# Monday, November 02 Today: Lusztig conjectures, but first some alcove geometry. ## Alcove Geometry ### Length Function for Alcoves Let $A, B$ be alcoves, and recall that a hyperplane is give by \[ H_{\alpha, m} \da \ts{ \lambda \in X(T) \st \inner{\lambda + \rho}{\alpha\dual} = mp } .\] These are codimension 1 objects: ![Image](figures/image_2020-11-02-13-55-24.png) We can also divide these into positive and negative sides: \[ H_{\alpha, m}^+ &\da \ts{ \lambda \in X(T) \st \inner{\lambda + \rho}{\alpha\dual} > mp } \\ H_{\alpha, m}^- &\da \ts{ \lambda \in X(T) \st \inner{\lambda + \rho}{\alpha\dual} < mp } .\] Let $S(A, B)$ be the set of hyperplanes separating $A$ and $B$. ![Hyperplanes separating two alcoves](figures/image_2020-11-02-13-58-08.png) If $H\in S(A, B)$, then define a function \[ \eps(H) \da \begin{cases} 1 & A\in H_{\alpha, m}^- \\ -1 & A\in H_{\alpha, m}^+ \end{cases} ,\] and from it construct a **distance function** \[ d(A, B) \da \sum_{H\in S(A, B)} \eps(H) .\] Recall that we can define \[ C_\ZZ = \ts{\lambda \in X(T) \st 0 < \inner{\lambda+\rho}{\alpha\dual}