# Monday, October 12 ## Proof of Bott-Borel-Weil Recall the Bott-Borel-Weil theorem: in characteristic zero, we're looking at the closure of the region containing the fundamental region $C_\ZZ$: ![Image](figures/image_2020-10-12-13-58-45.png) :::{.theorem title="due to Aandersen"} a. If $\lambda \in \bar{C}_\ZZ$ and $\lambda \not\in X(T)_+$ then $H^0(w\circ \lambda) = 0$. b. If $\lambda\in \bar{C}_\ZZ \intersect X(T)_+$ then for all $w\in W$, we have \[ H^i(w\cdot \lambda) = \begin{cases} H^0(\lambda)& i = \ell(w) \\ 0 & \text{otherwise} \end{cases} .\] ::: :::{.proof title="of a"} For (a): we use induction on $\ell(w)$. For $\ell(w) = 0$, we have $w = \id$. Let $\lambda \in \bar{C}_\ZZ$ and $\lambda\not\in X(T)_+$. Then \[ 0 &\leq \inner{\lambda + \rho}{\alpha\dual} \\ &= \inner{\lambda}{\alpha\dual} + 1 \\ \implies \inner{\lambda}{\alpha\dual} &= -1 .\] Applying the previous proposition, we get $H^0(\lambda) = 0$. ::: :::{.proof title="of b"} For the base case $w=\id$, this follows from Kempf vanishing. Assuming the result holds for any word of length $l<\ell(w)$, if $\ell(w) > 0$, there exists some simple reflection $s_\alpha$ for $\alpha\in\Delta$ such that $\ell(s_\alpha w) = \ell(w) - 1$. Moreover, $w^{-1}(\alpha) \in -\Phi^+$, so set $\beta = -w^{-1}(\alpha) \in \Phi^+$. We can the make the following computation: \[ \inner{(s_\alpha w) \cdot \lambda}{\alpha\dual} &= \inner{(s_\alpha w)(\lambda+\rho) - \rho}{\alpha\dual} \\ &= \inner{(s_\alpha w)(\lambda+\rho)}{\alpha\dual} - 1 \\ &= \inner{w(\lambda+\rho)}{s_\alpha \alpha\dual} - 1 \\ &= - \inner{w(\lambda+\rho)}{\alpha\dual} - 1 \\ &= \inner{\lambda + \rho}{-w^{-1}\alpha\dual} - 1 \\ &= \inner{\lambda + \rho}{\beta\dual} - 1 \\ &\geq -1 \] and $\inner{(s_\alpha w)\cdot \lambda}{ \alpha\dual} < \rho$ since $\lambda\in \bar{C}_\ZZ$. Note that we've used the fact that the inner product is $W\dash$invariant. \ Now if $\inner{(s_\alpha w)\cdot \lambda}{ \alpha\dual} \geq 0$, we can apply the prior proposition part (d). Here we use the fact that $\ind_B^{P_\alpha}(s_\alpha w)\lambda$ is simple. Applying the inductive hypothesis yields \[ H^i(s_\alpha - \lambda) = H^{i+1}(w\cdot \lambda) .\] Now if $\inner{s_\alpha w \cdot \lambda}{\alpha\dual} = -1$, then \[ -1 &= \inner{\lambda + \rho}{\beta\dual} - 1 \\ \implies \inner{\lambda + \rho}{\beta\dual} &= 0 \\ \implies \inner{\lambda}{\beta\dual} &= 0 \\ & \cdots .\] \todo[inline]{Missing computation} Then applying (a) yields $H^1(w\cdot \lambda) = 0$. ::: ## Serre Duality and Grothendieck Vanishing Let $P$ be a parabolic subgroup, i.e. $P_J = P \da L_J \semidirect U_J$ for some $J\subseteq \Delta$. Set $n(P) = \abs{\Phi^+} - \abs{\Phi^+_J}$. :::{.example} Let $\Phi = A_4$, which has ten simple roots: - $\alpha_i, 1\leq i \leq 4$ - $\alpha_i + \alpha_{i+1}$, $i=1,2,3$. - $\alpha_1 + \alpha_2 +\alpha_3$, $\alpha_2 + \alpha_3 + \alpha_4$ - $\sum_{i=1}^4 \alpha_i$. ![Image](figures/image_2020-10-12-14-21-20.png) Then $n(P) = 10 - 3 = 7$. ::: :::{.theorem title="Grothendieck Vanishing"} \[ R^i \ind_P^G M = 0 \qquad \text{for } i > n(P) .\] ::: :::{.theorem title="Serre Duality"} \[ \qty{ R^i \ind_B^G M }\dual \cong R^{n(P) -i} \ind_P^G M\dual \tensor (-2\rho_P) .