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1 Lecture 1

1 Lecture 1

E 1.1 References e

• https://www.daniellitt.com/tale-cohomology
• [4], [3], [1], [2]

E 1.2 Intro e

Prerequisites:

• Homological Algebra

– Abelian Categories
– Derived Functors
– Spectral Sequences (just exposure!)

• Sheaf theory and sheaf cohomology
• Schemes (Hartshorne II and III)

Outline/Goals:

• Basics of etale cohomology

– Etale morphism
– Grothendieck topologies
– The etale topology
– Etale cohomology and the basis theorems
– Etale cohomology of curves
– Comparison theorems to singular cohomology
– Focused on the case where coefficients are a constructible sheaf.

• Prove the Weil Conjectures (more than one proof)

– Proving the Riemann Hypothesis for varieties over finite fields

One of the greatest pieces of 20th century mathematics!
• Topics

– Weil 2 (Strengthening of RH, used in practice)
– Formality of algebraic varieties (topological features unique to varieties)
– Other things (monodromy, refer to Katz’ AWS notes)

Lecture 1 5
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1 Lecture 1

E 1.3 What is Etale Cohomology? e

Suppose X/C is a quasiprojective variety: a finite type separated integral C-scheme. If you take the
complex points, it naturally has the structure of a complex analytic space X(C)an: you can give it
the Euclidean topology, which is much finer than the Zariski topology. For a nice topological space,
we can associate the singular cohomology H i(X(C)an,Z), which satisfies several nice properties:

• Finitely generated Z-modules
• Extra Hodge structure when tensored up to C (same as C coefficients)
• Cycle classes (i.e. associate to a subvariety a class in cohomology)

Goal of etale cohomology: do something similar for much more general “nice” schemes. Note that
some of these properties are special to complex varieties. (E.g. finitely generated: not true for a
random topological space.)

We’ll associate to X a “nice scheme” ↝H i(Xet,Z/`nZ). Take the inverse limit over all n to obtain
the `-adic cohomology H i(Xet,Z`). You can tensor with Q to get something with Q` coefficients.
And as in singular cohomology, you can a “twisted coefficient system”.

Example 1.3.1(?): What are some nice schemes?

• X = SpecOk, the ring of integers over a number field.
• X a variety over an algebraically closed field

– Typical, most analogous to taking a variety over C.

• X a variety over a non-algebraically closed field

Some comparisons between the last two cases:

• For C- variety, H i
sing will vanish above i = 2d.

• Over a finite field, H i will vanish for i > 2d + 1 but generally not vanish for i = 2d + 1.

In good situations, these are finitely generated Z/`nZ-modules, have Mayer-Vietoris and excision
sequences, spectral sequences, etc. Related invariants: for a scheme with a geometric1 point:
(X,x) ↝ πétale1 (X,x), which is a profinite topological group.

Remark 1.3.2: More invariants beyond the scope of this course:

• Higher homotopy groups
• Homotopy type (equivalence class of spaces)

So we want homotopy-theoretic invariants for varieties.

1A geometric point is a map from SpecX to an algebraically closed field.

1.3 What is Etale Cohomology? 6



1 Lecture 1

Remark 1.3.3: This cohomology theory is necessarily weird! The following theorem explains why.
The slogan: there is no cohomology theory with Q coefficients.

Theorem 1.3.4(Serre).
There does not exists a cohomology theory for schemes over Fq with the following properties:

1. Functorial
2. Satisfies the Kunneth formula
3. For E an elliptic curve, H1(E) = Q2.

Proof .
Take E to be a supersingular elliptic curve. Then End(E) ⊗Q is a quaternion algebra, and
use the fact that there are no algebra morphisms R →Mat2×2(Q).

∎

Exercise 1.3.5
Functoriality and Kunneth implies that End(E) ↷ E yields an action on H1(E), which is
precisely an algebra morphism End(E) →Mat2×2(Q), a contradiction.
The content here: the sum of two endomorphisms act via their sum on H1.

Exercise 1.3.6
Prove the same thing for Qp coefficients, where p divides the characteristic of the ground field.
Proof the same, just need to know what quaternion algebras show up.

This forces using some funky type of coefficients.

E 1.4 What are the Weil Conjectures? e

Suppose X/Fq is a variety, then

ζX(t) = exp ∑
n>0

∣X(Fqn)∣
n

tn.

Remark 1.4.1:

• ∂

∂t
log ζX(t) is an ordinary generating function for the number of rational points.

• Slogan: locations of zeros and poles of a meromorphic function control the growth rate of the
coefficients of the Taylor series of the logarithmic derivative.

Exercise 1.4.2
Make this slogan precise for rational functions, i.e. ratios of two polynomials.

Theorem 1.4.3(The Weil Conjectures).

1.4 What are the Weil Conjectures? 7



1 Lecture 1

1. ζx(t) is a rational function.

2. (Functional equation) For X smooth and proper

ζX(q−nt−1) = ±q
nE
2 tEζX(t).

3. (RH) All roots and poles of ζX(t) have absolute value q
i
2 with i ∈ Z, and these are equal

to the ith Betti numbers if X lifts to characteristic zero.a
aNote that we’ll generalize Betti numbers so this makes sense in general.

Remark 1.4.4: These are all theorems! The proofs:

1. Dwork, using p-adic methods. Proof here will follow from the fact that H i
étale are finite-

dimensional. Related to the Lefschetz Trace Formula, and is how Grothendieck thought
about it.

2. Grothendieck, follows from some version of Poincaré duality.

3. (and 4) Deligne.

1.4.1 Euler Product

Let ∣X ∣ denote the closed points of X, then there is an Euler product:

ζX(q−nt−1) = ±q
nE
2 tEζX(t) = ∏

x∈∣X ∣
exp tdeg(x) + t

2 deg(x)

2
+⋯

= ∏
x∈∣X ∣

exp− log(1 − tdeg(x))

= ∏
x∈∣X ∣

1
1 − tdeg(x) .

Exercise 1.4.5
Check the first equality. If you have a point of deg(x) = n, how many Fqn points does this
contribute? I.e., how many maps are there Spec(Fqn) → Spec(Fqn) over Fq?
There are exactly n: it’s Gal(Fqn/Fq). But then division by n drops this contribution to one.

We can keep going by expanding and multiplying out the product:

∏
x∈∣X ∣

1
1 − tdeg(x) = ∏

x∈∣X ∣
(1 + tdeg(x) + t2 deg(x))

= ∑
n≥0

(# of Galois-stable subset of X(Fqn) of size n) tn.

1.4 What are the Weil Conjectures? 8



1 Lecture 1

Why? If you have a degree x point, it contributes a stable subset of size x: namely the Fqn points
of Fqn . Taking Galois orbits like that correspond to multiplying this product. But these are the
points of some algebraic variety:

⋯ = ∑
n≥0

∣Symn(X)(Fq)∣tn,

where Symn(X) ∶=Xn/Σn, the action of the symmetric group. Why is that? A Fq point of Symn(X)
is an unordered n-tuple of Fq points without an ordering, and asking them to be Galois stable is
the same as saying that they are an Fq point.

Theorem 1.4.6(First Weil Conjecture for Curves).
For X a smooth proper curve over Fq, ζX(t) is rational.

Proof .

Claim: There is a set map

SymnX → PicnX
D ↦ O(D),

where here the divisor is an n-tuple of points.
What are the fibers over a line bundle O(D)? A linear system, i.e. the projectivization of
global sections PΓ(X,O(D)). What is the expected dimension? To compute the dimension
of the space of line bundles on a curve, use Riemann-Roch:

dimPΓ(X,O(D)) = deg(D) + 1 − g + dimH1(X,O(D)) − 1.

where the last −1 comes from the fact that this is a projective space.

Claim: If deg(D) = 2g − 2, then H1(X,O(D)) = 0.
This is because it’s dual to H0(X,O(K − D))∨, but this has negative degree and a line
bundle of negative degree can never have sections.a Thus the fibers are isomorphic to Pn−g for
n > 2g − 2. Now make a reductionb and without loss of generality, assume X(Fq) ≠ ∅. In this
case, Picn(X) ≅ Picn+1(X) for all n, since you can take O(P ) for P a point, a degree 1 line
bundle, and tensor with it. It’s an isomorphism because you can tensor with the dual bundle
to go back. Thus for all n > 2g − 2,

∣Symn(X)(Fq)∣ = ∣Pn−g(Fq)∣ ⋅ ∣Picn(X)(Fq)∣ = ∣Pn−g(Fq)∣ ⋅ ∣Pic0(X)(Fq)∣.

Thus ζX(t) is a polynomial plus ∑
n>2g−2

∣Picn(X)(Fq)∣ (1 + q + q2 +⋯ + qn−g) tn.

Exercise
Show that this is a rational function using the formula for a geometric series.

∎
aYou should check to make sure you know why this is true!
bExercise: justify why the reduction is valid.

1.4 What are the Weil Conjectures? 9



1 Lecture 1

Theorem 1.4.8(Functional Equation).
The functional equation in the case of curves:

ζX(q−1t−1) = ±q
2−2g

2 t2−2gζX(t).

Exercise 1.4.9 (Important)
Where it comes from in terms of Symn: Serre duality.

We’ll show the RH later.

Theorem 1.4.10(Dwork).
Suppose X/Fq is any variety, then ζX(t) is rational function.

