# Monday, August 24 ## Review and General Setup - $k = \bar k$ is algebraically closed - $G$ is a reductive algebraic group - $T\subseteq G$ is a *maximal split torus* > Split: $T\cong \bigoplus \GG_m$. We'll associate to this a root system, not necessarily irreducible, yielding a correspondence \[ (G, T) \iff (\Phi, W) \] with $W$ a Weyl group. This will be accomplished by looking at $\lieg = \mathrm{Lie}(G)$. If $G$ is simple, then $\lieg$ is "simple", and $\Phi$ irreducible will correspond to a Dynkin diagram. There is this a 1-to-1 correspondence \[ G \text{ simple}/\sim \iff A_n, B_n, C_n, D_n, E_6, E_7, E_8, F_4, G_2 \] where $\sim$ denotes *isogeny*. Taking the Zariski tangent space at the identity "linearizes" an algebraic group, yielding a Lie algebra. ![Image](figures/image_2020-08-24-14-09-33.png) We have the coordinate ring $k[G] = k[x_1, \cdots, x_n] / \mathcal{I}(G)$ where $\mathcal{I}(G)$ is the zero set. This is equal to $\ts{f:G\to k}$, ## The Associated Lie Algebra :::{.definition title="The Lie Algebra of an Algebraic Group"} Define *left translation* is \[ \lambda_x: k[G] &\to k[G] \\ y &\mapsto f(x^{-1} y) .\] Define *derivations* as \[ \mathrm{Der} ~k[G] = \ts{D: k[G] \to k[G] \suchthat D(fg) = D(f) g + f D(g) } .\] We can then realize the Lie algebra as \[ \lieg = \mathrm{Lie}(G) = \theset{D\in \mathrm{Der} k[G] \suchthat \lambda_x \circ D = D\circ \lambda_x} ,\] the left-invariant derivations. ::: :::{.example} \hfill - $G = \GL(n, k) \implies\lieg = \liegl(n, k)$ - $G = \SL(n, k) \implies\lieg = \liesl(n, k)$ ::: Let $G$ be reductive and $T$ be a split torus. Then $T$ acts on $\lieg$ via an *adjoint action*. (For $\GL_n, \SL_n$, this is conjugation.) There is a decomposition into eigenspaces for the action of $T$, \[ \lieg = \qty{\bigoplus_{\alpha\in \Phi} g_\alpha} \oplus t \] where $t = \mathrm{Lie}(T)$ and $g_\alpha \da \ts{x\in \lieg\st t.x = \alpha(t) x\,\, \forall t\in T}$ with $\alpha: T\to K\units$ a rational function (a *root*). In general, take $\alpha\in\hom_{\text{AlgGrp}}(T, \GG_m)$. :::{.example} Let $G = \GL(n, k)$ and \[ T = \ts{ \begin{bmatrix} a_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & a_n \end{bmatrix} \st a_j\in k\units } .\] Then check the following action: ![Action](figures/image_2020-08-24-14-24-40.png) which indeed acts by a rational function. Then \[ g_\alpha = \spanof \ts{ \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0\\ 0 & 0 & 0 \end{bmatrix} } = g_{(1, -1, 0)} .\] For $\lieg = \liegl(3, k)$, we have \[ \lieg = t &\oplus g_{(1, -1, 0)} \oplus g_{(-1, 1, 0)} \\ &\oplus g_{(0, 1, -1)} \oplus g_{(0, -1, 1)} \\ &\oplus g_{(1, 0, -1)} \oplus g_{(-1, 0, 1)} .\] ::: ## Representations Let $\rho: G\to \GL(V)$ be a group homomorphisms, then equivalently $V$ is a (rational) $G\dash$module. For $T\subseteq G$, $T\actson G$ semisimply, so we can simultaneously diagonalize these operators to obtain a *weight space decomposition* $V = \bigoplus_{\lambda \in X(T)} V_\lambda$, where \[ V_\lambda &\da\ts{v\in V\st t.v = \lambda(t)v\,\, \forall t\in T} \\\ X(T) &\da \hom(T, \GG_m) .\] :::{.example} Let $G = \GL(n, k)$ and $V$ the $n\dash$dimensional natural representation as column vectors, \[ V = \ts{\thevector{v_1, \cdots, v_n} \suchthat v_j \in k} .\] Then \[ T = \ts{ \begin{bmatrix} a_1 & 0 & 0 \\ 0 & \ddots & 0\\ 0 & 0 & a_n \end{bmatrix} \suchthat a_j \in k\units } .\] Consider the basis vectors $\vector{e}_j$, then \[ \begin{bmatrix} a_1 & 0 & 0 \\ 0 & \ddots & 0\\ 0 & 0 & a_n \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = a_j \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = a_1^0 a_2^0 \cdots a_j^0 \cdots a_n^0 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} .\] Here the weights are of the form $\eps_j\da \thevector{0, 0, \cdots, 1, \cdots, 0}$ with a $1$ in the $j$th spot, so we have \[ V = V_{\eps_1} \oplus V_{\eps_2} \oplus \cdots \oplus V_{{\eps_n}} .\] ::: :::{.example} For $V = \CC$, we have $t.v = (a_1^0 \cdots a_n^0)v$ and $V = V_{(0, 0, \cdots, 0)}$. ::: ## Classification Let $G$ be a simple algebraic group (ano closed, connected, normal subgroups other than $\ts{e}, G$) that is nonabelian that is nonabelian. :::{.example} Let $G = \SL(3, k)$. Then \[ T = \ts{ t = \begin{bmatrix} a_1 & 0 & 0 \\ 0 & a_1 a_2^{-1} & 0\\ 0 & 0 & a_2^{-1} \end{bmatrix} \st a_1, a_2\in k\units } \] and \[ t. \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{bmatrix} = a_1^2 a_2^{-1} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{bmatrix} .\] and $\alpha_1 = (2, -1)$. \todo[inline]{What is $\alpha_1$? Note that you can recover the Cartan something here?} Then \[ \lieg = \lieg_{(2, -1)} \oplus \lieg_{(-2, 1)} \oplus \lieg_{(-1, 2)} \oplus \lieg_{(1, -2)} \oplus \lieg_{(1, 1)} \oplus \lieg_{(-1, -1)} .\] Then $\alpha_2 = (-1, 2)$ and $\alpha_1 + \alpha_2 = ( 1, 1)$. This gives the root space decomposition for $\liesl_3$: ![Image](figures/image_2020-08-24-14-49-31.png) Then the Weyl group will be generated by reflections through these hyperplanes. :::