Algebraic Geometry Problems

D. Zack Garza

Contents

1	Problem Set 1	2
2	Problem Set 2	7
3	Problem Set 3	11
4	Problem Set 4 (Tuesday, October 06)	14
5	Problem Set 5 (Monday, October 26)	15

1

Source: Section 1 of Gathmann

1 | Problem Set 1

Exercise 1.0.1 (Gathmann 1.19): Prove that every affine variety $X \subset \mathbb{A}^n/k$ consisting of only finitely many points can be written as the zero locus of n polynomials.

Hint: Use interpolation. It is useful to assume at first that all points in X have different x_1 -coordinates.

Solution:

Let $X = {\mathbf{p}_1, \dots, \mathbf{p}_d} = {\mathbf{p}_j}_{j=1}^d$, where each $\mathbf{p}_j \in \mathbb{A}^n$ can be written in coordinates

$$\mathbf{p}_j \coloneqq \left[p_j^1, p_j^2, \cdots, p_j^n\right]$$

Remark 1.0.2: Proof idea: for some fixed k with $2 \le k \le n$, consider the pairs $(p_j^1, p_j^k) \in \mathbb{A}^2$. Letting j range over $1 \le j \le d$ yields d points of the form $(x, y) \in \mathbb{A}^2$, so construct an interpolating polynomial such that f(x) = y for each tuple. Then f(x) - y vanishes at every such tuple.

Doing this for each k (keeping the first coordinate always of the form p_j^1 and letting the second coordinate vary) yields n-1 polynomials in $k[x_1, x_k] \subseteq k[x_1, \dots, x_n]$, then adding in the polynomial $p(x) = \prod_j (x - p_j^1)$ yields a system the vanishes precisely on $\{\mathbf{p}_j\}$.

Claim: Without loss of generality, we can assume all of the first components $\{p_j^1\}_{j=1}^d$ are distinct.

We will use the following fact:

Todo: follows from "rotation of axes"

Theorem 1.0.3(Lagrange).

Given a set of d points $\{(x_i, y_i)\}_{i=1}^d$ with all x_i distinct, there exists a unique polynomial of degree d in $f \in k[x]$ such that $\tilde{f}(x_i) = y_i$ for every i. This can be explicitly given by

$$\tilde{f}(x) = \sum_{i=1}^{d} y_i \left(\prod_{\substack{0 \le m \le d \\ m \ne i}} \left(\frac{x - x_m}{x_i - x_m} \right) \right).$$

Equivalently, there is a polynomial f defined by $f(x_i) = \tilde{f}(x_i) - y_i$ of degree d whose roots are precisely the x_i .

Using this theorem, we define a system of n polynomials in the following way:

• Define $f_1 \in k[x_1] \subseteq k[x_1, \cdots, x_n]$ by

$$f_1(x) = \prod_{i=1}^d \left(x - p_i^1 \right).$$

Then the roots of f_1 are precisely the first components of the points p.

• Define $f_2 \in k[x_1, x_2] \subseteq k[x_1, \cdots, x_n]$ by considering the ordered pairs

$$\left\{ (x_1, x_2) = (p_j^1, p_j^2) \right\},\$$

then taking the unique Lagrange interpolating polynomial \tilde{f}_2 satisfying $\tilde{f}_2(p_j^1) = p_j^2$ for all $1 \leq j \leq d$. Then set $f_2 \coloneqq \tilde{f}_2(x_1) - x_2 \in k[x_1, x_2]$.

• Define $f_3 \in k[x_1, x_3] \subseteq k[x_1, \cdots, x_n]$ by considering the ordered pairs

$$\left\{ (x_1, x_3) = (p_j^1, p_j^3) \right\},\$$

then taking the unique Lagrange interpolating polynomial \tilde{f}_3 satisfying $\tilde{f}_2(p_j^1) = p_j^3$ for all $1 \leq j \leq d$. Then set $f_3 \coloneqq \tilde{f}_3(x_1) - x_3 \in k[x_1, x_3]$.

• • • •

Continuing in this way up to $f_n \in k[x_1, x_n]$ yields a system of n polynomials.

Proposition 1.0.4. $V(f_1, \cdots, f_n) = X.$

Proof.

