup X_{2} \cup X_{3}$, where

- The x_{1}-axis is given by $X_{1}:=V\left(x_{2} x_{3}\right) \Longrightarrow I\left(X_{1}\right)=\left\langle x_{2} x_{3}\right\rangle$,
- The x_{2}-axis is given by $X_{2}:=V\left(x_{1} x_{3}\right) \Longrightarrow I\left(X_{2}\right)=\left\langle x_{1} x_{3}\right\rangle$,
- The x_{3}-axis is given by $X_{3}:=V\left(x_{1} x_{2}\right) \Longrightarrow I\left(X_{3}\right)=\left\langle x_{1} x_{2}\right\rangle$.

Here we've used, for example, that

$$
I\left(V\left(x_{2} x_{3}\right)\right)=\sqrt{\left\langle x_{2} x_{3}\right\rangle}=\left\langle x_{2} x_{3}\right\rangle
$$

by applying the Nullstellensatz and noting that $\left\langle x_{2} x_{3}\right\rangle$ is radical since it is generated by a squarefree monomial.
We then have

$$
\begin{array}{rlr}
I(X) & =I\left(X_{1} \cup X_{2} \cup X_{3}\right) & \\
& =I\left(X_{1}\right) \cap I\left(X_{2}\right) \cap I\left(X_{3}\right) \\
& =\sqrt{I\left(X_{1}\right)+I\left(X_{2}\right)+I\left(X_{3}\right)} \\
& =\sqrt{\left\langle x_{2}, x_{3}\right\rangle+\left\langle x_{1} x_{3}\right\rangle+\left\langle x_{1} x_{2}\right\rangle} \\
& =\sqrt{\left\langle x_{2} x_{3}, x_{1} x_{3}, x_{1} x_{2}\right\rangle} & \\
& =\left\langle x_{2} x_{3}, x_{1} x_{3}, x_{1} x_{2}\right\rangle, & \text { since }\langle a\rangle+\langle b\rangle=\langle a, b\rangle
\end{array}
$$

where in the last equality we've again used the fact that an ideal generated by squarefree monomials is radical.

Claim: $I(X)$ can not be generated by 2 or fewer elements.
Let $J:=I(X)$ and $R:=k\left[x_{1}, x_{2}, x_{3}\right]$, and toward a contradiction, suppose $J=\langle r, s\rangle$. Define $\mathfrak{m}:=\langle x, y, z\rangle$ and a quotient map

$$
\pi: J \rightarrow J / \mathfrak{m} J
$$

and consider the images $\pi(r), \pi(s)$.
Note that $J / \mathfrak{m} J$ is an R / \mathfrak{m}-module, and since $R / \mathfrak{m} \cong k, J / \mathfrak{m} J$ is in fact a k-vector space. Since $\pi(r), \pi(s)$ generate $J / \mathfrak{m} J$ as a k-module,

$$
\operatorname{dim}_{k} J / \mathfrak{m} J \leq 2
$$

But this is a contradiction, since we can produce $3 k$-linearly independent elements in $J / \mathfrak{m} J$: namely $\pi\left(x_{1} x_{2}\right), \pi\left(x_{1} x_{3}\right), \pi\left(x_{2} x_{3}\right)$. Suppose there exist α_{i} such that

$$
\alpha_{1} \pi\left(x_{1} x_{2}\right)+\alpha_{2} \pi\left(x_{1} x_{3}\right)+\alpha_{3} \pi\left(x_{2} x_{3}\right)=0 \in J / \mathfrak{m} J \Longleftrightarrow \alpha_{1} x_{1} x_{2}+\alpha_{2} x_{1} x_{3}+\alpha_{3} x_{2} x_{3} \in \mathfrak{m} J,
$$

But we can then note that

$$
\mathfrak{m} J=\left\langle x_{1}, x_{2} \cdot x_{3}\right\rangle\left\langle x_{1} x_{2}, x_{1} x_{3}, x_{2} x_{3}\right\rangle=\left\langle x_{1}^{2} x_{2}, x_{1}^{2} x_{3}, x_{1} x_{2} x_{3}, \cdots\right\rangle .
$$

can't contain any nonzero elements of degree $d<3$, so no such α_{i} can exist and these elements are k-linearly independent.