\] where \[ \rho_p \da {1\over 2}\sum_{\beta \in \Phi^+ \sm \Phi_J} \beta \] ::: :::{.example} Take $B = P$ and $M = \lambda$. Then $\lambda \dual = -\lambda$, so \[ \qty{ R^i \ind_B^G \lambda }\dual \cong R^{\abs{\Phi^+} -i} \ind_P^G (- \lambda) \dual \tensor (-2\rho) .\] From this we can conclude \[ H^i(\lambda) = H^{n-i} (-\lambda - 2\rho)\dual ,\] where $n = \abs{\Phi^+}$. ::: :::{.corollary title="?"} Let $\lambda \in X(T)_+ \intersect \bar{C}_\ZZ$ be a dominant weight. Then a. The irreducible representations are given by $L(\lambda) = H^0(\lambda)$. b. $\ext_G^1(L(\lambda), L(\mu)) = 0$ for all $\lambda, \mu$ in $\bar{C}_\ZZ$. c. If $\ch(k) = 0$, so $X(T)_+ \subset \bar{C}_\ZZ$, then all $G\dash$modules are completely reducible. ::: :::{.proof title="of a"} Note that the longest element takes positive roots to negative roots, so $w_0 \rho = - \rho$, and moreover $-w_0(\bar{C}_\ZZ) = \bar{C}_\ZZ$. We also have \[ w_0 \cdot ( w_0 \lambda) &= w_0 (-w_0 \lambda + \rho) - \rho \\ &= -\lambda + w_0 \rho - \rho \\ &= -\lambda - 2\rho .\] By Serre duality, if we take the Weyl module we obtain \[ V(-w_0 \lambda) &\da H^0(\lambda)\dual \\ &= H^n(-\lambda - 2\rho) \\ &= H^n(w_0 \cdot (-w_0 \lambda)) \\ &= H^n(-w_0 \lambda) \qquad\text{by Bott-Borel-Weil} ,\] where we've used that $\ell(w_0) = \abs{\Phi^+}$. We know that $L(-w_0 \lambda) \subseteq \soc H^0(-w_0 \lambda) = V(-w_0 \lambda) \surjects L(-w_0 \lambda)$, where the last term is contained in the head. But this means that this splits, so by indecomposability we must have $L(-w_0 \lambda) = H^0(-w_0 \lambda) = V(-w_0 \lambda)$. So we can conclude \[ L(\mu) = H^0(\mu) = V(\mu) \qquad \forall \mu \in X(T)_+ \intersect \bar{C}_\ZZ .\] ::: :::{.proof title="of b and c"} Suppose $\ext_G^1(L(\lambda), L(\mu)) \neq 0$, then $L(\lambda)$ is in $H^0(\mu) / \soc_G H^0(\mu) = 0$ and $L(\mu)$ is in $H^0(\lambda) / \soc_G H^0(\lambda) = 0$, but this forces $\ext_G^1(L(\lambda), L(\mu)) = 0$. \ Part (c) follows from part (b). ::: ## Weyl's Character Formula Problem: Determine $\ch H^0 \lambda$ for $\lambda \in X(T)_+$. Solution: Let $A(\lambda) = \sum_{w\in W} \sgn(w) e^{w\lambda} \in \ZZ[X(T)]$, where we sum over the usual Weyl group and not the affine Weyl groups, taken as a formal sum in the group algebra on the weight lattice. We can then state Weyl's character formula: \[ \ch H^0(\lambda) = {A(\lambda + \rho) \over A(\rho)} \qquad \text{for }\lambda \in X(T)_+ .\] This is a formal sum, so it's surprising that the bottom term even divides the top. But there is a great deal of cancellation, we'll see this in examples such as $\GL_3$. ### Formal Characters Let $M$ be a $T\dash$module, then define the *character* \[ \ch M\da \sum_{\mu\in X(T)} \qty{\dim M_\mu} e^\mu \quad \in \ZZ[X(T)] .\] We then define the *Euler characteristic* \[ \chi(M) \da \sum_{i\geq 0} (-1)^i \ch H^i(M) .\] Note that by Grothendieck vanishing, $H^i(M) = 0$ for $i > \abs{\Phi^+} = \dim(G/B)$, so this is a finite sum. In fact, if $M$ is a $G\dash$module, then this is $W\dash$invariant and thus in fact $\chi(M) \in \ZZ[X(T)]^W$.