Claim: $X \subseteq V(f_i)$: This is essentially by construction. Letting $p_i \in X$ be arbitrary, we find that

$$f_1(p_j) = \prod_{i=1}^{a} \left(p_j^1 - p_i^1 \right) = \left(p_j^1 - p_j^1 \right) \prod_{\substack{i \le d \\ i \ne j}} \left(p_j^1 - p_i^1 \right) = 0.$$

Similarly, for $2 \le k \le n$,

$$f_k(p_j) = \tilde{f}_k(p_j^1) - p_j^k = 0,$$

which follows from the fact that $\tilde{f}_k(p_j^1) = p_j^k$ for every k and every j by the construction of \tilde{f}_k .

Claim: $X^c \subseteq V(f_i)^c$:

This follows from the fact the polynomials f given by Lagrange interpolation are unique, and thus the roots of \tilde{f} are unique. But if some other point was in $V(f_i)$, then one of its coordinates would be another root of some \tilde{f} .

Exercise 1.0.5 (Gathmann 1.21): Determine \sqrt{I} for

$$I \coloneqq \left\langle x_1^3 - x_2^6, \, x_1 x_2 - x_2^3 \right\rangle \, \trianglelefteq \, \mathbb{C}[x_1, x_2].$$

Solution:

For notational purposes, let \mathcal{I}, \mathcal{V} denote the maps in Hilbert's Nullstellensatz, we then have

$$(\mathcal{I} \circ \mathcal{V})(I) = \sqrt{I}.$$

So we consider $\mathcal{V}(I) \subseteq \mathbb{A}^2/\mathbb{C}$, the vanishing locus of these two polynomials, which yields the system

$$\begin{cases} x^3 - y^6 &= 0\\ xy - y^3 &= 0. \end{cases}$$

In the second equation, we have $(x - y^2)y = 0$, and since $\mathbb{C}[x, y]$ is an integral domain, one term must be zero.

- 1. If y = 0, then $x^3 = 0 \implies x = 0$, and thus $(0,0) \in \mathcal{V}(I)$, i.e. the origin is contained in this vanishing locus.
- 2. Otherwise, if $x y^2 = 0$, then $x = y^2$, with no further conditions coming from the first equation.

Combining these conditions,

$$P \coloneqq \left\{ (t^2, t) \mid t \in \mathbb{C} \right\} \subset \mathcal{V}(I).$$

where $I = \langle x^3 - y^6, xy - y^3 \rangle$. We have $P = \mathcal{V}(I)$, and so taking the ideal generated by P yields

$$(\mathcal{I} \circ \mathcal{V})(I) = \mathcal{I}(P) = \left\langle y - x^2 \right\rangle \in \mathbb{C}[x, y]$$

and thus $\sqrt{I} = \langle y - x^2 \rangle$.

Exercise 1.0.6 (Gathmann 1.22): Let $X \subset \mathbb{A}^3/k$ be the union of the three coordinate axes. Compute generators for the ideal I(X) and show that it can not be generated by fewer than 3 elements.

Solution: Claim:

$$I(X) = \langle x_2 x_3, \, x_1 x_3, \, x_1 x_2 \rangle \,.$$

We can write $X = X_1 \cup X_2 \cup X_3$, where

- The x_1 -axis is given by $X_1 \coloneqq V(x_2 x_3) \implies I(X_1) = \langle x_2 x_3 \rangle$,
- The x_2 -axis is given by $X_2 \coloneqq V(x_1x_3) \implies I(X_2) = \langle x_1x_3 \rangle$,
- The x_3 -axis is given by $X_3 \coloneqq V(x_1 x_2) \implies I(X_3) = \langle x_1 x_2 \rangle.$

Here we've used, for example, that

$$I(V(x_2x_3)) = \sqrt{\langle x_2x_3 \rangle} = \langle x_2x_3 \rangle$$

by applying the Nullstellensatz and noting that $\langle x_2 x_3 \rangle$ is radical since it is generated by a squarefree monomial.

We then have

$$\begin{split} I(X) &= I(X_1 \cup X_2 \cup X_3) \\ &= I(X_1) \cap I(X_2) \cap I(X_3) \\ &= \sqrt{I(X_1) + I(X_2) + I(X_3)} \\ &= \sqrt{\langle x_2, x_3 \rangle + \langle x_1 x_3 \rangle + \langle x_1 x_2 \rangle} \\ &= \sqrt{\langle x_2 x_3, x_1 x_3, x_1 x_2 \rangle} \\ &= \langle x_2 x_3, x_1 x_3, x_1 x_2 \rangle, \end{split}$$
 since $\langle a \rangle + \langle b \rangle = \langle a, b \rangle$

where in the last equality we've again used the fact that an ideal generated by squarefree monomials is radical.