This was roughly known to Weil, hinted at in original paper

Proof (Grothendieck).
Idea: take Frobenius (intentionally vague, arithmetic vs geometric vs . . . ) F ∶ X → X, then
X(Fq) are the fixed points of F acting on XFq , and the Fqn points are the fixed points of Fn.
Uses the Lefschetz fixed point formula, which will say for ` ≠ ch(Fq),a

∣X(Fqn)∣ =
2 dim(X)
∑
i=0

(−1)iTr(Fn)H i
c(XFq ,Q`).

Lemma 1.4.11.

exp∑
Tr(Fn)

n
tn is rational.

This lemma implies the result, because if you plug the trace formula into the zeta function,
you’ll get an alternating product f⋯1

g
⋅ h ⋅ 1

j
⋯ of functions of the form in the lemma, which is

still rational.
∎

aHere Hi
c is compactly supported cohomology, we’ll define this later in the course.

Proof (Of Lemma).
It suffices to treat the case dim(V ) = 1, because otherwise you can just write this as a sum of
powers of eigenvalues. Then you have a scalar matrix, so you obtain

exp∑
αn

n
tn = exp− log(1 − αt) = 1

1 − αt,

which is rational.
∎

This proves rationality, contingent on

1.4 What are the Weil Conjectures? 10



2 Lecture 2

1. The Lefschetz fixed point formula
2. The finite dimensionality of etale cohomology

Exercise 1.4.12
Try to figure out how Poincaré duality should give the functional equation.
(Hint: try the lemma on a vector space where F scales a bilinear form.)

Theorem 1.4.13(Serre, Kahler Analog).
Suppose X/C is a smooth projective variety and [H] ∈ H2(X(C),C) is a hyperplane class
(corresponds to intersection of generic hyperplane or the first Chern class of an ample line
bundle). Suppose F ∶X →X is an endomorphism such that f∗[H] = q[H] for some q ∈ Z≥1.
Define

L(Fn) ∶=
2 dim(X)
∑
i=0

(−1)iTr (Fn ∣ H i(XFq ,Q`)) .

and

ζX,F (t) ∶= exp
∞
∑
n=1

L(Fn)
n

tn.

Then ζX,F (t) satisfies the RH: the zeros and poles are of absolute value q
i
2 . Equivalently, the

eigenvalues λ of Fn acting on H i(X,C) all satisfy ∣λ∣ = q
i
2 .

Next time, to review

• Étale morphisms
• Definition of a site

asdsadsadsa dasdsadsa dasdsda

2 Lecture 2

E 2.1 Review e

From last time: we want to prove the following theorem of Serre, a complex analog of the Weil
conjectures. After this, we’ll talk about étale morphisms, the étale topology, and possibly the
definition of étale cohomology.

Theorem 2.1.1(Serre).
Let X/C be a smooth projective variety and [H] ∈ H2(X;Z) be a hyperplane classa and an
endomorphism F ∶ X → X a map satisfying F ∗[H] = q[H] for some q ∈ Z≥1. Then the

Lecture 2 11



2 Lecture 2

eigenvalues of F ∗ on H i(X;C) all have absolute value q
i
2 .

aIntersection with a hyperplane in projective space.

Note that the same q is appearing in both parts of the theorem. Why prove this theorem? Later
on, to prove the Riemann hypothesis for varieties over finite fields, we’ll prove that the Frobenius
acts in this way on the étale cohomology. There is in fact a reason this is true, coming from some
special properties of the behaviors of the cohomology of varieties which aren’t manifested in random
topological spaces.

△! Warning 2.1.2
The proof here will not look at all like Deligne’s proof of the Riemann hypothesis for varieties over
finite fields. We’ll see shadows of it, but use a lot of things that are true for complex varieties that
are still not known for varieties over finite fields.

Fact 2.1.3
There is a cup product map

L ∶H i(X;C) →H i+2(X;C)
α ↦ α ⌣ [H].

Thus taking the direct sum ⊕
i

H i(X;C) yields an algebra.

Theorem 2.1.4(Hard Lefschetz).
Each H i(X;C) ≅ im(L) ⊕H i

prim, which is an isomorphism that depends on a choice of hyper-
plane class [H] but is then canonically defined. Moreover, there is a Hodge decomposition
H i

prim = ⊕
p+q=i

Hp,q
prim.

Theorem 2.1.5(Hodge Index Theorem).
If α,β ∈Hk(X)prim, then there is a natural pairing

⟨a, b⟩ = i∗∫
X
a ∧ β ∧ [H]n−k,

where we’ve used the fact that the integrand is a top form and can thus be integrated. Moreover,
this is a definite bilinear form on Hp,q

prim, i.e. a nonzero element paired with itself is again nonzero.

The moral of the story here is that cohomology breaks up into pieces, where imL comes from
lower degrees and can perhaps be controlled inductively, and the higher dimensional pieces carry a
canonical definite bilinear form.

E
2.2 Sketch proof of Serre’s analog of the

Riemann hypothesis e

2.1 Review 12



2 Lecture 2

As a reminder, we want to show that the eigenvalues of F ∗ acting on Hk(X;C) have absolute value
q
k
2 where q is the scalar associated to F acting on [H].

Claim: It suffices to do this for Hk
prim.

Why is this true? If we have an eigenvector α ∈Hk−2(X;C), then by induction on k we can assume
the eigenvalue has absolute value q

k−2
2 . Then F ∗(α ⌣ [H]) = F ∗α ⌣ F ∗[H] = λα ⌣ q[H] = qλ(α ⌣

[H]), so this is an eigenvector of absolute values qq
k−2

2 = q
k
2 .

Now for the primitive part, let α ∈ Hk
prim be an F ∗ eigenvector. Since F ∗ preserves Hp,q, we can

assume α ∈Hp,q
prim for some p + q = k. Consider

⟨F ∗α, F ∗α⟩.

On one hand, this is equal to ∣λ∣2⟨α, α⟩ by sesquilinearity, pulling out a λ and a λ. On the other
hand, it is equal to

⋯ = i∗∫ F ∗α ∧ F ∗α ∧ [H]n−k

= ik

qn−k
∫ F ∗ (α ∧ α ∧ [H]n−k)

= q
nik

qn−k
∫ α ∧ α ∧Hn−k

= qk⟨α, α⟩.

Exercise 2.2.1 (?)
Using the Lefschetz hyperplane theorem or Poincaré duality, F ∗ acts on H2n(X;C) via qn.

So we’re done if ⟨α, α⟩ ≠ 0, since this implies ∣λ∣2 = qk and thus ∣λ∣ = q
k
2 . Why is this true? This is

the statement of the Hodge index theorem.

Remark 2.2.2(Slogan): The structures on cohomology imply this complex analog of the Riemann
hypothesis, and we’ll want to use something similar for varieties over a finite field. This will be
hard! Deligne doesn’t quite accomplish this: there’s no analog of the Hodge decomposition and we
don’t know the Hodge index theorem.

This is the proof that will motivate much of the rest of what we’ll do in the course.

E 2.3 Étale Morphisms e

This is a property of morphism of schemes, see Hartshorne.

2.2 Sketch proof of Serre’s analog of the Riemann hypothesis 13
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Definition 2.3.1 (Étale Morphism)
Suppose f ∶ X → Y is a morphism of schemes. Then f is étale is it is locally of finite
presentation, flat, and unramified.

Definition 2.3.2 (Unramified)
f is unramified if Ω1

X/Y = 0 (the relative Kahler differentials). Equivalently, all residue field
extensions are separable, i.e. given a point in Y with a point in X above it, the residue fields
of these points gives a field extension, and we require it to be separable.

Definition 2.3.3 (Formally Etale)
Suppose we have a nilpotent ideal I, so In = 0 for some n, then f ∶X → Y is formally étale
if there is a unique lift in the following diagram:

Spec(A/I) X

Spec(A) Y

f
∃!

Remark 2.3.4: This is supposed to resemble a covering space map: We have Spec(A) ∈ Y with a
nilpotent thickening and a map from A/I, which you may think of as a reduced subscheme. This
thus says that tangent vectors downstairs can be lifted in a unique way to tangent vectors upstairs:

Figure 1: Image

Remark 2.3.5: There are some equivalent definitions of a morphism being étale:

• Smooth of relative dimension zero

• Locally finite presentation and formally étale

• Locally standard étale, i.e. for each x ∈ X with y ∶= f(x), there exists a U ∋ x,V ∋ y such
that f(U) ⊆ V and V = Spec(R), U = Spec (R[x]h/g) (where we localize at h) such that the
derivative g′ is a unit in R[x]h and g is monic.

2.3 Étale Morphisms 14
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For this last definition, thinking of Spec(R[x]) as R ×An, what happens when modding out by a
polynomial g? This yields a curve cutting out the roots of g. Inverting h deletes the locus where h
vanishes, and g′ being a unit means that the g has no double roots in the fibers. In other word, the
deleted locus passes through all double roots:

Figure 2: Image

Exercise 2.3.6 (?)
Check that standard étale morphisms are étale, and try to understand the proof that all étale
morphisms are locally standard étale.

Example 2.3.7(Example of an étale morphism):
• Multiplication by [n] on an elliptic curve if n ∈ Z is invertiable in the base field.

• Take Gm = Speck[t, t−1], and the map

Gm → Gm

tm ← [ t,

where n is prime to ch(k).2

Exercise 2.3.8 (?)
Show that the last map above is étale.
(Hint: use the fact that ∂

∂t
(tn) = ntn−1, which is a unit.)

Example 2.3.9(?): Consider the map

Gm ↪ A1

k[t, t−1] ← [ k[t].

We need to check 3 things:

2Here we use the convention that everything is prime to zero. Also note that this map is in fact finite étale.