Exercise 1.0.7(Gathmann 1.23: Relative Nullstellensatz): Let $Y \subset \mathbb{A}^{n} / k$ be an affine variety and define $A(Y)$ by the quotient

$$
\pi: k\left[x_{1}, \cdots, x_{n}\right] \rightarrow A(Y):=k\left[x_{1}, \cdots, x_{n}\right] / I(Y) .
$$

a. Show that $V_{Y}(J)=V\left(\pi^{-1}(J)\right)$ for every $J \unlhd A(Y)$.
b. Show that $\pi^{-1}\left(I_{Y}(X)\right)=I(X)$ for every affine subvariety $X \subseteq Y$.
c. Using the fact that $I(V(J)) \subset \sqrt{J}$ for every $J \unlhd k\left[x_{1}, \cdots, x_{n}\right]$, deduce that $I_{Y}\left(V_{Y}(J)\right) \subset \sqrt{J}$ for every $J \unlhd A(Y)$.

Conclude that there is an inclusion-reversing bijection

$$
\left\{\begin{array}{c}
\text { Affine subvarieties } \\
\text { of } Y
\end{array}\right\} \Longleftrightarrow\left\{\begin{array}{c}
\text { Radical ideals } \\
\text { in } A(Y)
\end{array}\right\} .
$$

Exercise 1.0.8(Extra): Let $J \unlhd k\left[x_{1}, \cdots, x_{n}\right]$ be an ideal, and find a counterexample to $I(V(J))=$ \sqrt{J} when k is not algebraically closed.

Solution:

Take $J=\left\langle x^{2}+1\right\rangle \unlhd \mathbb{R}[x]$, noting that J is nontrivial and proper but \mathbb{R} is not algebraically closed. Then $V(J) \subseteq \mathbb{R}$ is empty, and thus $I(V(J))=I(\emptyset)$.

Claim: $I(V(J))=\mathbb{R}[x]$.
Checking definitions, for any set $X \subset \mathbb{A}^{n} / k$ we have

$$
I(X)=\{f \in \mathbb{R}[x] \mid \forall x \in X, f(x)=0\}
$$

and so we vacuously have

$$
I(\emptyset)=\{f \in \mathbb{R}[x] \mid \forall x \in \emptyset, f(x)=0\}=\{f \in \mathbb{R}[x]\}=\mathbb{R}[x]
$$

Claim: $\quad \sqrt{J} \neq \mathbb{R}[x]$.
This follows from the fact that maximal ideals are radical, and $\mathbb{R}[x] / J \cong \mathbb{C}$ being a field implies that J is maximal. In this case $\sqrt{J}=J \neq \mathbb{R}[x]$.

That maximal ideals are radical follows from the fact that if $J \unlhd R$ is maximal, we have $J \subset \sqrt{J} \subset R$ which forces $\sqrt{J}=J$ or $\sqrt{J}=R$.

But if $\sqrt{J}=R$, then

$$
1 \in \sqrt{J} \Longrightarrow 1^{n} \in J \text { for some } n \Longrightarrow 1 \in J \Longrightarrow J=R
$$

contradicting the assumption that J is maximal and thus proper by definition.

2 Problem Set 2

Exercise 2.0.1(Gathmann 2.17): Find the irreducible components of

$$
X=V\left(x-y z, x z-y^{2}\right) \subset \mathbb{A}^{3} / \mathbb{C}
$$

Solution:

Since $x=y z$ for all points in X, we have

$$
\begin{aligned}
X & =V\left(x-y z, y z^{2}-y^{2}\right) \\
& =V\left(x-y z, y\left(z^{2}-y\right)\right) \\
& =V(x-y z, y) \cup V\left(x-y z, z^{2}-y\right) \\
& :=X_{1} \cup X_{2}
\end{aligned}
$$