Claim: I(X) can not be generated by 2 or fewer elements. Let J := I(X) and $R := k[x_1, x_2, x_3]$, and toward a contradiction, suppose $J = \langle r, s \rangle$. Define $\mathfrak{m} := \langle x, y, z \rangle$ and a quotient map

$$\pi:J\to J/\mathfrak{m}J$$

and consider the images $\pi(r), \pi(s)$.

Note that $J/\mathfrak{m}J$ is an R/\mathfrak{m} -module, and since $R/\mathfrak{m} \cong k$, $J/\mathfrak{m}J$ is in fact a k-vector space. Since $\pi(r), \pi(s)$ generate $J/\mathfrak{m}J$ as a k-module,

$$\dim_k J/\mathfrak{m}J \leq 2.$$

But this is a contradiction, since we can produce 3 k-linearly independent elements in $J/\mathfrak{m}J$: namely $\pi(x_1x_2), \pi(x_1x_3), \pi(x_2x_3)$. Suppose there exist α_i such that

$$\alpha_1\pi(x_1x_2) + \alpha_2\pi(x_1x_3) + \alpha_3\pi(x_2x_3) = 0 \in J/\mathfrak{m}J \iff \alpha_1x_1x_2 + \alpha_2x_1x_3 + \alpha_3x_2x_3 \in \mathfrak{m}J,$$

But we can then note that

$$\mathfrak{m}J = \langle x_1, x_2.x_3 \rangle \, \langle x_1x_2, x_1x_3, x_2x_3 \rangle = \left\langle x_1^2x_2, \, x_1^2x_3, \, x_1x_2x_3, \cdots \right\rangle.$$

can't contain any nonzero elements of degree d < 3, so no such α_i can exist and these elements are k-linearly independent.

Exercise 1.0.7 (Gathmann 1.23: Relative Nullstellensatz): Let $Y \subset \mathbb{A}^n/k$ be an affine variety and define A(Y) by the quotient

$$\pi: k[x_1, \cdots, x_n] \to A(Y) \coloneqq k[x_1, \cdots, x_n]/I(Y).$$

- a. Show that $V_Y(J) = V(\pi^{-1}(J))$ for every $J \leq A(Y)$.
- b. Show that $\pi^{-1}(I_Y(X)) = I(X)$ for every affine subvariety $X \subseteq Y$.
- c. Using the fact that $I(V(J)) \subset \sqrt{J}$ for every $J \leq k[x_1, \cdots, x_n]$, deduce that $I_Y(V_Y(J)) \subset \sqrt{J}$ for every $J \leq A(Y)$.

Conclude that there is an inclusion-reversing bijection

$$\left\{ \begin{array}{c} \text{Affine subvarieties} \\ \text{of } Y \end{array} \right\} \iff \left\{ \begin{array}{c} \text{Radical ideals} \\ \text{in } A(Y) \end{array} \right\}.$$

Exercise 1.0.8 (*Extra*): Let $J \leq k[x_1, \dots, x_n]$ be an ideal, and find a counterexample to I(V(J)) = \sqrt{J} when k is not algebraically closed.

Solution:

Take $J = \langle x^2 + 1 \rangle \leq \mathbb{R}[x]$, noting that J is nontrivial and proper but \mathbb{R} is not algebraically closed. Then $V(J) \subseteq \mathbb{R}$ is empty, and thus $I(V(J)) = I(\emptyset)$.

Claim: $I(V(J)) = \mathbb{R}[x]$. Checking definitions, for any set $X \subset \mathbb{A}^n/k$ we have

$$I(X) = \left\{ f \in \mathbb{R}[x] \mid \forall x \in X, \, f(x) = 0 \right\}$$

and so we vacuously have

$$I(\emptyset) = \left\{ f \in \mathbb{R}[x] \mid \forall x \in \emptyset, \ f(x) = 0 \right\} = \left\{ f \in \mathbb{R}[x] \right\} = \mathbb{R}[x].$$

Claim: $\sqrt{J} \neq \mathbb{R}[x]$.

This follows from the fact that maximal ideals are radical, and $\mathbb{R}[x]/J \cong \mathbb{C}$ being a field implies that J is maximal. In this case $\sqrt{J} = J \neq \mathbb{R}[x]$.

That maximal ideals are radical follows from the fact that if $J \leq R$ is maximal, we have $J \subset \sqrt{J} \subset R$ which forces $\sqrt{J} = J$ or $\sqrt{J} = R$.

