# Friday, October 16 ## Example: Weyl's Character Formula Review: suppose the following is invariant under the Weyl group, so $\sum a_\mu e^\mu \in \ZZ[X(T)]^W$. In this case, we have an equality \[ \sum a_\mu e^\mu = \sum a_\mu \chi(\mu) ,\] where $\chi(\mu) = \sum_{i\geq 0} (-1)^i \ch H^i(\mu)$. We also had a relation \[ \chi(w\cdot \mu) = (-1)^{\ell(w)} \chi(\mu) = \sgn(w) \chi(\mu) .\] Now let $\lambda \in X(T) \tensor \QQ$, then we defined \[ A(\lambda) = \sum_{w\in W} \sgn(w) e^{w\lambda} \in \ZZ[X(T) \tensor \QQ] .\] We obtain 1. $w' A(\lambda) = \sgn(w') A(\lambda)$ 2. $A(\mu) A(\lambda) = \ZZ[X(T) \tensor \QQ]^W$. :::{.theorem title="Weyl's Character Formula"} \[ \lambda\in X(T) \implies \chi(\lambda) = {A(\lambda + \rho) \over A(\lambda)} .\] As a special case when $\lambda \in X(T)_+$, all higher sheaf cohomology vanishes and thus \[ \ch H^0(\lambda) = {A(\lambda + \rho) \over A(\lambda)} .\] ::: :::{.proof} We first perform a *reindexing* step: \[ \sum_{w, w'} \sgn(w\cdot w') e^{w(\lambda+\rho) + w'\rho} &= \sum_{w, w'} \sgn(w^{-1} w') e^{w(\lambda+\rho) + w'\rho} \\ &= \sum_{w, y} \sgn(y) e^{w(\lambda+\rho) + wy\rho} && y = w\inv w' \implies w' = wy \\ &= \sum_{w, y} \sgn(y) e^{w(\lambda + \rho + y\rho)} .\] Now let $\lambda\in X(T)$, we then compute \[ A(\lambda + \rho) A(\rho) &= \sum_{w} \sgn(w) e^{w(\lambda + \rho)} + \sum_{w'} \sgn(w') e^{w'(\lambda + \rho)} \\ &= \sum_{w, w'} \sgn(ww') e^{w(\lambda + \rho) + w'\rho} \\ &= \sum_{w, w'} \sgn(w') e^{w(\lambda + \rho + w'\rho)} && \text{from reindexing above, setting } y\da w' \\ &= \sum_{w, w'} \sgn(w') \chi\qty{w(\lambda + \rho + w'\rho)} \\ &= \sum_{w, w'} \sgn(w') \chi\qty{w\cdot (\lambda + w'\rho + w^{-1} \rho)} && \text{definition of dot action}\\ &= \sum_{w, w'} \sgn(ww') \chi\qty{\lambda + w'\rho + w\rho } && \text{swapping } w\leadsto w^{-1} .\] Note that $\chi$ can be introduced since $A(\lambda + \rho)A(\rho) \in \ZZ[X(T) \tensor \QQ]^{W\cdot}$. \todo[inline]{Not sure, double check.} We can now conclude that \[ A(\rho)^2 = \sum_{w, w'} \sgn(ww') e^{w\rho + w' \rho} .\] Since this quantity is $W\dash$invariant, since it's a square, we can move the $\chi$ inside: \[ \chi(\lambda) \qty{ \sum a_\mu e^\mu } = \sum a_\mu \chi(\lambda + \mu) \\ \implies \chi(\lambda) A(\rho)^2 = \sum_{w, w'} \sgn(ww') \chi(\lambda + w\rho + w'\rho) ,\] which is exactly what the first calculation resulted in. So we can conclude \[ A(\lambda + \rho) A(\rho) = \chi(\lambda) A(\rho)^2 .\] Note that $A(\rho) \neq 0$ since $w\rho \neq \rho$ unless $w=\id$. Thus we are actually working in $\ZZ[X(T) + \ZZ\rho]$, which is an integral domain, and thus we can apply cancellation laws to obtains \[ A(\lambda + \rho) = \chi(\lambda) A(\rho) .