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1 Thursday, August 20
Exercise 1.0.1.
Show that

{
(R1, id), (R1, x 7→ x3)

}
is not a smooth atlas.

Exercise 1.0.2.
Let S1 :=

{
(x, y) ∈ R2

∣∣∣ x2 + y2 = 1
}
with charts given by stereographic projection from (0, 1) and

(0,−1) on U = S1 \ {(0, 1)} → R and V = S1 \ {(0,−1)} → R.

Show that this gives a smooth atlas.

Exercise 1.0.3.
Write down a smooth atlas on the unit square.

2 Tuesday, August 25
2.1 Submanifolds
Exercise 2.1.1.
Prove that charts on a manifold are smooth maps.

Hint: use the identity smooth structure on Rn.

2 TUESDAY, AUGUST 25 2



Exercise 2.1.2.
Show that open subsets of manifolds are again manifolds in a canonical way.

Exercise 2.1.3.
Show that S1 is a manifold.

Example 2.1.1.
Prove that a submanifold is again a manifold.

3 Thursday, September 24
Exercise 3.0.1 (?).
Write down an explicit diffeomorphism between CP1 and S2.

Exercise 3.0.2 (?).
Show that the map

RPn → CPn

[x0 : · · · : xn] 7→ [x0 + 0i : · · · : xn + 0i]

is an embedding, i.e. a differentiable map whose image is a submanifold, which is a diffeomorphism
onto its image.

Exercise 3.0.3 (?).
Define a vector field V = −x1∂x1 + x2∂x2 on M = (−1, 1)2. Find the best possible ε : M → (0,∞],
i.e. for each p, sup

{
t > 0

∣∣∣ Φ(t, p) is defined
}
.

4 Tuesday, September 29
Questions to look at for next Tuesday:

Exercise 4.0.1 (?).
Show that the 3 natural coordinate charts on CP2 given by e.g. ϕU0([z0 : z1 : z2]) =

[
z1
z0
,
z2
z0

]
yield

a smooth atlas.

Exercise 4.0.2 (?).
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Consider the map

π : CP2 → R2

[z0 : z1 : z2] 7→
[

|z|21
|z|20 + |z|21 + |z|22

,
|z|22

|z|20 + |z|21 + |z|22

]
.

• Show that im(π) = {p1, p2 ≥ 0, p1 + p2 ≤ 1}.

• Show that π is smooth

Figure 1: O

• If [p1, p2] ∈ T ◦ is in the interior of the above triangle, then π−1(p1, p2) ∼= S1×S1 is diffeomor-
phic to a torus.

• If the point is on an edge, the fiber is diffeomorphic to S1,
• If the point is on a vertex, the fiber is a single point.

Exercise 4.0.3 (?).
Find a vector field V on some maximal subset of CP2 such that Dπ(V ) = p1∂p1 + p2∂p2 (the radial
vector field).

I.e., for all q ∈ CP2, we have a map

D1π : T1CP2 → Tπ(q)R2
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and V (q) ∈ TqCP2, so we want Dqπ(V (q)) = p1∂p1 + p2∂p2 .

Note that there will be a problem defining V on the fiber over the hypotenuse of T .

Theorem 4.0.1(Collar Neighborhood).
For all manifolds with boundary X, there exists an open neighborhood N of ∂X which is
diffeomorphic to (−ε, 0]× ∂X.

Proof strategy: construct a vector field pointing outward and flow it backward. Construct by
forming local vector fields on open sets, then patch together using a partition of unity.

Definition 4.0.1 (Partition of Unity).
A collection

{
ϕi : M → R

∣∣∣ i ∈ I} such that

1. {suppϕi} is locally finite, i.e. for all p, we have
∣∣∣{i ∣∣∣ p ∈ supp(ϕi)

}∣∣∣ <∞.
2. ϕ(p) ≥ 0 for all p ∈ X
3. For all p ∈ X, the sum

∑
i∈I

ϕi(p) = 1.

5 Thursday, October 15
Exercise 5.0.1 (Lens Spaces).
Given two coprime p, q, define an action of Z/pZ = 〈τ〉 on S3 ⊂ C2 as

(w, z) 7→ (e2πi/pw, e2πiq/pz).

Note that τp = id. Then define L(p, q) = S3/Z/pZ = S3/ ∼ where (w, z) ∼ τ j(w, z) for all j.

1. Show that L(p, q) is a smooth manifold, so that the quotient map π : S3 → L(p, q) is smooth.
Show that L(p, q) = A ∪B where A,B ∼= S1 × D2 and A ∩B ∼= S1 × S1.

Hint: think in polar coordinates, replacing w = r1e
iθ1 . Write a subset of S3 as{

r2
1 = 1

2 , r
2
2 = 1

2

}
, this set is fixed by the action.
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