2.3 Étale Morphisms 15
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• Locally finite presentation,

– This is a finitely presented ring map, since you just need to adjoin an inverse of t, one
element and one relation.

• Flat,

– Since open embeddings are flat,

• Ω1
Gm/A1 = 0,

– True for a Zariski open embedding.

Note that this is finite onto its image.

Proposition 2.3.10(?).
Any open immersion is étale.

Note that we actually already checked this!

Example 2.3.11(An étale morphism that is not finite onto its image): Use the fact that
Gm is A1 ∖ {0}, so take Gm ∖ {1} and the map

Gm ∖ {1} → Gm

t2 ← [ t.

What’s the picture? For the squaring map, there are two square roots:

Figure 3: Image

This is an étale surjection but not finite étale, since it is not proper. This also gives a counterexample
to étale morphisms always looking like covering spaces, since here that may be true locally but
doesn’t hold globally.

△! Warning 2.3.12
This is an important example to keep in mind, because you’ll often see arguments that treat étale
maps as though they were finite onto their image.

Example 2.3.13(?): Take a finite separable field extension, taking Spec of it yields an étale map.

Now for some non-examples:

2.3 Étale Morphisms 16



2 Lecture 2

Example 2.3.14(A finite map which is not etale): Take X = Speck[x, y]/xy, which looks like
the following:

Figure 4: X

Then the normalization X̃ →X is not étale, since it is not flat.

Example 2.3.15(A finite flat map which is not etale): Take the map

A1 → A1

t2 ←[ t.

The picture is the following:

Figure 5: Image

This is note étale since it is ramified at zero. We can compute

Ω1
f = k[t]dt/d(t2) = k[t]dt/2t dt,

where 2t dt does not generate this module. This is supported at t = 0 if ch ≠ 2.

Example 2.3.16(?): A finite flat morphism such that Ω1
X/Y is not torsion: a hint is that the

previous example almost works, with a slight modification. Let chk = p, and take

A1 FÐ→ A1

tp ←[ t.

2.3 Étale Morphisms 17
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Then Ω1
f = k[t]dt/d(tp) = k[t]dt since d(tp) = 0 in characteristic p. This yields line bundles (?), so

it is not torsion.

Remark 2.3.17: This map has a name: the relative Frobenius. In general, looking at Frobenii,
the Kahler differentials will be very big. You might not be used to this: in characteristic zero, a
map of relative dimension zero is generically étale. In this case, the Kahler differentials will always
be torsion.

Example 2.3.18(?): Consider a map

Am
f1,⋯,fmÐÐÐÐ→ Am,

since such a map is given by a system of m polynomials in m variables. Then f is étale is a

neighborhood of a if det( ∂fi
∂xj

∣
a
) is a unit.

2.3.1 Properties of Étale Morphisms

Proposition 2.3.19(Some properties of étale morphisms).

1. Open immersions are étale
2. Compositions of étale morphisms are étalea

3. Base change of étale morphisms are étale, i.e.

X ×Y T X

T Y

∴étale étale

4. There is a 2 out of 3 property: If ϕ ○ ψ and ϕ are étale, then ψ is étale.
aWhat do you have to check? Locally finite presentation, flat, and unramified are all preserved. The one that
may be tricky is remaining unramified, a hint is to use the cotangent exact sequence for Ω1

X/Y .

Exercise 2.3.20 (?)
Show property 4 above.

Proposition 2.3.21(?).
Étale morphisms on varieties over an algebraically closed field induce isomorphisms on complete
local rings at closed points.

Exercise 2.3.22 (?)
Prove this! Hint: use the criterion for formal étaleness. There’s an evident map one way on
local rings coming from your étale morphism, and you need to produce the inverse map.

2.3 Étale Morphisms 18
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Exercise 2.3.23 (?)
△! If ψ is étale and ϕ ○ψ is étale, it is not necessarily the case that ϕ is étale. Come up with
an example!

Corollary 2.3.24(An informal statement).
Any property that can be checked at the level of complete local rings is true for the source of
an étale morphism if it is true for the target.

Why? If you want to check a property for complete local rings on the source, note that the map
induces an isomorphism of complete local rings.

E 2.4 Generalizing Topologies e

2.4.1 Sites

The notion of a site will be a generalization of topological spaces and sheaves. The idea is we’ll
generalize sheaf cohomology to this setting. On a nice space like a manifold, singular cohomology is
isomorphic to the sheaf cohomology of the constant sheaf Z. Here we’ll find some version of a sheaf
where étale cohomology with Z/`nZ coefficients will be the sheaf cohomology with the constant
sheaf Z/`nZ.

Question 2.4.1
What parts of the definition of a topological space are needed to define the notion of a sheaf?

Remark 2.4.2: Recall that the sheaf condition is given in two parts:

1. A section is determined by its value on a cover, and

2. Sections can be glued when they agree on intersections.

Answer 2.4.3

1. As in presheaves, a notion of open sets and inclusions. (I.e., a category of open sets.)34

We’d also like to make sense of the sheaf condition:

3Recall that a presheaf on X is a contravariant functor out of the category of open sets of X.
4The notion of a presheaf on X doesn’t know much about the actual topology of X. If two spaces have the coarsest
topology, so the only opens are X,∅, then the categories of open sets are equivalent, and every presheaf on them
will be the same.

2.4 Generalizing Topologies 19
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2. Collections of morphisms which are “covers”, remembering which collections of opens cover a
space, and

3. The existence of certain fiber products (intersections).

Remark 2.4.4: The motivation for (3) above is that for U,V ⊆X, we can form U × V = U ∩ V .

We will make the following preliminary definition:

Definition 2.4.5 (Sites/Grothendieck Topologies)
A category C with a collection of covering familiesa

{Xα
fαÐ→X ∣ α ∈ A}

such that several axioms are satisfied.
aHow to think of this: elements in this collection cover X.

We’ll discuss the axioms next time, they just capture the notion of what a cover of a topological
space should look like.

△! Warning 2.4.6
There are at least three different notions of this definition! The one above is perhaps the least
general but the easiest to work with.

Example 2.4.7(?): For X a topological space, C the category of open sets in X, then {Uα → U}
is a covering family if the Uα cover U , i.e. U = ∪αUα.

Example 2.4.8(More exotic): Let M be a manifold and C be the category of manifolds over
M , so all M ′ fÐ→ M such that f is locally an isomorphism. Note that these are smooth local
homeomorphisms. Let

{Mα
fαÐ→M} if ⋃

α
im(fα) =M

Example 2.4.9(Another exotic example): Let X be a scheme and consider Xet the category of
all étale Y /X: so the objects are schemes Y admitting an étale morphism Y →X. Then {Xα →X}
is a covering family if ∪ im(fα) =X.

This will be the fundamental object, and we’ll define étale cohomology by defining sheaves on this
category, taking a constant sheaf Z/`nZ, and we’ll take sheaf cohomology.

2.4 Generalizing Topologies 20
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E 3.1 Defining Sites e

Today: we’ll discuss sites, which generalizes the category of open sets over a topological space. The
goal is to generalize spaces and sheaves to categories, and to define a sheaf we need

1. A notion of a cover, and

2. A notion of intersections/fiber products of open sets.

Definition 3.1.1 (Grothendieck Topology / Sites)
A Grothendieck topology on C or a site on C is the data of for each X ∈ Ob(C) a collection
of sets of morphism {Xα →X} (covering families) satisfying

• Intersections exist: If Xα →X appears in a covering family and Y →X is arbitrary, the
fiber product Xα ×X Y exists.

• Intersecting with a cover again yields a cover: If {Xα →X} is a covering family and
Y → X is arbitrary, then the covering family can be pulled back: {Y ×X Xα → Y } is
again a covering family.a

• Compositions of coverings are again coverings: If {Xα →X}α and {Xαβ →Xα}α,β are
covering families, then you can compose, i.e. taking the set of all possible ways of
composing {Xαβ →Xα →X} is again a covering family.b

• Isomorphisms are covers: If X
∼fÐ→ Y is an isomorphism, then the singleton family

{X fÐ→ Y } is a covering family.

aWhen C was the category of open sets of a space X, the existence of this morphism Y →X says Y ⊆X is an
open subset, and thus intersecting Y with any open cover of X yields an open cover of Y .

bFor spaces, this says if you have a cover of an open set by subsets and a cover of each of those subsets, the
entire set has been covered.

3.1.1 Examples of Sites

Example 3.1.2(The motivating example): If X is a topological space, define C whose objects
are open subsets of X where there is a unique morphism U → V iff U ⊆ V . Then {Uα → U} is a
covering family if ⋃

α
Uα = U .

Example 3.1.3(The small étale site): Let X be a scheme, and define the small étale site Xét:
the category whose objects are étale morphisms Y fÐ→X where morphisms are maps over X:

Lecture 3 21
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Y1 Y2

X

f1

g

f2

Note that g is étale by the 2 out of 3 property.

Then {Xα →X} is a covering family if the set theoretic images satisfy ⋃
α

im(fα) =X.

Example 3.1.4(The big étale site): Again let X be a scheme, and define XEt the category whose
objects are all X-schemes (where we no longer require the maps to be étale). In other words, this
is the overcategory of X: the category of schemes over X. Then {Uα

fαÐ→ U} is a covering family if
all of the fα are étale and ⋃

α
im(fα) = U .

Note the difference: in the small site, we included only étale X-schemes, vs all X-schemes in the
big site. In both cases, the notion of covering families are the same.

