# Monday, September 28 ## Kempf's Theorem Next topic: Kempf's Vanishing Theorem. Proof in Jantzen's book involving ampleness for sheaves. Setup: We have \begin{tikzcd} G & \text{a reductive algebraic group over } k = \bar k \\ B\ar[u, "\subseteq"] & \text{the Borel subgroup} \\ T\ar[u, "\subseteq"] & \text{its maximal torus} \end{tikzcd} along with the weights $X(T)$. We can consider derived functors of induction, yielding $R^n \ind_B^G \lambda = \mathcal{H}^n(G/B, \mathcal{L}(\lambda)) \da H^n(\lambda)$ where $\mathcal{L}(\lambda)$ is a line bundle and $G/B$ is the flag variety. Recall that - $H^0(\lambda) = \ind_B^G(\lambda)$, - $\lambda \not\in X(T)_+ \implies H^0(\lambda) = 0$ - $\lambda \in X(T)_+ \implies L(\lambda) = \soc_G H^0(\lambda) \neq 0$. :::{.theorem title="Kempf"} If $\lambda \in X(T)_+$ a dominant weight, then $H^n(\lambda) = 0$ for $n> 0$. ::: :::{.remark} In $\ch(k) = 0$, $H^n(\lambda)$ is known by the Bott-Borel-Weil theorem. In positive characteristic, this is not know: the characters $\ch H^n (\lambda)$ is known, and it's not even known if or when they vanish. Wide open problem! > Could be a nice answer when $p>h$ the Coxeter number. ::: ## Good Filtrations and Weyl Filtrations We define two classes of distinguished modules for $\lambda \in X(T)_+$: - $\nabla(\lambda) \da H^0(\lambda) = \ind_B^G \lambda$ the costandard/induced modules. - $\Delta(\lambda) = V(\lambda) \da H^0(-w_0 \lambda) = \ind_B^G \lambda$ the standard/Weyl modules - Here $w_0$ is the longest element in the Weyl group We have \[ L(\lambda) &\injects \nabla(\lambda) \Delta(\lambda) &\surjects L(\lambda) .\] We define the category $\text{Rat}\dash G$ of rational $G\dash$modules. This is a *highest weight category* (as is e.g. Category $\OO$). :::{.definition title="Good Filtrations"} An (possibly infinite) ascending chain of $G\dash$modules \[ 0 \leq V_0 \subseteq V_1 \subseteq V_2 \subseteq \cdots \subseteq V \] is a **good filtration** of $V$ iff 1. $V = \union_{i\geq 0} V_i$ 2. $V_i/V_{i-1} \cong H^0(\lambda_i)$ for some $\lambda_i \in X(T)_+$. > In characteristic zero, the $H^0$ are irreducible and this recovers a composition series. > Since we don't have semisimplicity in this category, this is the next best thing. ::: :::{.definition title="Weyl Filtration"} With the same conditions of a good filtration, a chain is a **Weyl filtration** on $V$ iff 1. $V = \union_{i\geq 0} V_i$ 2. $V_i/V_{i-1} \cong V(\lambda_i)$ for some $\lambda_i \in X(T)_+$. > I.e. the different is now that the quotients are standard modules. ::: :::{.definition title="Tilting Modules"} $V$ is a **tilting module** iff $V$ has both a good filtration and a Weyl filtration. ::: :::{.theorem title="Ringel, 1990s"} Let $\lambda \in X(T)_+$ be a dominant weight. Then there is a unique indecomposable highest weight tilting module $T(\lambda)$ with highest weight $\lambda$. ::: :::{.example} We have the following situation for type $A_2$: ![Image](figures/image_2020-09-28-14-18-03.png) And thus a decomposition: ![Image](figures/image_2020-09-28-14-18-46.png) ::: The picture to keep in mind is the following: 4 types of modules, all indexed by dominant weights: \begin{tikzcd} & H^0(\lambda) & \\ L(\lambda) \ar[ur, hookrightarrow] & & T(\lambda)\arrow[ul, twoheadrightarrow]\\ & V(\lambda) \arrow[ul, twoheadrightarrow] \ar[ur, hookrightarrow] \end{tikzcd} ## Cohomological Criteria for Good Filtrations We'll take cohomology in the following way: let $G$ be an algebraic group scheme, and define \[ H^n(G, M) \da \mathrm{Ext} G^n(k, M) \] where to compute $\ext_G^n(M, N)$ we take an injective resolution $N \injects I_*$, apply $\hom_G(M, \wait)$, and take kernels mod images. Letting $\lambda \in \ZZ\Phi$ be integral, so $\lambda_{\alpha \in \Delta} = \sum n_\alpha \alpha$, define the **height** \[ \height(\lambda) = \sum_{\alpha\in\Delta} n_\alpha .\] :::{.lemma title="?"} There exists an injective resolution of $B\dash$modules \[ 0\to k\to I_0 \to I_1 \to \cdots \] where 1. $I_0$ is the injective hull of $k$, 2. All weights of $I_j$, say $\mu$ satisfy $\height(\mu) \geq j$. ::: \[ k[u] \text{ an injective $B\dash$module} \\ k\injects \ind_T^B k \da I_0 = k[u] .\] We thus get a diagram of the form ![Image](figures/image_2020-09-28-14-32-38.png) :::{.proposition title="?"} Let $H\leq G$, then there exists a spectral sequence \[ E^{i, j}_2 = \Ext_G^i(N, R^j \ind_H^G M) \implies \Ext_H^{i+j}(N, M) \] for $N\in \Mod(G), M\in \Mod(H)$. ::: :::{.example} Let $H=B$ and take $G=G$ itself, and let $N = k$ the trivial module and $M\in \Mod(G)$ be any rational $G\dash$module. We have \[ E_2^{i, j} = \Ext^{i}_B(k, R^j \ind_B^G M) \implies \ext^{i+j}_B(k, M) .\] Observations: 0. $R^0 \ind_B^G k = \ind_B^G k = k$. 1. The tensor identity works here, i.e. $R^j \ind_B^G M = \qty{R^j \ind_B^G k} \tensor M$. 2. $R^j \ind_B^G k = 0$ for $j> 0$ since we have a dominant weight. The spectral sequence thus collapses on $E_2$: ![Image](figures/image_2020-09-28-14-41-33.png) Thus \[ E_2^{i, 0} = \ext^i_B(k, M) = H^i(B, M) .\] ::: :::{.corollary title="?"} Let $G \supseteq P \supseteq B$ where $P$ is a *parabolic* subalgebra and let $M$ be a rational $G\dash$module. Then $H^n(G, M) = H^n(P, M) = H^n(B, M)$ for all $n \geq 0$. ::: :::{.example} Fix a Dynkin diagram and take a subset $J\subseteq \Delta$. ![i](figures/image_2020-09-28-14-47-01.png) Then $L_j\semidirect U_j = P_J = P$, and we have a decomposition like ![Image](figures/image_2020-09-28-15-13-36.png) ::: :::{.proposition title="?"} Let $M\in \Mod(P)$ with $P\supseteq B$. a. If $\dim M < \infty$ then $\dim H^n(P, M) < \infty$ for all $n$. b. If $H^j(P, M) \neq 0$ then there exists $\lambda$ a weight of $M$ with $-\lambda \in \NN \Phi^+$ and $\height(-\lambda) \geq j$. :::