But if $\sqrt{J} = R$, then

$$1 \in \sqrt{J} \implies 1^n \in J$$
 for some $n \implies 1 \in J \implies J = R$,

contradicting the assumption that J is maximal and thus proper by definition.

Problem Set 2 2

Exercise 2.0.1 (Gathmann 2.17): Find the irreducible components of

$$X = V(x - yz, xz - y^2) \subset \mathbb{A}^3/\mathbb{C}.$$

Solution:

Since x = yz for all points in X, we have

$$X = V(x - yz, yz^{2} - y^{2})$$

= $V(x - yz, y(z^{2} - y))$
= $V(x - yz, y) \cup V(x - yz, z^{2} - y)$
:= $X_{1} \cup X_{2}$.

Claim: These two subvarieties are irreducible.

It suffices to show that the $A(X_i)$ are integral domains. We have

$$A(X_1) \coloneqq \mathbb{C}[x, y, z] / \langle x - yz, y \rangle \cong \mathbb{C}[y, z] / \langle y \rangle \cong \mathbb{C}[z],$$

which is an integral domain since $\mathbb C$ is a field and thus an integral domain, and

$$A(X_2) \coloneqq \mathbb{C}[x, y, z] / \left\langle x - yz, z^2 - y \right\rangle \cong \mathbb{C}[y, z] / \left\langle z^2 - y \right\rangle \cong \mathbb{C}[y],$$

which is an integral domain for the same reason.

Exercise 2.0.2 (Gathmann 2.18): Let $X \subset \mathbb{A}^n$ be an arbitrary subset and show that

 $V(I(X)) = \overline{X}.$

Solution:

 $\overline{X} \subseteq V(I(X))$: We have $X \subseteq V(I(X))$ and since V(J) is closed in the Zariski topology for any ideal $J \leq k[x_1, \dots, x_n]$ by definition, V(I(X)) is closed. Thus

$$X \subseteq V(I(X))$$
 and $V(I(X))$ closed $\implies \overline{X} \subseteq V(I(X))$,

since \overline{X} is the intersection of all closed sets containing X.

 $V(I(X)) \subseteq \overline{X}$: Noting that $V(\cdot), I(\cdot)$ are individually order-reversing, we find that $V(I(\cdot))$ is order-*preserving* and thus

$$X \subseteq \overline{X} \implies V(I(X)) \subseteq V(I(\overline{X})) = \overline{X},$$

where in the last equality we've used part (i) of the Nullstellensatz: if X is an affine variety, then V(I(X)) = X. This applies here because \overline{X} is always closed, and the closed sets in the Zariski topology are precisely the affine varieties.

Exercise 2.0.3 (*Gathmann 2.21*): Let $\{U_i\}_{i \in I} \rightrightarrows X$ be an open cover of a topological space with $U_i \cap U_j \neq \emptyset$ for every i, j.

- a. Show that if U_i is connected for every *i* then X is connected.
- b. Show that if U_i is irreducible for every *i* then X is irreducible.

Solution(a):

Suppose toward a contradiction that $X = X_1 \coprod X_2$ with X_i proper, disjoint, and open. Since $\{U_i\} \Rightarrow X$, for each $j \in I$ this would force one of $U_j \subseteq X_1$ or $U_j \subseteq X_2$, since otherwise $U_j \cap X_1 \cap X_2$ would be nonempty.

So without loss of generality (relabeling if necessary), assume $U_j \in X_1$ for some fixed j. But then for every $i \neq j$, we have $U_i \cap U_j$ nonempty by assumption, and so in fact $U_i \subseteq X_1$ for every $i \in I$. But then $\bigcup_{i \in I} U_i \subseteq X_1$, and since $\{U_i\}$ was a cover, this forces $X \subseteq X_1$ and thus $X_2 = \emptyset$.

Solution(b):

Claim: X is irreducible \iff any two open subsets intersect. This follows because otherwise, if $U, V \subset X$ are open and disjoint then $X \setminus U, X \setminus V$ are proper and closed. But then we can write $X = (X \setminus U) \coprod (X \setminus V)$ as a union of proper closed subsets, forcing X to not be irreducible.

So it suffices to show that if $U, V \subset X$ then $U \cap V$ is nonempty. Since $\{U_i\} \rightrightarrows X$, we can find a pair i, j such that there is at least one point in $U \cap U_i$ and one point in $V \cap U_j$.