Example 3.1.5(?): Let X be a complex analytic space (e.g. a complex manifold), then there is an
analytic étale site whose objects are complex analytic spaces Y fÐ→X such that locally on Y , f is an
analytic isomorphism. Note that this includes covering spaces. The morphisms will be morphisms
over X creating commuting triangles, and the covers are the usual covers.

Remark 3.1.6: This category is part of what motivates the definition of the étale topology. This is
what we’re trying to imitate. E.g. if you have a complex algebraic variety, taking its analytification
will be one of these. This site will show up later when we compare étale cohomology to singular
cohomology.

Remark 3.1.7: We haven’t said what it means to be a sheaf yet, but Grothendieck topologies
behave in somewhat unexpected ways. The category of sheaves of the analytic étale cohomology,
Sh(Xan-et), is canonically equivalent to Sh(Xtop). Thus sometimes the category of sheaves over a
site doesn’t remember the site, i.e. two different sites can have the same category of sheaves. On
the RHS we had a category of open subsets, whereas on the LHS we included things like covering
spaces. We’ll see later that there is a notion of morphisms of sites, and there is a morphism inducing
this equivalence.

Proving this isomorphism will be an exercise, here’s an outline of why it’s true: suppose you have
a cover of X in this category, i.e. a family of local analytic isomorphisms. Given any of these, you
can cover by subsets for which these are isomorphisms onto their images.

Definition 3.1.8 (fppf)
The letter fppf stand for faithfully flat and finite presentation. a

aThe letters don’t precisely match up here because this comes from a French acronym.

3.1 Defining Sites 22
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Example 3.1.9(The fppf topology): There are small and big sites here: we define Xfppf whose
objects are fppf morphism Y → X, with morphisms as triangular diagrams of morphisms over X,
and covers are the usual covers. Note that replacing fppf morphisms with flat morphisms would
yield an equivalent definition here.

Example 3.1.10(?): If X is a scheme, then the small Zariski topology is Xzar whose objects are
Op(Xtop), the Grothendieck topology of the corresponding topological space, and we take the usual
notion of covers. There is a big Zariski topology XZar whose category is all X-schemes {Uα

fαÐ→ U}
with fα open embeddings and ⋃

α
im(fα) = U .

Example 3.1.11(?): Some other examples:

• The Nisnevich topology, which lives between the Zariski and the étale topology,

• The crystalline site, used to define crystalline cohomology,

• The infinitesimal site,

• The cdh topology, the arc topology, the rh topology, and many more.

E 3.2 Toward Sheaves of Sites e

Definition 3.2.1 (Presheaf)
For D a category, a D-valued presheaf is a contravariant function F ∶ C → D.

Remark 3.2.2: This makes no reference to any Grothendieck topology.

Example 3.2.3(?): If X is a topological space, a D-valued presheaf of X is equivalent to a presheaf
on Op(X).

We can now define a sheaf. What’s the motivation? For X a topological space, it’s a sheaf satisfying
some conditions: its sections are determined by an open cover, and given sections agreeing on
overlaps allows gluing. This can be captured by a specific diagram, which is what we will use
here.

Recall the definition of a site (Definition 2.4.5): in short, a category equipped with the Grothendieck
topology.

Definition 3.2.4 (Sheaf)
A sheaf F is presheaf such that

3.2 Toward Sheaves of Sites 23
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F (U) ∏
α

F (Uα) ∏
α,α′

F (Uα ×U Uα′)
F (π1)

F (π2)

is an equalizer diagram for all covering families {Uα → U}.

Remark 3.2.5: The diagram arises due to the fact that if we have a bunch of maps coming from
a cover, since we have a contravariant functor, we get a map into the product. We then look at the
intersections of all Uα, Uα′ .

The two arrows occurring come from the projections:

Uα ×U Uα′

Uα Uα′

U

π1

π2

where we use the fact that since F is a contravariant functor, it induces maps going the other way.

What does being an equalizer mean, say if F is set-valued? “Exactness” at the middle term is the
gluing condition, and exactness at the first term is injectivity, i.e. a section (the values of F on
U) are determined by its values on a cover (by F (Uα)). Note that in fact F (U) is the limit of
this diagram. The gluing condition is more precisely that if we’re given (sα) ∈ ∏

α

F (Uα) such that

F (π1)(sα) = F (π2)(sα), then (sα) comes from F (U).

Definition 3.2.6 (Morphisms of sheaves and presheaves)
A morphism F1 → F2 of either presheaves or sheaves is a natural transformation of functors.

3.2.1 Examples of Sheaves of Sites

Theorem 3.2.7(?).
Any representable functor is a sheaf on the étale site XÉt. In fact, any such functor is a sheaf
on the big fppf site XFppf : the category of all X-schemes with covers as fppf covers, which are
maps that are flat and jointly surjective.

Example 3.2.8(Examples of sheaves on the étale site): Take µn the functor represented by
µn ∶= Speck[t]/tn−1. For U an X-scheme, we can evaluate in the following way:

µn(U) = {f ∈ OU(U) ∣ fn = 1} .

3.2 Toward Sheaves of Sites 24
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Example 3.2.9(?): We define a sheaf of the étale site as Oét
X(U) = OU(U) where we’ve said what

the values are. This is a sheaf that is represented by A1
/X .

Example 3.2.10(?): The constant sheaf Z/`nZ. How can we prove it is a sheaf, given the theorem,
and determine what its values are? This is represented by (Z/`nZ) ×X, i.e. taking the disjoint
union of `n copies of X. The values are given by

Z/`nZ(U) = homTop(UTop,Z/`nZ),

where we give the set Z/`nZ the discrete topology and take morphisms to be continuous maps.

△! Warning 3.2.11
The constant sheaf S doesn’t associate S to every open set: it instead associates Sd where d is the
number of components. The former would only be a presheaf, and not a sheaf.

Example 3.2.12(?): We can take the sheaf Gm(U) ∶= OU(U)×, whose values are obtained by
taking the global sections of the structure sheaf and only keeping the units. This is represented by

Gm,X = SpecZ[t, t−1] ×
SpecZ

X

Why does this represent this functor? Mapping into this requires that t goes to an invertible
function, which yields the isomorphism.

Remark 3.2.13: Note that all of these functors take values in abelian groups, which is a consequence
of the fact that the representing objects are group schemes. In fact, one definition of a group scheme
is that the functor it represents factors through groups.

Example 3.2.14(?): Take the functor Pn(U) ∶= hom(U,Pn). This functor can be written down as
a line bundle on U with a surjective map from OU → OnU (?), the functor represented by projective
space, and that’s also a sheaf that is necessarily representable but not an abelian one.

Some things we still need to get to:

• A proof that Z/`nZ is actually a sheaf,
• A proof that the category of sheaves on the big étale site XÉt

5 with values in Ab is abelian
and has enough injectives.

E 3.3 Étale Cohomology: A Preliminary
Definition

e

5Note that a sheaf on the big étale site necessarily restricts to a sheaf on the small étale site, since covers in the
small site are also covers in the big site.
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Definition 3.3.1 (Imprecise: étale cohomology)
Let F be a sheaf and define a functor ΓX ∶ F → F(X) sending it to its values on X. Then the
étale cohomology of X is defined by

H i(Xét,Z/`nZ) ∶= RiΓX(Z/`nZ),

the right-derived functors of ΓX .

Remark 3.3.2: This definition is incomplete, and in particular, it’s highly non-obvious that this
category of abelian sheaves is abelian. E.g. usually when proving that the category of abelian
sheaves on a topological space has cokernels, you use sheafification: you take the cokernel of a map
of presheaves, which is a presheaf, and sheafify it. Here, we don’t know how to sheafify a presheaf
on a site. The usual construction involves forming the espace étalé and taking sections does not
work for a site, you need a genuinely different argument.

△! Warning 3.3.3
Even showing cokernels exist in the category of abelian sheaves on a site is nontrivial. Try as an
exercise!

Remark 3.3.4: What will be true in general is that this category will be an AB5 abelian category,
and having enough injectives is all that’s additionally needed. This comes from machinery developed
in Grothendieck’s Tohoku paper, and we’ll sketch part of the proof.

Properties of these sheaves are not so obvious, and depend on the site you’re working over:

Example 3.3.5(?): Consider the map

Gm → Gm

tm ←[ t,

where n is invertible over the base, e.g. if we’re over a field of characteristic coprime to n. This
yields a map of sheaves in two different settings. In XZar we have

O× → O×

f ↦ fn.

We can look at this in Xét, yielding

O×ét → O×ét
f ↦ fm.

Claim: This map is not an epimorphism on XZar but is on Xét

3.3 Étale Cohomology: A Preliminary Definition 26
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Proof (?).
It suffices to give one example: take X = SpecR and n = 2, and since this is just a point, the
sheaf is determined by its values. So is the map

R× → R×

t↦ t2

surjective? The answer is no, of course, since its image is R≥0.
This will be surjective on Xét if n is invertible on X. If we were in usual topological spaces,
we would want to show that given any section of the sheaf on an open set, it can be refined.
Here we want to pass to an étale cover so that section has an nth root. So given f ∈ Gm(U),
we want an étale cover of U so that f obtains an nth root. An invertible function is a map
U → Gm, and we can form the square

U ×
Gm

Gm Gm zm

U Gm z

The RHS map is étale since n is invertible, and the fiber product is étale since étale morphisms
are preserved by base change.

