# Monday, September 21 Let $G$ be a reductive algebraic group scheme, $k=\bar \FF_p$ with $p>0$, equipped with the Frobenius map $F:G\to G$ with $F^r$ its $r\dash$fold composition. We defined *Frobenius kernels* $G_r \da \ker F^r$, which are in correspondence with the cocommutative Hopf algebras $\Dist(G_r)$. Goal: We want to classify simple $G_r\dash$modules, and to do this we'll use socles. We have a maximal torus $T\subseteq G$ and thus $T_r \subseteq G_r$ after acting by Frobenius. This yields a SES \[ 0 \to p_r X(T) \to X(T) \to X(T)/p^r X(T) = X(T_r) \to 0 .\] How to think about this: take $\lambda \in X(T_r)$, then we can write $\lambda = \lambda + p^r \sigma$ in $X(T_r)$ for some other weight $\sigma \in X(T)$. We'll define the "baby Verma modules" \[ Z_r(\lambda) \da \coind_{B_r^+}^{G_r} \lambda \\ Z_r'(\lambda) \da \ind_{B_r^+}^{G_r} \lambda ,\] and we have $\dim Z_r(\lambda) = \dim Z_r'(\lambda) = p^{r \abs{\Phi^+}}$. :::{.proposition title="?"} Let $\lambda\in X(T)$ be a weight. 1. $Z_r(\lambda)\downarrow_{B_r}$ is the *projective cover* of $\lambda$ and the *injective hull* of $\lambda - 2 (p^r-1) \rho$. 2. $Z_r'(\lambda)\downarrow_{B_r^+}$ is the *injective hull* of $\lambda$ and the *projective cover* of $\lambda - 2 (p^r-1) \rho$. ::: > Note the latter are $T_r\dash$modules, so we let $U^+$ act trivially. :::{.proof title="of 1"} What we need to do: 1. Show $Z_r(\lambda)\downarrow_{B_r}$ is projective. 2. Show $Z_r(\lambda)$ is the smallest projective module such that $Z_r(\lambda) \surjects \lambda$. For (1), we can write \[ \Dist(G_r) = \Dist(U_r^+) \Dist(B_r) = \Dist(B_r^+) \Dist(U_r), ,\] and so \[ Z_r(\lambda) &= \coind_{B_r^+}^{G_r} \lambda \\ &= \qty{\dist(G_r) \tensor_{\Dist(B_r)} \lambda} \downarrow_{B_r^+} \\ &= \Dist(U_r^+)\tensor \lambda \\ &= \Dist(B_r^+) \tensor_{\Dist(T_r)} \lambda \\ &= \coind_{T_r}^{B_r^+} \lambda .\] Why is this projective? Look at cohomology, suffices to show that higher Exts vanish. So consider \[ \ext_{B_r^+}^n(\coind_{T_r}^{B_r^+}, M) &= \ext_{T_r}^n (\lambda, M) \qquad\text{by Frobenius reciprocity} \\ &= 0 \qquad \text{for } n \geq 0 ,\] since representations for $T_r$ are completely reducible, and we've used the fact that $\coind_{T_r}^{B_r^+}(\wait)$ is exact. > Note: general algebra fact that higher exts vanish for projective modules. For (2), we can write \[ \hom_{B_r^+}(Z_r(\lambda), \mu) &= \hom_{B_r^+}(\coind_{T_r}^{B_r^+} \lambda, \mu) \\ &= \hom_{T_r} (\lambda, \mu) \qquad\text{by Frobenius reciprocity} \\ &= \begin{cases} k \& \lambda = \mu \\ 0 \& \text{else}. \end{cases} \] Thus $Z_r(\lambda) / \Rad Z_r(\lambda) \downarrow{B_r^+} = \lambda$. If we now write $A= \Dist(B_r^+)$ and $\lieg = \lien^+ \oplus t \oplus \lien$ with $\lieb^+ \da \lien^+ \oplus t$, \[ \sum_S \qty{\dim P(S)} \qty{\dim(S)} \\ &= \sum_{\lambda \in X(T_r)} \qty{\dim Z_r(\lambda)} \qty{\dim \lambda} \\ &= \sum_{\lambda \in X(T_r)} p^{r\abs{\Phi^+}} \cdot 1 \\ &= \abs{X(T_r)} p^{r\abs{\Phi^+}} \\ &= p^{rn} p^{r\abs{\Phi^+}} \qquad n = \dim t\\ &= p^{r \dim \lieb^+} \\ &= \dim A \] ::: ## Simple $G\dash$modules We know that after taking fixed points, $Z_r(\lambda)^{U_r}$ and $Z_r'(\lambda)^{U_r^+}$ are one-dimensional, and thus \[ Z_r(\lambda) / \Rad Z_r(\lambda) \cong L_r(\lambda) \qquad \soc_{G_r} Z_r'(\lambda) = L_r(\lambda) \] following the same argument considering $H_0(\lambda)$. For any $\lambda \in X(T_r)$ we have $0\neq L_r = \soc_{G_r} Z_r'(\lambda)$. By the one-dimensionality above, we know \[ L_r(\mu) = L_r(\lambda) \iff \lambda = \mu \in X(T_r) .\] Letting $N$ be a simple $G_r\dash$module, we can consider it as a $B_r\dash$module, and the simple $B_r\dash$modules are one dimensional and obtained from simple $T_r\dash$modules. We then know that for some $\lambda \in X(T_r)$, \[ 0 \neq \hom_{B_r}(N, \lambda) \\ &= \hom_{G_r}(N, \ind_{B_r}^{G_r} \lambda) ,\] which implies that $N\injects \ind_{B_r}^{G_r} \lambda = Z_r'(\lambda)$ as a submodule, and thus $N = L_r(\lambda)$. :::{.theorem title="Main Theorem"} Let $\Lambda$ be a set of representatives of $XX(T) / p^r X(T) \cong X(T_r)$. Then there exists a one-to-one correspondence \[ \Lambda \iff \ts{L_r(\lambda) \lambda \in \Lambda} ,\] where the RHS are simple $G_r\dash$modules. ::: How to think about this: **restricted regions**. Choose dominant weights as representatives \[ X_r(T) &= \ts{\lambda \in X(T)_+ \st 0\leq \inner{\lambda}{\alpha\dual} < p^r\, \forall \alpha\in \Delta } \\ &= \ts{\lambda \in X(T)_+ \st \lambda = \sum_{i=1}^\ell n_i w_i,\, 0\leq n_j \leq p^r-1\, \forall j} \\ .\] Pictures: ![Root systems, chambers formed by dominant weights](figures/image_2020-09-21-14-43-23.png) ![Restricted regions](figures/image_2020-09-21-14-43-56.png) Some facts: If $\lambda \in X(T)_+$, then $L(\lambda)$ is a simple $G\dash$module. **Question 1**: What happens when we restrict $L(\lambda)\downarrow_{G_r}$? **Answer**: This remains irreducible over $G_r$ iff $\lambda \in X_r(T)$, i.e. if $L(\lambda)\downarrow_{G} \cong L_r(\lambda)$ when $\lambda \in X_r(T)$. **Question 2**: Given $L(\lambda)$ for $\lambda \in X(T)_+$, can we express $L(\lambda)$ in terms of simple $G_r\dash$modules? **Answer**: Yes, can be formulated in terms of *Steinberg's twisted tensor product*.