Claim: These two subvarieties are irreducible.
It suffices to show that the $A\left(X_{i}\right)$ are integral domains. We have

$$
A\left(X_{1}\right):=\mathbb{C}[x, y, z] /\langle x-y z, y\rangle \cong \mathbb{C}[y, z] /\langle y\rangle \cong \mathbb{C}[z],
$$

which is an integral domain since \mathbb{C} is a field and thus an integral domain, and

$$
A\left(X_{2}\right):=\mathbb{C}[x, y, z] /\left\langle x-y z, z^{2}-y\right\rangle \cong \mathbb{C}[y, z] /\left\langle z^{2}-y\right\rangle \cong \mathbb{C}[y],
$$

which is an integral domain for the same reason.

Exercise 2.0.2(Gathmann 2.18): Let $X \subset \mathbb{A}^{n}$ be an arbitrary subset and show that

$$
V(I(X))=\bar{X} .
$$

Solution:

$\bar{X} \subseteq V(I(X)):$
We have $X \subseteq V(I(X))$ and since $V(J)$ is closed in the Zariski topology for any ideal $J \unlhd k\left[x_{1}, \cdots, x_{n}\right]$ by definition, $V(I(X))$ is closed. Thus

$$
X \subseteq V(I(X)) \text { and } V(I(X)) \text { closed } \Longrightarrow \bar{X} \subseteq V(I(X))
$$

since \bar{X} is the intersection of all closed sets containing X.
$V(I(X)) \subseteq \bar{X}:$
Noting that $V(\cdot), I(\cdot)$ are individually order-reversing, we find that $V(I(\cdot))$ is order-preserving and thus

$$
X \subseteq \bar{X} \Longrightarrow V(I(X)) \subseteq V(I(\bar{X}))=\bar{X}
$$

where in the last equality we've used part (i) of the Nullstellensatz: if X is an affine variety, then $V(I(X))=X$. This applies here because \bar{X} is always closed, and the closed sets in the Zariski topology are precisely the affine varieties.

Exercise 2.0.3(Gathmann 2.21): Let $\left\{U_{i}\right\}_{i \in I} \rightrightarrows X$ be an open cover of a topological space with $U_{i} \cap U_{j} \neq \emptyset$ for every i, j.
a. Show that if U_{i} is connected for every i then X is connected.
b. Show that if U_{i} is irreducible for every i then X is irreducible.

Solution (a):

Suppose toward a contradiction that $X=X_{1} \coprod X_{2}$ with X_{i} proper, disjoint, and open. Since $\left\{U_{i}\right\} \rightrightarrows X$, for each $j \in I$ this would force one of $U_{j} \subseteq X_{1}$ or $U_{j} \subseteq X_{2}$, since otherwise $U_{j} \cap X_{1} \cap X_{2}$ would be nonempty.

So without loss of generality (relabeling if necessary), assume $U_{j} \in X_{1}$ for some fixed j. But then for every $i \neq j$, we have $U_{i} \cap U_{j}$ nonempty by assumption, and so in fact $U_{i} \subseteq X_{1}$ for every $i \in I$. But then $\cup_{i \in I} U_{i} \subseteq X_{1}$, and since $\left\{U_{i}\right\}$ was a cover, this forces $X \subseteq X_{1}$ and thus $X_{2}=\emptyset$.

Solution(b):

Claim: X is irreducible \Longleftrightarrow any two open subsets intersect.
This follows because otherwise, if $U, V \subset X$ are open and disjoint then $X \backslash U, X \backslash V$ are proper and closed. But then we can write $X=(X \backslash U) \coprod(X \backslash V)$ as a union of proper closed subsets, forcing X to not be irreducible.

So it suffices to show that if $U, V \subset X$ then $U \cap V$ is nonempty. Since $\left\{U_{i}\right\} \rightrightarrows X$, we can find a pair i, j such that there is at least one point in $U \cap U_{i}$ and one point in $V \cap U_{j}$.