Claim: f has an nth root upstairs. (Verify!)
There’s a more concrete way of writing this: note that A1

U,z = Speck[t], so take the subscheme
cut out by V (zn − f). This will be an étale cover of U (the same one in fact) and z is now an
nth root.

∎

Exercise 3.3.6 (?)
Check the details! Namely that this argument implies that this map of sheaves is an epimor-
phism.

Remark 3.3.7: This map of sheaves Gm
zm←[zÐÐÐ→ Gm, noting that if n is not invertible this will not

be an epimorphism, will always be an epimorphism in Sh(Xfppf) since this map is flat and finitely
presented.

E 3.4 Preview: Morphisms of Sites e

Definition 3.4.1 (Morphisms of Sites)
Suppose T1, T2 are sites (categories with covering families), then a continuous map of sites
f ∶ T1 → T2 is a functor T2 → T1

a that preserves fiber products and sends covering families to
covering families.

aNote that this functor goes in the opposite direction of the original map.
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Example 3.4.2(?): A continuous map f ∈ HomTop(X,Y ) induces a map

Op(Y ) → Op(X)
U ↦ f−1(U).

Exercise 3.4.3 (?)
Check that this is a continuous map of sites.

Next time: a bunch of examples.

4 Lecture 4: Descent

Last time: sites, sheaves, and morphisms of sites. Today: descent, which is how we’ll see that
many familiar objects are sheaves on the étale site, such as representable functors or quasicoherent
sheaves.

E 4.1 Reminder e

Definition 4.1.1 (A continuous map of sites)
Given two sites (C,T1) and (D,T2) where C,D are categories and the Ti are collections of
covering families, a morphism is a functor f−1 ∶D → C such that

1. f−1 preserves fiber products.
2. f−1 sends covering families to covering families.

Example 4.1.2(?): The main example: for f ∶ X → Y a map of topological spaces, the functor
F ∶ Op(Y ) → Op(X) given by F (U) ∶= f−1(U) sending an open set to its preimage.

Exercise 4.1.3 (Check!)
Check that this is a continuous map of sites.

Example 4.1.4(?): Suppose X is a scheme, then there is a natural map of sites from XFppf (all
X-schemes where covers are collections of jointly surjective flat morphism) to XÉt (all X-schemes
where covers are jointly surjective étale morphisms) to Xét (étale X-schemes with morphisms over
X) to Xzar (the open subsets of X with morphisms given by inclusions and covers the usual covers).
The maps here are inclusions going the other way.

Exercise 4.1.5 (Check!)
Check that these are continuous maps of sites.
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Remark 4.1.6:
On terminology:

• What we’ve been calling a site or a Grothendieck topology is sometimes called a Grothendieck
pretopology. The major difference is that you don’t have to assume the existence of fiber
products.

• You may also see the notion of a topos, which is the category of sheaves on a site.

E 4.2 Setting up Descent e

Question 4.2.1

1. We’ve said what it means to be a sheaf on a site, how do we check that a given functor is a
sheaf on Xét or Xfppf?

2. How do we construct such sheaves?

Theorem 4.2.2(Ways of constructing sheaves).

1. If Y is an X-scheme (i.e. a scheme equipped with a map to X) then the functor Z →
homX(Z,Y ) is a sheaf on XFppf ,XÉt,Xét, etc.

2. Suppose F is a quasicoherent sheaf on X, so F ∈ QCoh(X), the functor of taking global
sections:

Z

Γ(Z, f∗F)

X

f

is a sheaf on XFppf ,XÉt,Xét, etc.

Definition 4.2.3 (Fétale)
The sheaf associated to the above functor on Xét will be denoted Fétale.

Proof (of 2).
Suppose we have an fppf cover of X
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U =∐Ui

X

∎

Question 4.2.4
Suppose F ∈ QCoh(X). When does it come from a quasicoherent sheaf on X? I.e., when is there a
quasicoherent sheaf F ′ on X and an isomorphism between its pullback to U and F? What extra
structure do you need to “descend” to QCoh(X), i.e. to pick such an isomorphism?

Question 4.2.5
Given F1,F2 ∈ QCoh(U) and a morphism f ∶ F1∣U → F2∣U , when does f come from X?

Remark 4.2.6: If X = Speck and U is a finite separable extension, then this question is exactly
what Galois descent is about!

Example 4.2.7((a motivating one)): U = ∐Ui → X is a Zariski cover. If we have a sheaf on
U , what extra data do we need to get a sheaf on X? We need isomorphisms Fi∣Ui∩Uj

∼Ð→ Fj ∣Ui∩Uj
(gluing data) where each Fi is the sheaf given on Ui. We also need a cocycle condition on triple
intersections. Given this data, gluing yields a sheaf on X. This may be familiar from vector bundles.
Thus to give a sheaf, it suffices to specify gluing data.

Morphisms F → G is the same as morphisms F∣Ui → G∣Ui which commute with the gluing data.
We’d like to generalize this notion of commuting with gluing data to more general types of covers.

Definition 4.2.8 (Descent data for quasicoherent sheaves)
Suppose U fÐ→X is a morphisms, then descent data for a quasicoherent sheaf on U/X is the
following:

1. A sheaf F ∈ QCoh(U).
2. Gluing data: If we take the fiber product of U with itself, mapping to U under 2 different

projectionsa,

U ×X U

U

π1π2

there are isomorphisms

ϕ ∶ π∗1F
∼Ð→ π∗2F .

3. Cocycle condition: in the following fiber product
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U ×X U ×X U

U ×X U

πij

we have π∗23ϕ ○ π∗12ϕ = π13ϕ.
aIf U was an open cover, this would correspond to intersections of elements in the cover.

Exercise 4.2.9 (?)
Check that this agrees with the previous notions when U →X is a Zariski cover.

Definition 4.2.10 (Morphisms of descent data)
Given descent data (F , ϕ) and (G, ψ), a morphism is a morphism h ∶ F → G of quasicoherent
sheaves on U such that the following diagram commutes:

π∗1F π∗1G

π∗2F π∗2G

π∗1h

ϕ ψ

π∗2h

E
4.3 Descent Data is Equivalent to

Quasicoherent Sheaves e

Theorem 4.3.1(Descent for quasicoherent sheaves).
Suppose f ∶ U → X is fppf. Then f∗ induced an equivalence of categories between QCoh(X)
and descent data on U/X.

Remark 4.3.2: This doesn’t quite make sense, since we haven’t covered how to get descent data
from a given sheaf. Explicitly, given F ∈ QCoh(X), we can pullback to obtain f∗F ∈ QCoh(U).
We now want an isomorphism

(f ○ π1)∗F
∼Ð→ (f ○ π2)∗F

on U ×X U . We have a situation like the following:

U ×X U U X
π2

π1 f

Since f ○ π1 = f ○ π2 in this case, pulling back the identity yields the desired isomorphism.

Example 4.3.3(?): Let U =∐Ui be a Zariski cover of X, then vector bundle can be obtained from
O⊕nUi ∈ QCoh(Ui). To glue this to a vector bundle on X, we need isomorphism ϕijO⊕nUi∩Uj

∼Ð→ O⊕nUi∩Uj
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such that ϕjk∣Ui∩Uj∩Uk ○ ϕij ∣Ui∩Ui∩Uk = ϕik∣Ui∩Uj∩Uk . For n = 1, this is gluing data for a line bundle.

Example 4.3.4(?): Suppose L/k is a Galois extension with Galois group G, then SpecL→ Speck
is an étale cover. Descent data on this map is a quasicoherent sheaf on SpecL, i.e. an L-vector
space V , with an isomorphism π∗1V

ϕ∼Ð→ π∗2V satisfying the cocycle condition. We can compute

SpecL ×Speck SpecL = SpecL⊗k L =∐
L

∼Ð→L SpecL,

which is a torsor for the Galois group, and in fact is equal to ∐Gal(L/k) SpecL.

Exercise 4.3.5 (?)
Convince yourself that descent data here is the same as Galois descent, i.e. a semilinear action.
(Hint: you will need to use ϕ.)

Explicitly, the theorem says

• Given a morphisms of descent data, we get a unique morphism of sheaves (fully faithful)

• If you have descent data, it comes from a sheaf (essentially surjective)

So we need to prove

1. f∗ is fully faithful, inducing an isomorphism on hom sets, and

2. f∗ is essentially surjective.

Reference: Neron modules by BLR.

4.3.1 Proof of Theorem

Given F1,F2 ∈ QCoh(X), then we have a functor and thus a map

homX(F1,F2)
f∗Ð→ homU(f∗F1, f

∗F2)

We’re not trying to show this map is a bijection, since we need more than that: the morphism
should commute with the descent data. We can produce two maps to fill in the following diagram:

homU×XU ((f ○ π1)∗F1, (f ○ π1)∗F2)

homX(F1,F2) homU(f∗F1, f
∗F2)

homU×XU ((f ○ π2)∗F1, (f ○ π2)∗F2)

f∗

π∗1

π∗2
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where these hom sets are equal since f ○ π1 = f ○ π2.

Claim: Given g ∈ HomU(f∗F1, f
∗F2), this is a morphism of descent data if maps to the same

element under π∗1 and π∗2 using the above identification of hom sets.

Exercise 4.3.6 (?)
This follows from definitions, check that it holds.

Being fully faithful is the same as the above diagram being a equalizer. I.e., the first map f∗ is
injective, yielding faithfulness, and fullness means that any map in the middle that has the same
image under the two arrows π∗1 , π∗2 comes from an element in homX(F1,F2).

