# Projective Nullstellensatz (Tuesday, November 02) ## Quotients of Graded Rings :::{.proposition title="Quotients of graded rings by homogeneous ideals are again graded"} If $R$ is a graded ring and $I\normal R$ is a homogeneous ideal, then $R/I$ is a graded ring. ::: ## Cones and Projectivization :::{.definition title="Cones"} An affine variety $X \subseteq \AA^{n+1}$ is a **cone** iff - $\vector 0 \in X$ - $kX \subseteq X$ ::: :::{.remark} This says that $X$ is the origin and a union of lines through the origin. For the following definitions, we define a map \[ \pi: \AA^{n+1}\smz &\to \PP^n \\ \tv{x_0, \cdots, x_n} &\mapsto \tv{x_0 : \cdots :x_n} .\] ::: :::{.definition title="Projectivization of a Cone"} For a cone $X \subseteq \AA^{n+1}$, the **projectivization** of $X$ is defined as \[ \PP(X) \da \pi(X\smz) = \ts{ \tv{x_0: \cdots : x_n } \in \PP^n \st \tv{x_0, \cdots, x_n} \in X } \subseteq \PP^n .\] ::: :::{.definition title="Cone Over a Projective Variety"} For a projective variety $X \subseteq \PP^n$, the **cone over $X$** is the cone defined by \[ C(X) \da \ts{0} \union \pi^{-1}(X) = \ts{0} \union \ts{ \tv{x_0, \cdots, x_n} \st \tv{x_0: \cdots : x_n} \in X } \subseteq \AA^{n+1} .\] ::: :::{.remark} We have \[ \PP V_a(S) = V_p(S) &\text{and}& C(V_p(S)) = V_a(S) .\] ::: ## Projective Nullstellensatz :::{.proposition title="Projective Nullstellensatz Construction"} Define \[ V_p(J) &\da \ts{\vector x \in \PP^n \st f(\vector x) = 0 \text{ for all homogeneous } f\in J} \subseteq \PP^n \\ I_p(X) &\da \gens{ f \in k[x_0, \cdots, x_n] \text{ homogeneous } \st f(\vector x) = 0\,\, \forall x\in X} \normal k[x_0, \cdots, x_n] .\] ::: \todo[inline]{Missing some info, fill in.}