But by assumption $U_i \cap U_j$ is nonempty, so both $U \cap U_i$ and $U_j \cap U_i$ are open nonempty subsets of U_i . Since U_i was assumed irreducible, they must intersect, so there exists a point

$$x_0 \in (U \cap U_i) \cap (U_j \cap U_i) = U \cap (U_i \cap U_j) \coloneqq \tilde{U}.$$

We can now similarly note that $\tilde{U} \cap V$ and $U_j \cap V$ are nonempty open subsets of V, and thus intersect. So there is a point

$$\tilde{x}_0 \in \left(\tilde{U} \cap V\right) \cap \left(U_j \cap V\right) = \tilde{U} \cap V = U \cap V \cap \left(U_i \cap U_j\right),$$

and in particular $\tilde{x}_0 \in U \cap V$ as desired.

Exercise 2.0.4 (Gathmann 2.22): Let $f: X \to Y$ be a continuous map of topological spaces.

- a. Show that if X is connected then f(X) is connected.
- b. Show that if X is irreducible then f(X) is irreducible.

Solution(a): Toward a contradiction, if $f(X) = Y_1 \coprod Y_2$ with Y_1, Y_2 nonempty and open in Y, then

$$f^{-1}(f(X)) \subseteq X$$

on one hand, and

$$f^{-1}(f(X)) = f^{-1}(Y_1) \coprod f^{-1}(Y_2)$$

on the other. If f is continuous, the preimages $f^{-1}(Y_i)$ are open (and nonempty), so X contains a disconnected subset. However, every subset of a connected set must be connected, so this contradicts the connectedness of X.

Solution(b): Suppose $f(X) = Y_1 \cup Y_2$ with Y_i proper closed subsets of Y. Then $f^{-1}(Y_1) \cup f^{-1}(Y^2) = (f^{-1} \circ f)(X) \subseteq X$ are closed in X, since f is continuous. Since X is irreducible, without loss of generality (by relabeling), this forces $X_1 = \emptyset$. But then $f(X_1) = \emptyset$, forcing $f(X) = Y_2$.

Definition 2.0.5 (Ideal Quotient) For two ideals $J_1, J_2 \leq R$, the *ideal quotient* is defined by

$$J_1: J_2 \coloneqq \left\{ f \in R \mid f J_2 \subset J_1 \right\}.$$

Exercise 2.0.6 (Gathmann 2.23): Let X be an affine variety.

a. Show that if $Y_1, Y_2 \subset X$ are subvarieties then

$$I(\overline{Y_1 \setminus Y_2}) = I(Y_1) : I(Y_2)$$

b. If $J_1, J_2 \leq A(X)$ are radical, then

$$\overline{V(J_1) \setminus V(J_2)} = V(J_1 : J_2).$$

Solution: ?

Exercise 2.0.7 (*Gathmann 2.24*): Let $X \subset \mathbb{A}^n$, $Y \subset \mathbb{A}^m$ be irreducible affine varieties, and show that $X \times Y \subset \mathbb{A}^{n+m}$ is irreducible.

Solution:

That $X \times Y$ is again an affine variety follows from writing X = V(I), Y = V(J), then $X \times Y = V(I+J)$ where $I + J \leq k[x_1, \dots, x_n, y_1, \dots, y_m]$. So let

$$X \times Y = U \cup V$$

with U, V proper and closed, and let π_X, π_Y be the projections onto the factors.

Claim: For each $x \in X$, $\pi^{-1}(x) \cong Y$ is contained in only one of U or V. Note that if this is true, we can write $X = G_U \cup G_V$ where

$$G_U \coloneqq \left\{ x \in X \mid \pi_X^{-1}(x) \subseteq U \right\}$$

are the points for which the entire fiber lies in U, and similarly G_V are those for which the fiber lies in V. If we can then show that G_U, G_V are closed, by irreducibility of X this will force (wlog) $G_V = \emptyset$ and $X = G_U$. But then

$$\pi_X^{-1}(X) = X \times Y$$
 and $\pi_X^{-1}(G_U) = U \implies X \times Y = U.$

which shows that $X \times Y$ is irreducible.

Proof (Every fiber is contained in one irreducible component). For any fixed x, we can write

$$\pi_X^{-1}(x) = \left(\pi_X^{-1}(x) \cap U\right) \cup \left(\pi_X^{-1}(x) \cap V\right).$$

Since points are closed in the Zariski topology and π_X is continuous, each $\pi_X^{-1}(x)$ is closed. and thus $\pi_X^{-1}(x) \cap U$ is closed (and similarly for V). Noting that $\pi_X^{-1}(x) \cong \{x\} \times Y \cong Y$, where we've assumed Y to be irreducible, we can conclude whog that $\pi_X^{-1}(x) \cap V = \emptyset$.