But by assumption $U_{i} \cap U_{j}$ is nonempty, so both $U \cap U_{i}$ and $U_{j} \cap U_{i}$ are open nonempty subsets of U_{i}. Since U_{i} was assumed irreducible, they must intersect, so there exists a point

$$
x_{0} \in\left(U \cap U_{i}\right) \cap\left(U_{j} \cap U_{i}\right)=U \cap\left(U_{i} \cap U_{j}\right):=\tilde{U}
$$

We can now similarly note that $\tilde{U} \cap V$ and $U_{j} \cap V$ are nonempty open subsets of V, and thus intersect. So there is a point

$$
\tilde{x}_{0} \in(\tilde{U} \cap V) \cap\left(U_{j} \cap V\right)=\tilde{U} \cap V=U \cap V \cap\left(U_{i} \cap U_{j}\right)
$$

and in particular $\tilde{x}_{0} \in U \cap V$ as desired.

Exercise 2.0.4(Gathmann 2.22): Let $f: X \rightarrow Y$ be a continuous map of topological spaces.
a. Show that if X is connected then $f(X)$ is connected.
b. Show that if X is irreducible then $f(X)$ is irreducible.

Solution (a):

Toward a contradiction, if $f(X)=Y_{1} \coprod Y_{2}$ with Y_{1}, Y_{2} nonempty and open in Y, then

$$
f^{-1}(f(X)) \subseteq X
$$

on one hand, and

$$
f^{-1}(f(X))=f^{-1}\left(Y_{1}\right) \coprod f^{-1}\left(Y_{2}\right)
$$

on the other. If f is continuous, the preimages $f^{-1}\left(Y_{i}\right)$ are open (and nonempty), so X contains a disconnected subset. However, every subset of a connected set must be connected, so this contradicts the connectedness of X.

Solution (b):

Suppose $f(X)=Y_{1} \cup Y_{2}$ with Y_{i} proper closed subsets of Y. Then $f^{-1}\left(Y_{1}\right) \cup f^{-1}\left(Y^{2}\right)=$ $\left(f^{-1} \circ f\right)(X) \subseteq X$ are closed in X, since f is continuous. Since X is irreducible, without loss of generality (by relabeling), this forces $X_{1}=\emptyset$. But then $f\left(X_{1}\right)=\emptyset$, forcing $f(X)=Y_{2}$.

Definition 2.0.5 (Ideal Quotient)
For two ideals $J_{1}, J_{2} \unlhd R$, the ideal quotient is defined by

$$
J_{1}: J_{2}:=\left\{f \in R \mid f J_{2} \subset J_{1}\right\} .
$$

Exercise 2.0.6(Gathmann 2.23): Let X be an affine variety.
a. Show that if $Y_{1}, Y_{2} \subset X$ are subvarieties then

$$
I\left(\overline{Y_{1} \backslash Y_{2}}\right)=I\left(Y_{1}\right): I\left(Y_{2}\right) .
$$

b. If $J_{1}, J_{2} \unlhd A(X)$ are radical, then

$$
\overline{V\left(J_{1}\right) \backslash V\left(J_{2}\right)}=V\left(J_{1}: J_{2}\right)
$$

Solution:

Exercise 2.0.7(Gathmann 2.24): Let $X \subset \mathbb{A}^{n}, Y \subset \mathbb{A}^{m}$ be irreducible affine varieties, and show that $X \times Y \subset \mathbb{A}^{n+m}$ is irreducible.