\] ::: :::{.example} Let $G = \GL_3(k)$, which has a natural 3-dimensional representation $V$. Let $\lambda = (1,0,0)$, so $L(1,0,0) = V$. This is a polynomial representation, so by permuting we can obtain \[ \ch V = e^{(1,0,0)} + e^{(0,1,0)} + e^{(0,0,1)} = \chi(1,0,0) ,\] where the last equality holds since $\lambda$ is dominant. We can write $\rho = (2,1,0)$, since the fundamental weights are given by $w_1 = (1,0,0)$ and $w_2 = (1,1,0)$ (since we're in an $\SL_2$ and/or $A_2$ situation). We then obtain $\lambda + \rho = (3,1,0)$, and since $W= S_3$, \[ A(\lambda + \rho) = \sum_{w\in W} \sgn(w) e^{w(\lambda + \rho)} = e^{(3,1,0)} - e^{(1,3,0)} + e^{(1,0,3)} - e^{(0,1,3)} + e^{(0,3,1)} - e^{(3,0,1)} .\] Thus \[ A(\rho) = e^{(2,1,0)} - e^{(1,2,0)} + e^{(1,0,2)} - e^{(0,1,2)} + e^{(0,2,1)} - e^{(2,0,1)} .\] We can then compute \[ \chi(1,0,0) A(\rho) = &e^{(3,1,0)} - e^{(2,2,0)} + e^{(2,0,2)} -e^{(1,1,2)} + e^{(1,2,1)} - e^{(3,0,1)} + \\ &e^{(2,2,0)} - e^{(1,3,0)} + e^{(1,1,2)} - e^{(0,2,2)} + e^{(0,3,1)} - e^{(2,1,1)} + \\ &e^{(2,1,1)} - e^{(1,2,1)} + e^{(1,0,3)} - e^{(0,1,3)} + e^{(0,2,2)} - e^{(2,0,2)} .\] After cancellation, you'll find that this expression is equal to $A(\lambda + \rho)$. ::: ## Strong Linkage Principle We'll consider representations in characteristic zero, so we can take $k=\CC$. Let $G$ bet a complex simple group, $\lieg = \Lie(G)$, $t$ a maximal torus, $X$ the weights, and $X_+$ the dominant weights. We have a correspondence \Large \[ \correspond{(g, t)} \iff \correspond{(\Phi, W)} \] \normalsize where $\Phi$ is an irreducible root system and $W$ is the Weyl group. We'll have a set of simple roots $\Delta\subseteq \Phi^+$. For $\lambda\in X$, we have \[ Z(\lambda) = U(\lieg) \tensor_{U(\lieb^+)} \lambda \surjects L(\lambda) .\] Then $\lambda \in X_+ \iff L(\lambda)$ is finite dimensional. We have $W$ acting on $X$ via reflections, which we can extend to a dot action \[ w\cdot \lambda = w(\lambda + \rho) - \rho, \hspace{4em} \rho = {1\over 2}\sum_{\alpha\in\Phi^+} \alpha .\] We define Category $\OO$ which has objects $\lieg\dash$modules with a weight space decomposition which is locally finite wrt $\lien^+$. ### Linkage in Category $\OO$ Set $Z(\lambda) = \Delta(\lambda)$, then \[ [Z(\lambda) : L(\mu)] \neq 0 \implies \lambda \in W\cdot \mu .\] The LHS is computed by evaluating certain Kazhdan-Lusztig polynomials at $x=1$. :::{.example} Let $\Phi= A_2$, then ![Image](figures/image_2020-10-16-14-43-26.png) $\OO_0$ is the principal block, and the irreducibles correspond to $\ts{L(w\cdot 0) \st w\in W}$, and the number of irreducibles in given by $\abs{W}$. In this case, there is only 1 finite-dimensional module in any given block of category $\OO$. ::: :::{.example} For $\Phi = A_1$, we have the following situation: ![Image](figures/image_2020-10-16-14-46-27.png) In $\OO_0$, there are two irreducible representations given by the Verma modules $L(0), L(-2)$, and we find that ![Image](figures/image_2020-10-16-14-48-12.png) In this case, the projectives are given by ![Image](figures/image_2020-10-16-14-51-51.png) :::