Assuming that this is fully faithful, why do quasicoherent sheaves give sheaves on Xét or Xfppf?
Being a sheaf was characterized by an equalizer diagram gotten by replacing the first hom with
taking global sections of F on X,U,U ×X U .

Remark 4.3.7: Taking F1 = O and F2 = F , this shows that Fét (resp. F fppf) is a sheaf. In this
case, the first hom is global sections of F on X, the middle are global sections of F on U , and the
two maps are to the double intersections.

To prove this is an equalizer diagram, we’ll need a lemma:

Lemma 4.3.8(?).
Suppose R → S is a faithfully flat ring morphism (flat and morphisms on spec are surjective)
and suppose N ∈ R-mod. Then there is an equalizer diagram

N N ⊗R S N ⊗R S ⊗R S

n n⊗ 1

idN ⊗ idS ⊗1

idN ⊗1⊗idS

This is the case where F1 = O and F2 = Ñ the quasicoherent sheaf associated to N , U = SpecS →
X = SpecR.

Proof (of lemma).
Step 1: (Amazing trick) WLOG R → S splits, so there’s a map S → R such that R → S → R
is the identity. We can tensor with S, i.e. push out this map along itself to obtain

R S

S S ⊗R S
1⊗idS

∃m

where m is a section given by multiplication.

Claim: The claim is that we can replace R with S and S with S ⊗R S.

4.3 Descent Data is Equivalent to Quasicoherent Sheaves 33



5 Lecture 4: Descent

Proof (of claim).
Checking the equalizer diagram is the same as showing that the following sequence is
exact:

0→ N → N ⊗R S
f−gÐÐ→ N ⊗R S ⊗R S,

where f, g are the maps given in the equalizer. It suffices to do this after tensoring with
S, since a sequence of R modules is exact iff it is exact after tensoring with S. One
direction is easy, since S is flat, and the other direction follows from the fact that you can
check on each stalk, and after tensoring the stalks are the same. This requires checking
for each point on SpecR that the map on stalks is exact, but that’s true because we have
a surjective map and this can be checked upstairs.

∎

Step 2: Suppose R fÐ→ S splits via a map S rÐ→ S. The geometric picture is that we’re supposing
we have a section to U →X, and descending amounts to pulling back along the splitting. We
first want to check that N → N ⊗R S is injective, which is true since we can use the map
idN ⊗r to produce a splitting. Why is this true? Supposing n ∈ N maps to zero, then noting
that N → N ⊗R S → N is the identity and thus maps f(n) idÐ→ 0, forcing n = 0.
We now want to show exactness in the middle. Define

r̃ ∶ S ⊗R S → S

s1 ⊗ s2 ↦ s1 ⋅ f(r(s2))

Suppose we have something in the image of the differential. This yields

idN ⊗r̃ (n⊗ s⊗ 1 − n⊗ 1⊗ s) = n⊗ s − n⊗ f(r(s)) = n⊗ s − nr(s) ⊗ 1.

Thus n ⊗ s ⊗ 1 − n ⊗ 1 ⊗ s = 0, putting this in the kernel of the differential, making the last
term above equal to zero, and thus n⊗ s = nr(s) ⊗ 1, which is in the image of the differential.
So anything in the kernel is in the image, where we’ve proved it for pure tensors, and it’s an
exercise to do it in general.

∎

Remark 4.3.9: Given R → S faithfully flat, you can define the Amitsur complex:

N → N ⊗ S → N ⊗ S⊗2 → ⋯→ N ⊗ S⊗r,

where the maps are given by alternating sums of identities with a 1 in the ith spot. There is a
theorem that this is always exact, essentially by the same proof as above: reduce to the case where
you have a section by tensoring with S, then use the section to build a nullhomotopy.

Next time: we’ll complete the proof of fppf descent.
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Last time: we started fppf descent, and wanted to show the quasicoherent sheaves and representable
functors give sheaves on Xét and Xfppf . Given a quasicoherent sheaf, we take the associated presheaf
on the étale site given by taking the values of its pullback to any object on the étale site. This yields
a sheaf on the étale site, and we’ll also conclude that representable functors yield such sheaves as
well.

E 5.1 Continuation of Proof e

Reminder of the theorem (fppf descent for quasicoherent sheaves): If f ∶ U → X is an fppf cover,
so finitely presented and faithfully flat, then the pullback f∗ induces an equivalence of categories
QCoh(X) to descent data for quasicoherent sheaves relative to U/X. This descent data is a
quasicoherent sheaf on U , so you can take its 2 pullbacks to U ×X U (thinking of these as the double
intersections of objects in the cover) which admit an isomorphism between them which needs to
satisfy a cocycle condition on U ×X U ×X U . For Zariski covers, this reduces to having a cover by
opens, a sheaf on each objects, and gluing data that satisfies the usual cocycle condition.

The goal was to prove (1) this functor is fully faithful, so the map on hom sets is a bijection. Given
F1,F2 ∈ QCoh(X), we wanted a certain diagram to be an equalizer. Faithfulness is the injectivity
of the first map f∗, and fullness is showing that elements go to the same place in the next two
maps.

We proved a lemma: if R → S is a faithfully flat ring map and M ∈ R-mod then

N N ⊗ S N ⊗ S ⊗ S

n n⊗ 1

n⊗ s n⊗ s⊗ 1

is an equalizer diagram. We used one of Daniel’s favorite tricks in fppf descent: producing a section
by base-changing to S.
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5.1.1 Proof of Full Faithfulness

Exercise 5.1.1 (Step 1, Important)
Step 1: Reduce to the case where U →X is affine.
(Hint: See chapter 6 of Neron models. This will use that the map has finite presentation, and
in fact even less, that the map is quasicompact.)

Step 2: We now have R → S faithfully flat, where we’re thinking of U = SpecS,X = SpecR. Since
N,M ∈ R-mod, after replacing symbols, we want the following diagram to be an equalizer:

homR(M,N) homS(M ⊗ S,N ⊗ S) homS⊗S(M ⊗ S⊗2,N ⊗ S⊗2)

where all tensors are over R. The first map takes a map f ∶M → N and composes with the map
N → N ⊗ S from the lemma to get a map M → N ⊗ S, which automatically extends to a map
M ⊗ S → N ⊗ S. Exactness in the middle also comes from the lemma. Alternatively, injectivity
of the first map follows from injectivity of N → N ⊗ S and left-exactness of hom(M, ⋅ ), as does
exactness everywhere else.

A short diversion:

Corollary 5.1.2(of proof).
For F ∈ QCoh(X), we defined Fét ∈ Presh(Xét) where Fét(U πÐ→ X) ∶= π∗F(U) is a sheaf on
Xét and Xfppf

Proof (?).
We want to show that if U → V is an étale cover, we want

F(V ) F(U) F(U ×V U)

to be an equalizer diagram – but this is exactly the previous diagram where F ∶= O and
F2 ∶= F .

∎

Example 5.1.3(?): We have an étale sheaf Oét
X ∶ (U →X) ↦ Γ(U,OU).

5.1.2 Proof of Essential Surjectivity

We have U fÐ→X an fppf cover and descent data (F , ϕ) on U/X where F is a quasicoherent sheaf
on U and ϕ is an isomorphism between its two pullbacks to U ×X U satisfying the cocycle condition
on U ×X U ×X U . We want some G ∈ QCoh(X) such that the pullback admits an isomorphism
f∗G ∼Ð→ F for which the canonical descent data on the pullback agrees.

We’ll use a similar trick to construct G.
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Exercise 5.1.4 (Important)
Step 1: We’ll reduce to the case of an affine morphism.

Step 2:

Let R fÐ→ S and M ∈ S-mod. We’ll want an isomorphism ϕ ∶M ⊗R S → S ⊗RM of S ⊗R S modules
satisfying the cocycle condition. We make the following construction:

M S ⊗M
m↦1⊗m

m↦ϕ(m⊗1)

Suppose that M is of the form N ⊗ S for N ∈ R-mod, how would the descent of M fit into this
diagram and relate to these two maps? Just set K to be the equalizer of this diagram, i.e. the
subset of M that go to the same thing under both maps.

Claim: There is obvious map K ⊗R S → M since K ⊆ M and M ∈ S-mod, so you can include
K ↪ M and multiply by elements of S. Moreover, this map is an isomorphism. Given this
isomorphism, one obtains compatible descent data on M .

From the lemma, we have an equalizer

R S S ⊗R S

to which we can apply ⋅ ⊗SM to obtain

K M ⊗ S M ⊗R S

where K is by definition the above kernel. We want to check that the map K →M appearing here
induces an isomorphism K ⊗ S →M .

Exercise 5.1.5 (Important)
This is true if R → S has a section, show this. Given U fÐ→X with a section s and F ∈ QCoh(U)
with descent data, we want G such that f∗G = F . You can take G ∶= s∗F ; check that this works.

In general, we want to show K ⊗ S → M is an isomorphism, and we want to reduce to the case
where we have a section. After applying ⋅ ⊗ S, R → S acquires a section. Why? We get a map
S → S ⊗R S, and there’s a reverse map S ⊗R S → S given by multiplication. So K ⊗S ⊗S →M ⊗S
is an isomorphism, which implies K ⊗ S →M is an isomorphism due to the fact that S is faithfully
flat over R which allows us to check exactness before or after tensoring with S.

The exercises here are among the most important in the course! Totally necessary to do them.
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E 5.2 Representable Functors e

Theorem 5.2.1(?).
Suppose p ∶ U → X is an fppf cover. Then the functor p∗ ∶ Sch/X → descent data for schemes
on U/X is fully faithful (but not an equivalence of categories).