Solution:

That $X \times Y$ is again an affine variety follows from writing $X=V(I), Y=V(J)$, then $X \times Y=V(I+J)$ where $I+J \unlhd k\left[x_{1}, \cdots, x_{n}, y_{1}, \cdots, y_{m}\right]$. So let

$$
X \times Y=U \cup V
$$

with U, V proper and closed, and let π_{X}, π_{Y} be the projections onto the factors.
Claim: For each $x \in X, \pi^{-1}(x) \cong Y$ is contained in only one of U or V.
Note that if this is true, we can write $X=G_{U} \cup G_{V}$ where

$$
G_{U}:=\left\{x \in X \mid \pi_{X}^{-1}(x) \subseteq U\right\}
$$

are the points for which the entire fiber lies in U, and similarly G_{V} are those for which the fiber lies in V. If we can then show that G_{U}, G_{V} are closed, by irreducibility of X this will force (wlog) $G_{V}=\emptyset$ and $X=G_{U}$. But then

$$
\pi_{X}^{-1}(X)=X \times Y \text { and } \pi_{X}^{-1}\left(G_{U}\right)=U \Longrightarrow X \times Y=U
$$

which shows that $X \times Y$ is irreducible.

Proof (Every fiber is contained in one irreducible component).
For any fixed x, we can write

$$
\pi_{X}^{-1}(x)=\left(\pi_{X}^{-1}(x) \cap U\right) \cup\left(\pi_{X}^{-1}(x) \cap V\right)
$$

Since points are closed in the Zariski topology and π_{X} is continuous, each $\pi_{X}^{-1}(x)$ is closed. and thus $\pi_{X}^{-1}(x) \cap U$ is closed (and similarly for V). Noting that $\pi_{X}^{-1}(x) \cong\{x\} \times Y \cong Y$, where we've assumed Y to be irreducible, we can conclude wlog that $\pi_{X}^{-1}(x) \cap V=\emptyset$.

Proof (G_{U}, G_{V} are closed).
Wlog consider $G_{U} \subseteq X$. Fixing any point $y_{0} \in Y$, we have

$$
X \cong X_{y_{0}}:=X \times\left\{y_{0}\right\} \subseteq X \times Y
$$

so we can identify $G_{U} \subset X$ with $G_{U} \subset X_{y_{0}}$ inside a Y-fiber the product. But then

$$
G_{U}=X_{y_{0}} \cap U \subseteq X \times Y
$$

where U is closed in $X \times Y$ and thus closed in $X_{y_{0}}$, and $X_{y_{0}}$ is trivially closed in itself. This exhibits G_{U} as the intersection of two sets that are closed in $X_{y_{0}} \cong X$.

3 Problem Set 3

Exercise 3.0.1(Gathmann 2.33): Define

$$
X:=\{M \in \operatorname{Mat}(2 \times 3, k) \mid \operatorname{rank} M \leq 1\} \subseteq \mathbb{A}^{6} / k
$$

Show that X is an irreducible variety, and find its dimension.

Solution:

We'll use the following fact from linear algebra:

Definition(Matrix Minor)

For an $m \times n$ matrix, a minor of order ℓ is the determinant of a $\ell \times \ell$ submatrix obtained by deleting any $m-\ell$ rows and any $n-\ell$ columns.

Theorem 3.0.3(Rank is a Function of Minors).
If $A \in \operatorname{Mat}(m \times n, k)$ is a matrix, then the rank of A is equal to the order of largest nonzero minor.

Thus

$$
M_{i j}=0 \text { for all } \ell \times \ell \text { minors } M_{i j} \Longleftrightarrow \operatorname{rank}(M)<\ell,
$$

following from the fact that if one takes $\ell=\min (m, n)$ and all $\ell \times \ell$ minors vanish, then the largest nonzero minor must be of size $j \times j$ for $j \leq \ell-1$. But $\operatorname{det} M_{i j}$ is a polynomial $f_{i j}$ in its entries, which means that X can be written as

$$
X=V\left(\left\{f_{i j}\right\}\right)
$$

which exhibits X as a variety. Thus

$$
M=\left[\begin{array}{lll}
x & y & z \\
a & b & c
\end{array}\right] \Longrightarrow X=V(\langle x b-y a, y c-z b, x c-z a\rangle) \subset \mathbb{A}^{6}
$$

Claim: The ideal above is prime, and so the coordinate ring $A(X)$ is a domain and thus X is irreducible.

Claim: $\operatorname{dim}(X)=4$.
Heuristic: there are three degrees of freedom in choosing the first row x, y, z. To enforce the rank 1 condition, the second row must be a scalar multiple of the first, yielding one degree of freedom for the scalar.