Proof $(G_U, G_V \text{ are closed})$. Wlog consider $G_U \subseteq X$. Fixing any point $y_0 \in Y$, we have

$$X \cong X_{y_0} \coloneqq X \times \{y_0\} \subseteq X \times Y_{y_0}$$

so we can identify $G_U \subset X$ with $G_U \subset X_{y_0}$ inside a Y-fiber the product. But then

$$G_U = X_{y_0} \cap U \subseteq X \times Y,$$

where U is closed in $X \times Y$ and thus closed in X_{y_0} , and X_{y_0} is trivially closed in itself. This exhibits G_U as the intersection of two sets that are closed in $X_{y_0} \cong X$.

3 | Problem Set 3

Exercise 3.0.1 (Gathmann 2.33): Define

 $X \coloneqq \left\{ M \in \operatorname{Mat}(2 \times 3, k) \mid \operatorname{rank} M \le 1 \right\} \subseteq \mathbb{A}^6/k.$

Show that X is an irreducible variety, and find its dimension.

Solution:

We'll use the following fact from linear algebra:

Definition (Matrix Minor)

For an $m \times n$ matrix, a *minor of order* ℓ is the determinant of a $\ell \times \ell$ submatrix obtained by deleting any $m - \ell$ rows and any $n - \ell$ columns.

Theorem 3.0.3 (Rank is a Function of Minors).

If $A \in Mat(m \times n, k)$ is a matrix, then the rank of A is equal to the order of largest nonzero minor.

Thus

$$M_{ij} = 0$$
 for all $\ell \times \ell$ minors $M_{ij} \iff \operatorname{rank}(M) < \ell$,

following from the fact that if one takes $\ell = \min(m, n)$ and all $\ell \times \ell$ minors vanish, then the largest nonzero minor must be of size $j \times j$ for $j \leq \ell - 1$. But det M_{ij} is a polynomial f_{ij} in its entries, which means that X can be written as

$$X = V\left(\{f_{ij}\}\right),\,$$

which exhibits X as a variety. Thus

$$M = \begin{bmatrix} x & y & z \\ a & b & c \end{bmatrix} \implies X = V\left(\langle xb - ya, yc - zb, xc - za \rangle\right) \subset \mathbb{A}^6$$

Claim: The ideal above is prime, and so the coordinate ring A(X) is a domain and thus X is irreducible.

Claim: $\dim(X) = 4$.

Heuristic: there are three degrees of freedom in choosing the first row x, y, z. To enforce the rank 1 condition, the second row must be a scalar multiple of the first, yielding one degree of freedom for the scalar.

Note: I looked at this for a couple of hours, but I don't know how to prove either of these statements with the tools we have so far!

Exercise 3.0.4 (Gathmann 2.34): Let X be a topological space, and show

- a. If $\{U_i\}_{i\in I} \rightrightarrows X$, then dim $X = \sup_{i\in I} \dim U_i$.
- b. If X is an irreducible affine variety and $U \subset X$ is a nonempty subset, then dim $X = \dim U$. Does this hold for any irreducible topological space?

Solution:

Strictly for notational convenience, we'll treat $\{U_i\}$ is if it were a countable open cover. **Part a:** We first note that if $U \subseteq V$, then dim $U \leq \dim V$. If this were not the case, one could find a chain $\{I_j\}$ of closed irreducible subsets of V of length $n > \dim U$. But then $I'_j := I_j \cap U$ would again be a closed irreducible set, yielding a chain of length n in U. Thus dim $X \geq \dim U_i$, and it remains true that dim $X \geq \sup \dim U_i$, so it suffices to show that dim $X \leq \sup \dim U_i$.

Set $s := \sup_{i} \dim U_i$ and $n := \dim X$, we want to show that $s \ge n$. Let $\{I_j\}_{j \le n}$ be a maximal chain of length n of closed irreducible subsets of X, so we have

$$\emptyset \subsetneq I_0 \subsetneq I_1 \subsetneq \cdots \subsetneq I_n \subseteq X.$$

Since $I_0 \subset X$ and $\{U_i\}$ covers X, we can find some $U_0 \in \{U_i\}$ such that $I_0 \cap U_0$ is nonempty, since otherwise there would be a point in $I_0 \cap (X \setminus \bigcup_{i \in J} U_i) = \emptyset$. We can do this for every I_j , so define $A_j := I_j \cap U_0$.