5.2.1 Proof of Theorem

Exercise 5.2.2 (Step 1)
Reduce to the case where everything is affine, including U,X, and the scheme over X. However,
it’s enough to reduce to the case of affine schemes over X, and U,X are not necessarily affine.

Step 2: If Y,Z are schemes over X, we want to show the following is an equalizer diagram:

homX(Y,Z) homU(p∗Y, p∗Z) homU×XU(π∗p∗Y,π∗p∗Z)

Here we’ve suppressed the indices on the πi since their images are canonically identified. Injectivity is
obvious, using that U is surjective, two different morphisms of schemes pulled back along a faithfully
flat morphisms are distinct, although we’ll prove this. The real content is that any morphism on
U that maps to the same thing on U ×X U comes from X, so we can descend morphisms and the
morphisms form a sheaf (which is what we’re trying to prove).

We’ll deduce this from what we proved about quasicoherent sheaves. By the first reduction, we can
assume Y = Spec

X
OY is a relative spec, as is Z = Spec

X
OZ where the O here are quasicoherent

sheaves of algebras. These are obtained by taking the pushforward of the structure sheaf along
Y →X,Z →X. Rewriting the diagram, the homs are now in the category of quasicoherent algebras
and we have

hom(OZ ,OY ) hom(p∗OZ , p∗OY ) ⋯

where we want this to be an equalizer. This is true because the first map is injective even when
ignoring the algebra structure, just looking at a map of quasicoherent sheaves, we know this is
injective. If we have an element in the middle that is a morphism of algebras mapping to the same
thing, it comes from a quasicoherent sheaf in the first slot. That this is also a map of quasicoherent
algebras follows from the fact that descent is functorial. A map of algebras is commuting with a
bunch of maps of quasicoherent sheaves, which we know is true on the RHS and is thus true on the
LHS since pullback yields an equivalence of categories.
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5.2.2 Consequences

Corollary 5.2.3(?).
If Z ∈ Sch/X, the hom( ⋅ , Z) is a sheaf on Xfppf ,Xét,XÉt, etc.

Remark 5.2.4: p∗ is not essentially surjective in general for schemes. Descent data for schemes
relative to an étale cover U/X is called an algebraic space. Note that some definitions may also
required separatedness. When pullback does yield an equivalence of categories, this is referred to
as effective descent.

It is essentially surjective for affine schemes and polarized schemes: if you have descent data for
a scheme on U/X with an ample line bundle (which also has descent data) then you can descend
the scheme. Thus projective varieties can be descended, provided you also descend them with an
ample line bundle. Replacing Spec with Proj is one way to show this.

Example 5.2.5(of sheaves):
• Gm ∶ U → OU(U)×

• µ` ∶ U → {f ∈ OU(U) ∣ f ` = 1}.
• Z/`Z ∶ U → homTop(U,Z/`Z) sending U to continuous maps from U to the constant scheme

Z/`Z, i.e. the `-points.
• Hilbp(t)(Pn) Hilbert schemes of projective space. We know this is a scheme, so the functor it

represents is a sheaf.
• Pn, which represents a line bundle with a surjective map from the trivial bundle of rank n + 1

Exercise 5.2.6 (?)
Work out Galois descent from this point of view.

E 5.3 Étale Cohomology e

What missing ingredients do we need to define cohomology for these abelian sheaves?

1. We want to show that the category of abelian sheaves on Xét is abelian.
2. We need enough injectives.

Remark 5.3.1: Both of these facts are true for the category of abelian sheaves on any site, i.e. any
category with a Grothendieck topology.

The proof of (2) will be relatively easy, but the crucial ingredient for (1) will be the following:

Theorem 5.3.2(?).
Let τ be a site. Then the forgetful functor Sh(τ) → Presh(τ) has a left adjoint which we’ll call

5.3 Étale Cohomology 39



6 Lecture 6: Filling in Gaps, Étale Cohomology

sheafification.

We’ll just prove this for τ =Xét. The general theorem is much longer!

5.3.1 Preliminaries

Some operations we can do with sheaves:

Pushforward and pullback Suppose f ∶ τ1 → τ2 to be a continuous morphism of sites, i.e. a functor
f−1 ∶ τ2 → τ1 which preserves fiber products (preserving intersections and covering families).

Definition 5.3.3 (Pushforwards)
Given G ∈ Sh(τ1), define f∗G ∈ Sh(τ2) by

(f∗G) (U) ∶= G(f−1(U)).

Note that this is the usual formula for pushforwards.

Exercise 5.3.4 (Important, must do)
Show that f∗G is a sheaf.

6 Lecture 6: Filling in Gaps, Étale
Cohomology

Remark 6.0.1(A technical point): Last time a theorem was stated that pullback induced an
equivalence of categories QCoh(Xzar)

∼Ð→ QCoh(Xét)
∼Ð→ QCoh(X)(Xfppf); note that these are the

little sites. What about the big sites? There are similar equivalences between the three corresponding
big sites, but in general, QCoh(XZar) ≠ QCoh(Xzar).

For example, a quasicoherent sheaf on the big Zariski site is a quasicoherent sheaf on every X-scheme
and morphisms between various pullbacks. This isn’t as affected by what sheaf you have on X
itself.

Remark 6.0.2: Étale descent data for schemes is not quite the same as an algebraic space: it
yields an algebraic space, but the data is not literally the same.

E 6.1 Gaps e

Claim: The category of abelian sheaves on the Xét is an abelian category with enough injectives.
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With this in hand, we can use the formalism of derived functors to define étale cohomology:

Definition 6.1.1 (Étale Cohomology)

H i(Xét,Z/`Z) ∶= RiΓ(Xét,Z/`Z).

The crucial ingredient (mentioned last time) is the following:

Theorem 6.1.2(Sheafification for Sites).
For τ a site, the forgetful functor Sh(τ) → Presh(τ) has a left adjoint (sheafification).

We’ll prove this for the étale site, just Google “sheafification for sites” to find more general proofs.
Note that this is actually the inclusion of a full subcategory. Before the proof, we’ll need a few
operations in order to imitate the usual proof that sheafification exists for usual sheaves. This is
done by constructing the espace étalé out of the stalks and define the sheafification to be sections.
The operations we’ll need are:

6.1.1 Pushforwards

For f ∶ τ1 → τ2 a continuous map of sites, this was a reversed functor preserving fibers products and
covering families. For G ∈ Sh(τ1) we constructed f∗G, and the exercise was to show that this is a
sheaf.

Example 6.1.3(?): Let f ∶ X → Y be a map of schemes, this induces a map f ∶ Xét → Yét where
each U/Y comes from U ×Y X over X.

Example 6.1.4(?): Suppose k = k is a field and we have ιX ∶ Speck →X. We have Sh ((Speck)ét) =
Set, since an étale cover of Speck is a disjoint union of copies of itself. If you show what the value
of a sheaf on Speck, you know it on any disjoint union of them since there are a lot of sections.
Moreover, any disjoint union of copies of Speck can be covered by copies Speck itself by definition.

Exercise 6.1.5(?)
Show this!

What is the pushforward?

(ιx)∗F(U →X) = F(U ×X x) = F (∐Speck) =∏F Speck,

where the number of copies appearing is the number of preimages of x in U , and the last equality
follows from the sheaf condition.

Definition 6.1.6 (Skyscraper Sheaf)
(ιx)∗F is called the skyscraper sheaf.
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6.1.2 Pullbacks

In the usual setting, to define a pullback of sheaves you take an direct limit to compute the value
on an open set U , which only yields a presheaf and thus requires sheafifying. We don’t know how
to sheafify yet, so we can’t yet define pullbacks in general. We can define pullbacks to a geometric
point though:

Definition 6.1.7 (Pullbacks)
Let ιx ∶ Speck → X with k = k and set Fx = ι∗xF for F ∈ Sh(Xét). The LHS is a set and the
RHS is a sheaf on (Speck)ét. We then define

FxF(U),

where the limit is taken over diagrams of the form

u U

x X
ιx

where u is a geometric point and Y →X is étale. Fx is referred to as the stalk of F at x.

Remark 6.1.8: We don’t have to work at a closed point. Taking Speck to be the algebraic closure
of the function field of X is X is irreducible.

Example 6.1.9(?): Let F = Z/`Z and x↪X any geometric point. Then the pullback is given by
ι∗x (Z/`Z) = Z/`Z. If U had more than one connected component, then the first definition would
involve a limit over F(U) which are all copies of Z/`Z. But given this, you can always find a
connected covering. So the (U,u) which are connected are actually cofinal.6

Example 6.1.10(?): Let F = Oét
X , then the pullback is ι∗xOét

X = Osh
Xx, which is the strict Henseliza-

tion (where we’re picking up the version that has an algebraically closed residue field).

Some useful things about stalks: we can check things like isomorphisms locally on them.

Lemma 6.1.11(?).
Suppose F ,G are sheaves of abelian groups on Xét. Then TFAE

1. F → G is an epimorphism,
2. F → G is locally surjective, i.e. given a section s ∈ G(U) there exists U ′ → U such that

s∣U ′ is the image of some s′ ∈ F(U).a
3. Fx → Gx is surjective for all geometric points x→X.

aI.e. a given section of G may not be in the image of F , but will be after refining the cover.

6Note that having any cofinal diagrams in a limit means that the limit will only see those.