Note: I looked at this for a couple of hours, but I don't know how to prove either of these statements with the tools we have so far!

Exercise 3.0.4(Gathmann 2.34): Let X be a topological space, and show
a. If $\left\{U_{i}\right\}_{i \in I} \rightrightarrows X$, then $\operatorname{dim} X=\sup _{i \in I} \operatorname{dim} U_{i}$.
b. If X is an irreducible affine variety and $U \subset X$ is a nonempty subset, then $\operatorname{dim} X=\operatorname{dim} U$. Does this hold for any irreducible topological space?

Solution:

Strictly for notational convenience, we'll treat $\left\{U_{i}\right\}$ is if it were a countable open cover.
Part a: We first note that if $U \subseteq V$, then $\operatorname{dim} U \leq \operatorname{dim} V$. If this were not the case, one could find a chain $\left\{I_{j}\right\}$ of closed irreducible subsets of V of length $n>\operatorname{dim} U$. But then $I_{j}^{\prime}:=I_{j} \cap U$ would again be a closed irreducible set, yielding a chain of length n in U. Thus $\operatorname{dim} X \geq \operatorname{dim} U_{i}$, and it remains true that $\operatorname{dim} X \geq \sup \operatorname{dim} U_{i}$, so it suffices to show that $\operatorname{dim} X \leq \sup \operatorname{dim} U_{i}$.

Set $s:=\sup _{i} \operatorname{dim} U_{i}$ and $n:=\operatorname{dim} X$, we want to show that $s \geq n$. Let $\left\{I_{j}\right\}_{j \leq n}$ be a maximal chain of length n of closed irreducible subsets of X, so we have

$$
\emptyset \subsetneq I_{0} \subsetneq I_{1} \subsetneq \cdots \subsetneq I_{n} \subseteq X
$$

Since $I_{0} \subset X$ and $\left\{U_{i}\right\}$ covers X, we can find some $U_{0} \in\left\{U_{i}\right\}$ such that $I_{0} \cap U_{0}$ is nonempty, since otherwise there would be a point in $I_{0} \cap\left(X \backslash \cup_{i \in J} U_{i}\right)=\emptyset$. We can do this for every I_{j}, so define $A_{j}:=I_{j} \cap U_{0}$.

Each A_{j} is now closed in U_{0}, and must remain irreducible, since any decomposition of A_{j} would lift to a decomposition of I_{0}. To see that $A_{0} \subsetneq A_{1}$, i.e. that the inclusions are still
proper, we can just note that

$$
x \in A_{i+1} \backslash A_{i} \Longleftrightarrow x \in\left(I_{i+1} \cap U_{0}\right) \backslash\left(I_{i} \cap U_{0}\right)=\left(I_{1} \backslash I_{2}\right) \cap U_{0}=\emptyset .
$$

But this exhibits a length n chain in U_{0}, so $\operatorname{dim} U_{0} \geq n$. Taking suprema, we have

$$
n \leq \operatorname{dim} U_{0} \leq \sup _{i \in J} \operatorname{dim} U_{i}=s
$$

Part b: The answer is no: we can produce a space X with some $\operatorname{dim} X$ and a subset U satisfying $\operatorname{dim} U<\operatorname{dim} X$.
Define a space and a topology by

$$
X:=\{a, b\} \quad \tau:=\{\emptyset, X,\{1\}\},
$$

Here $\{b\}$ is the only proper and closed subset, since its complement is open, so X must be irreducible. We can find an maximal ascending chain of length 1 ,

$$
\emptyset \subsetneq\{b\} \subsetneq X,
$$

and so $\operatorname{dim} X=1$. However, for $U:=\{a\}$, there is only one possible maximal chain:

$$
\emptyset \subsetneq\{a\}=X,
$$

so $\operatorname{dim} U=0$.

Exercise 3.0.5(Gathmann 2.36): Prove the following:
a. Every noetherian topological space is compact. In particular, every open subset of an affine variety is compact in the Zariski topology.
b. A complex affine variety of dimension at least 1 is never compact in the classical topology.