Each A_j is now closed in U_0 , and must remain irreducible, since any decomposition of A_j would lift to a decomposition of I_0 . To see that $A_0 \subsetneq A_1$, i.e. that the inclusions are still

proper, we can just note that

$$x \in A_{i+1} \setminus A_i \iff x \in (I_{i+1} \cap U_0) \setminus (I_i \cap U_0) = (I_1 \setminus I_2) \cap U_0 = \emptyset.$$

But this exhibits a length n chain in U_0 , so dim $U_0 \ge n$. Taking suprema, we have

$$n \le \dim U_0 \le \sup_{i \in J} \dim U_i = s.$$

Part b: The answer is **no**: we can produce a space X with some dim X and a subset U satisfying dim $U < \dim X$.

Define a space and a topology by

$$X \coloneqq \{a, b\} \qquad \tau \coloneqq \{\emptyset, X, \{1\}\},\$$

Here $\{b\}$ is the only proper and closed subset, since its complement is open, so X must be irreducible. We can find an maximal ascending chain of length 1,

$$\emptyset \subsetneq \{b\} \subsetneq X,$$

and so dim X = 1. However, for $U := \{a\}$, there is only one possible maximal chain:

$$\emptyset \subsetneq \{a\} = X,$$

so $\dim U = 0$.

Exercise 3.0.5 (Gathmann 2.36): Prove the following:

- a. Every noetherian topological space is compact. In particular, every open subset of an affine variety is compact in the Zariski topology.
- b. A complex affine variety of dimension at least 1 is never compact in the classical topology.

Exercise 3.0.6 (Gathmann 2.40): Let

$$R = k[x_1, x_2, x_3, x_4] / \langle x_1 x_4 - x_2 x_3 \rangle$$

and show the following:

- a. R is an integral domain of dimension 3.
- b. x_1, \dots, x_4 are irreducible but not prime in R, and thus R is not a UFD.
- c. x_1x_4 and x_2x_3 are two decompositions of the same element in R which are nonassociate.
- d. $\langle x_1, x_2 \rangle$ is a prime ideal of codimension 1 in R that is not principal.

Exercise 3.0.7 (*Problem 5*): Consider a set U in the complement of $(0,0) \in \mathbb{A}^2$. Prove that any regular function on U extends to a regular function on all of \mathbb{A}^2 .

4 | Problem Set 4 (Tuesday, October 06)

Problem. (Gathmann 3.20) Let $X \subset \mathbb{A}^n$ be an affine variety and $a \in X$. Show that

$$\mathcal{O}_{X,a} = \mathcal{O}_{\mathbb{A}^n,a} / I(X) \mathcal{O}_{A^n,a},$$

where $I(X)\mathcal{O}_{\mathbb{A}^n,a}$ denotes the ideal in $\mathcal{O}_{\mathbb{A}^n,a}$ generated by all quotients f/1 for $f \in I(X)$.

Problem. (Gathmann 3.21) Let $a \in \mathbb{R}$, and consider sheaves \mathcal{F} on \mathbb{R} with the standard topology:

1. $\mathcal{F} :=$ the sheaf of continuous functions

2. $\mathcal{F} \coloneqq$ the sheaf of locally polynomial functions.

For which is the stalk \mathcal{F}_a a local ring? Recall that a local ring has precisely one maximal ideal.

Problem. (Gathmann 3.22)

Let $\varphi, \psi \in \mathcal{F}(U)$ be two sections of some sheaf \mathcal{F} on an open $U \subseteq X$ and show that

a. If φ, ψ agree on all stalks, so $\overline{(U,\varphi)} = \overline{(U,\psi)} \in \mathcal{F}_a$ for all $a \in U$, then φ and ψ are equal.

b. If $\mathcal{F} := \mathcal{O}_X$ is the sheaf of regular functions on some irreducible affine variety X, then if $\psi = \varphi$ on one stalk \mathcal{F}_a , then $\varphi = \psi$ everywhere.

c. For a general sheaf \mathcal{F} on X, (b) is false.