Exercise 3.0.6(Gathmann 2.40): Let

$$
R=k\left[x_{1}, x_{2}, x_{3}, x_{4}\right] /\left\langle x_{1} x_{4}-x_{2} x_{3}\right\rangle
$$

and show the following:
a. R is an integral domain of dimension 3 .
b. x_{1}, \cdots, x_{4} are irreducible but not prime in R, and thus R is not a UFD.
c. $x_{1} x_{4}$ and $x_{2} x_{3}$ are two decompositions of the same element in R which are nonassociate.
d. $\left\langle x_{1}, x_{2}\right\rangle$ is a prime ideal of codimension 1 in R that is not principal.

Exercise 3.0.7 (Problem 5): Consider a set U in the complement of $(0,0) \in \mathbb{A}^{2}$. Prove that any regular function on U extends to a regular function on all of \mathbb{A}^{2}.

4 Problem Set 4 (Tuesday, October 06)

Problem. (Gathmann 3.20)
Let $X \subset \mathbb{A}^{n}$ be an affine variety and $a \in X$. Show that

$$
\mathcal{O}_{X, a}=\mathcal{O}_{\mathbb{A}^{n}, a} / I(X) \mathcal{O}_{A^{n}, a}
$$

where $I(X) \mathcal{O}_{\mathbb{A}^{n}, a}$ denotes the ideal in $\mathcal{O}_{\mathbb{A}^{n}, a}$ generated by all quotients $f / 1$ for $f \in I(X)$.

Problem. (Gathmann 3.21)
Let $a \in \mathbb{R}$, and consider sheaves \mathcal{F} on \mathbb{R} with the standard topology:

1. $\mathcal{F}:=$ the sheaf of continuous functions
2. $\mathcal{F}:=$ the sheaf of locally polynomial functions.

For which is the stalk \mathcal{F}_{a} a local ring?
Recall that a local ring has precisely one maximal ideal.

Problem. (Gathmann 3.22)

Let $\varphi, \psi \in \mathcal{F}(U)$ be two sections of some sheaf \mathcal{F} on an open $U \subseteq X$ and show that
a. If φ, ψ agree on all stalks, so $\overline{(U, \varphi)}=\overline{(U, \psi)} \in \mathcal{F}_{a}$ for all $a \in U$, then φ and ψ are equal.
b. If $\mathcal{F}:=\mathcal{O}_{X}$ is the sheaf of regular functions on some irreducible affine variety X, then if $\psi=\varphi$ on one stalk \mathcal{F}_{a}, then $\varphi=\psi$ everywhere.
c. For a general sheaf \mathcal{F} on $X,(b)$ is false.

Definition 4.0.1 (Stalk at a subspace)
Let $Y \subset X$ be a nonempty and irreducible subspace of X a topological space with a sheaf \mathcal{F} on X. Then the stalk of \mathcal{F} at Y is defined by the pairs (U, φ) such that $U \subset X$ is open, $U \cap Y$ is nonempty, and $\varphi \in \mathcal{F}(U)$, where we identify $(U, \varphi) \sim\left(U^{\prime}, \varphi^{\prime}\right)$ iff there is a small enough open set such that the restrictions agree.

Problem. (Gathmann 3.23: Geometry of a Certain Localization)
Let $Y \subset X$ be a nonempty and irreducible subvariety of an affine variety X, and show that the stalk $\mathcal{O}_{X, Y}$ of \mathcal{O}_{X} at Y is a k-algebra which is isomorphic to the localization $A(X)_{I(Y)}$.

Problem. (Gathmann 3.24)
Let \mathcal{F} be a sheaf on X a topological space and $a \in X$. Show that the stalk \mathcal{F}_{a} is a local object, i.e. if $U \subset X$ is an open neighborhood of a, then \mathcal{F}_{a} is isomorphic to the stalk of $\left.\mathcal{F}\right|_{U}$ at a on U viewed as a topological space.

$5 \mid$ Problem Set 5 (Monday, October 26)

Problem. (Gathmann 4.13)
Let $f: X \rightarrow Y$ be a morphism of affine varieties and $f^{*}: A(Y) \rightarrow A(X)$ the induced map on coordinate rings. Determine if the following statements are true or false:
a. f is surjective $\Longleftrightarrow f^{*}$ is injective.
b. f is injective $\Longleftrightarrow f^{*}$ is surjective.
c. If $f: \mathbb{A}^{1} \rightarrow \mathbb{A}^{1}$ is an isomorphism, then f is affine linear, i.e. $f(x)=a x+b$ for some $a, b \in k$.
d. If $f: \mathbb{A}^{2} \rightarrow \mathbb{A}^{2}$ is an isomorphism, then f is affine linear, i.e. $f(x)=A x+b$ for some $a \in \operatorname{Mat}(2 \times 2, k)$ and $b \in k^{2}$.

Solution:

a. True. This follows because if $p, q \in A(Y)$, then

$$
\begin{array}{rlr}
f * p & =f^{*} q & \\
& \Longrightarrow(p \circ f)=(q \circ f) \quad \text { by definition } \\
& \Longrightarrow p=q
\end{array}
$$

where in the last implication we've used the fact that f is surjective iff f admits a right-inverse.

Problem. (Gathmann 4.19)
Which of the following are isomorphic as ringed spaces over \mathbb{C} ?
(a) $\mathbb{A}^{1} \backslash\{1\}$
(b) $V\left(x_{1}^{2}+x_{2}^{2}\right) \subset \mathbb{A}^{2}$
(c) $V\left(x_{2}-x_{1}^{2}, x_{3}-x_{1}^{3}\right) \backslash\{0\} \subset \mathbb{A}^{3}$
(d) $V\left(x_{1} x_{2}\right) \subset \mathbb{A}^{2}$
(e) $V\left(x_{2}^{2}-x_{1}^{3}-x_{1}^{2}\right) \subset \mathbb{A}^{2}$
(f) $V\left(x_{1}^{2}-x_{2}^{2}-1\right) \subset \mathbb{A}^{2}$

Problem. (Gathmann 5.7)
Show that
a. Every morphism $f: \mathbb{A}^{1} \backslash\{0\} \rightarrow \mathbb{P}^{1}$ can be extended to a morphism $\widehat{f}: \mathbb{A}^{1} \rightarrow \mathbb{P}^{1}$.
b. Not every morphism $f: \mathbb{A}^{2} \backslash\{0\} \rightarrow \mathbb{P}^{1}$ can be extended to a morphism $\widehat{f}: \mathbb{A}^{2} \rightarrow \mathbb{P}^{1}$.
c. Every morphism $\mathbb{P}^{1} \rightarrow \mathbb{A}^{1}$ is constant.

Problem. (Gathmann 5.8)

Show that
a. Every isomorphism $f: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ is of the form

$$
f(x)=\frac{a x+b}{c x+d} \quad a, b, c, d \in k
$$

where x is an affine coordinate on $\mathbb{A}^{1} \subset \mathbb{P}^{1}$.
b. Given three distinct points $a_{i} \in \mathbb{P}^{1}$ and three distinct points $b_{i} \in \mathbb{P}^{1}$, there is a unique isomorphism $f: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ such that $f\left(a_{i}\right)=b_{i}$ for all i.

Proposition 5.0.1(?).
There is a bijection

$$
\{\text { morphisms } X \rightarrow Y\} \stackrel{\text { l:1 }}{\stackrel{\text { lit }}{\longleftrightarrow}}\left\{K \underset{f^{*}}{\text {-algebra homomorphisms }} \mathscr{O}_{Y}(Y) \rightarrow \mathscr{O}_{X}(X)\right\}
$$

Problem. (Gathmann 5.9)
Does the above bijection hold if
a. X is an arbitrary prevariety but Y is still affine?
b. Y is an arbitrary prevariety but X is still affine?