Definition 4.0.1 (Stalk at a subspace)

Let $Y \subset X$ be a nonempty and irreducible subspace of X a topological space with a sheaf \mathcal{F} on X. Then the stalk of \mathcal{F} at Y is defined by the pairs (U, φ) such that $U \subset X$ is open, $U \cap Y$ is nonempty, and $\varphi \in \mathcal{F}(U)$, where we identify $(U, \varphi) \sim (U', \varphi')$ iff there is a small enough open set such that the restrictions agree.

Problem. (Gathmann 3.23: Geometry of a Certain Localization) Let $Y \subset X$ be a nonempty and irreducible subvariety of an affine variety X, and show that the stalk $\mathcal{O}_{X,Y}$ of \mathcal{O}_X at Y is a k-algebra which is isomorphic to the localization $A(X)_{I(Y)}$.

Problem. (Gathmann 3.24)

Let \mathcal{F} be a sheaf on X a topological space and $a \in X$. Show that the stalk \mathcal{F}_a is a *local object*, i.e. if $U \subset X$ is an open neighborhood of a, then \mathcal{F}_a is isomorphic to the stalk of $\mathcal{F}|_U$ at a on U viewed as a topological space.

5

Problem Set 5 (Monday, October 26)

Problem. (Gathmann 4.13)

Let $f: X \to Y$ be a morphism of affine varieties and $f^*: A(Y) \to A(X)$ the induced map on coordinate rings. Determine if the following statements are true or false:

- a. f is surjective $\iff f^*$ is injective.
- b. f is injective $\iff f^*$ is surjective.
- c. If $f : \mathbb{A}^1 \to \mathbb{A}^1$ is an isomorphism, then f is affine linear, i.e. f(x) = ax + b for some $a, b \in k$.
- d. If $f : \mathbb{A}^2 \to \mathbb{A}^2$ is an isomorphism, then f is affine linear, i.e. f(x) = Ax + b for some $a \in Mat(2 \times 2, k)$ and $b \in k^2$.

Solution:

a. **True**. This follows because if $p, q \in A(Y)$, then

$$f * p = f^* q$$

$$\implies (p \circ f) = (q \circ f) \qquad \text{by definition}$$

$$\implies p = q,$$

where in the last implication we've used the fact that f is surjective iff f admits a right-inverse.

Problem. (Gathmann 4.19) Which of the following are isomorphic as ringed spaces over \mathbb{C} ?

(a) $\mathbb{A}^1 \setminus \{1\}$

(b)
$$V(x_1^2 + x_2^2) \subset \mathbb{A}^2$$

(c)
$$V(x_2 - x_1^2, x_3 - x_1^3) \setminus \{0\} \subset \mathbb{A}^3$$

(d)
$$V(x_1x_2) \subset \mathbb{A}^2$$

(e)
$$V\left(x_2^2 - x_1^3 - x_1^2\right) \subset \mathbb{A}^2$$

(f)
$$V(x_1^2 - x_2^2 - 1) \subset \mathbb{A}^2$$

Problem. (Gathmann 5.7) Show that

- a. Every morphism $f : \mathbb{A}^1 \setminus \{0\} \to \mathbb{P}^1$ can be extended to a morphism $\widehat{f} : \mathbb{A}^1 \to \mathbb{P}^1$.
- b. Not every morphism $f : \mathbb{A}^2 \setminus \{0\} \to \mathbb{P}^1$ can be extended to a morphism $\hat{f} : \mathbb{A}^2 \to \mathbb{P}^1$.
- c. Every morphism $\mathbb{P}^1 \to \mathbb{A}^1$ is constant.

Problem. (Gathmann 5.8) Show that

a. Every isomorphism $f: \mathbb{P}^1 \to \mathbb{P}^1$ is of the form

 $f(x) = \frac{ax+b}{cx+d} \qquad a, b, c, d \in k.$

where x is an affine coordinate on $\mathbb{A}^1 \subset \mathbb{P}^1$.

b. Given three distinct points $a_i \in \mathbb{P}^1$ and three distinct points $b_i \in \mathbb{P}^1$, there is a unique isomorphism $f : \mathbb{P}^1 \to \mathbb{P}^1$ such that $f(a_i) = b_i$ for all i.

Proposition 5.0.1(?). There is a bijection

 $\{ \text{ morphisms } X \to Y \} \xleftarrow{1:1} \{ K \text{ -algebra homomorphisms } \mathscr{O}_Y(Y) \to \mathscr{O}_X(X) \}$ $f \longmapsto f^*$

Problem. (Gathmann 5.9) Does the above bijection hold if

a. X is an arbitrary prevariety but Y is still affine?b. Y is an arbitrary prevariety but X is still affine?