6.1 Gaps 42



6 Lecture 6: Filling in Gaps, Étale Cohomology

Proof (2 Ô⇒ 1).
Suppose we have

F G H
a

b

where the 2 compositions agree, then we want to show that a = b. Let s be a section of G on
U , we want to know that a(s) = b(s). By (2), we can replace s with s′ coming from F , so
a(s′) = b(s′) since the compositions agree.

∎

Proof (1 Ô⇒ 3).
We want to show that given an epimorphisms, the map on every stalk is surjective. Assume
Fx → Gx is not surjective, and thus has a nontrivial cokernel Λ. We can construct 2 maps to
the skyscraper sheaf:

F G (ιx)∗ Λ
0

f

where f is the “natural map” given by taking a section to G and considering its stalk. Since Λ
was the cokernel, both compositions from F are zero:

F G (ιx)∗ Λ

0

0

0

f

which forces Λ = 0, a contradiction.
∎

Proof (3 Ô⇒ 2).
Given s ∈ G(U), we want to produce a U ′ → U such that s∣U ′ comes from F . Picking any
x ∈ U , since Fx → Gx is surjective, there is some étale neighborhood of x, say (V, v) where
V →X and v ↦ x:

v V

x X
ιx

Moreover, s∣V is in the image of F . The only problem is that V is not a cover of U , so we
extend it by choosing x′ not in the image of V , and continue in this way until it forms a cover.

∎

Remark 6.1.12: This terminates if the scheme is quasicompact, otherwise you may need transfinite
induction and thus the axiom of choice. The morphisms are still étale if you take disjoint unions,
since you only need to check local properties: locally finite presentation, unramified, and flatness.
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Lemma 6.1.13(?).
Suppose 0→ F → G → H is a sequence of abelian sheaves on Xét, then TFAE

1. This sequence is exact,

2. 0→ F(U) → G(U) → H(U) is exact for all U ,

3. 0→ Fx → Gx →Hx is exact for all geometric points x.

Remark 6.1.14: What is the difference between 1 and 2? 1 means that F → G is a monomorphism
and the kernel of the map f ∶ G → H, i.e. the following diagram is an equalizer:

F G H
f

0

Exercise 6.1.15 (?)
Prove this! The proof used for topological spaces will work here, using the fact that direct
limits preserve exactness.

E
6.2 Proof: Sheafification Exists for the

Étale Site
e

We can now prove that sheafification exists for Presh(Xét). Recall that we have a forgetful functor
from sheaves to presheaves, and we want to show it has a left adjoint.

We’ll first construct an analog of the espace étalé:

Definition 6.2.1 (Espace étalé for the étale site)
For each x ∈X, choose a geometric point x over x, and given F ∈ Presh(Xét) define

Esp(F) ∶= ∏
x

(ιx)∗Fx,

the product of skyscraper sheaves.

Remark 6.2.2: This is a sheaf since pushforwards and products of sheaves are again sheaves. There
is a natural map of presheaves F → Esp(F) given by sending sections to germs.

Definition 6.2.3 (Sheafification Fa)
The sheaf Fa is the subsheaf of Esp(F) generated by F , i.e.

Fa(U) ⊆ Esp(F)(U),Fa(U) = {s ∈ Esp(F)(U) ∣ locally s ∈ imF} .
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Remark 6.2.4: Here Esp(F) is like the product of all of the stalks, and Fa is the espace étalé
inside of it.

Proposition 6.2.5(?).
Fa is a sheaf.

Proof (?).
This is a subfunctor of a sheaf, and thus a presheaf. It’s separable, meaning the map in the
equalizer diagram is injective, and a section is determined by what it is locally. This is true
for Esp(F) and thus for Fa. Gluing follows from the fact that it is locally defined.

∎

Proposition 6.2.6(?).
Fa is left adjoint to the forgetful functor.

Exercise 6.2.7 (Important!)
Prove this! The proof used for topological spaces works here.

Remark 6.2.8: We’ve used a trick in the proof that uses some geometry to avoid needing to apply
sheafification twice to obtain a sheaf. For general sites, there is an analog of the plus construction.

Corollary 6.2.9(?).
Colimits exists in Sh(Xét).

Proof (?).
Colimits exist for presheaves, since colimits always exists for functor categories valued in a
category where colimits exist since they’re computed pointwise. Left adjoints send colimits to
colimits, so in general we’ll construct colimits of sheaves by taking colimits of presheaves and
then sheafifying. This is true because colimits are defined by mapping out, and the definition
of left adjoints is that one knows how to map out of it.

∎

Corollary 6.2.10(Sheaves on the Étale Site Form an Abelian Category).
Sh(Xét) is an abelian category.

Proof (?).

• Limits exist since they can be defined pointwise.

• Cokernels exists since they are colimits: coker(F → G) is given by the coequalizer of

F G
f

0

which is a colimit.

• im = coim, which can be checked on stalks.

6.2 Proof: Sheafification Exists for the Étale Site 45



7 Lecture 07: Relating Étale and Čech Cohomology

∎

Next time: we’ll finish proving that injectives exist, and start computing.

7 Lecture 07: Relating Étale and Čech
Cohomology

Last time: stalks, sheafification, and Sh(Xét) is abelian. Next up, we’re aiming to define sheaf
cohomology for Sh(Xét).

Remark 7.0.1(Esoteric!): Related to a question asked by a viewer: there is not in fact a morphism
fromXfppf →Xét, since locally finitely-presented need not be finitely presented (part of the condition
for fppf). There is instead a morphism Xfppf → Xét,fp to a corresponding finitely presented site.
There is also a map Xét →Xét,fp inducing an equivalence on the category of sheaves via pushforward.

Theorem 7.0.2(Enough injectives).
Sh(Xét) has enough injectives.

Proof (?).
Given F ∈ Sh(Xét) we want an injective sheaf I and an injection F ↪ I. For each x ∈ X,
choose a geometric point x over x, and let I(x) be an injective Z-module with a map Fx → I(x).
These exist because the category of Z-modules has enough injectives. The injectives in this
category are divisible abelian groups.

Claim: The following object works:

I ∶= ∏
x

(ιx)∗I(x).

We need to check

1. There is a map F → I: The RHS is a product, so we map into the components. Fx
maps into its own associated skyscraper sheaf where the map is sending sections to their
germs. Then the skyscraper sheaf for Fx maps into the skyscraper sheaf for I(x) by
pushforward.

2. This is a monomorphism: check on stalks.

3. I is injective: check the lifting property directly.

∎
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E 7.1 What Else We Get From Sheafification e

Remark 7.1.1: We now know that Sh(Xét) is abelian with enough injectives. This is true for
Sh(τ) for any site τ , but this is substantially harder to show.

7.1.1 Inverse Images

For f ∶X → Y , we have a map on presheaves

f−1 ∶ Presh(Yét) → Presh(Xét)

F(V étÐ→X) ↦ limÐ→F(U →X),

where the limit is over diagrams of the form

V U

X Y

ét ét

Fact 7.1.2
f−1 is left adjoint to pushforward as functors on presheaves.

Exercise 7.1.3 (?)
Check this.

Definition 7.1.4 (Inverse Image Sheaf)

f∗F ∶= (f−1F)a .

Theorem 7.1.5(?).
f∗ is left adjoint to f∗.

Proof (?).
Sheafification is a left adjoint.

∎

Example 7.1.6(?):
• For x ι

↪Ð→X a geometric point, we have ι∗F = Fx.

• For Y fÐ→X, we have f∗Z/`Z = Z/`Z.

7.1 What Else We Get From Sheafification 47



7 Lecture 07: Relating Étale and Čech Cohomology

• More generally, for Y fÐ→ X and any representable functor F ∶= homX( ⋅ , Z), we have f∗F =
homY ( ⋅ , Y ×X Z).

E 7.2 Étale Cohomology e

See Definition 6.1.1 for the definition of étale cohomology. How do we compute H i(Xét,F)? Choose
an injective resolution

F → I0 → I1 → ⋯.

with the Ij injectives. From the general theory of derived functors, we obtain

H i(Xét,F) =H i (Γ(X,I ⋅ )) ,

where the RHS is a complex of abelian groups. Injective resolutions are difficult to find in general.
Suppose π ∶Xét → Yét comes from a map of schemes, then we can compute derived functors of other
functors such as the pushforward,

(Riπ∗)F =H i (π∗I ⋅ ) ,

where the RHS are sheaves on Yét. Implicit here is the claim that π∗ is left-exact. You can also
find (L>0π∗)G = 0.

Exercise 7.2.1 (?)
Check that pullback is exact.

Proposition 7.2.2(Properties of étale cohomology).

1. H0(Xét,F) = F(X), aka the global sections Γ(X,F).

2. H>0(I) = 0 for I injective.

3. Given a SES of sheaves in Sh(Xét)

0→ A→ B → C → 0

there is a LES

⋯ →H i+1(Xét,C) δÐ→H i(Xét,A) → ⋯.

Example 7.2.3(?): Suppose k is a field, not necessarily algebraically closed, and consider Sh((Speck)ét).
Let G ∶= Gal(ks/k) for a choice of separable closure ks/k.

Claim: There is a functor from Sh((Speck)ét) to discrete G-modules7 inducing an equivalence of
categories.

7G is a topological group in the inverse limit topology, so a discrete G-module is a module with the discrete topology
where the G-action is continuous. In particular, the action on any element factors through a finite quotient of G.
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Note that when thinking of Galois representations, Z` is not an example of this, but a representation
over a finite field works. E.g. the Tate module (the inverse limit of torsion) of an elliptic curve is
not a discrete G-module since the Galois action is not continuous in the discrete topology (although
it is in the `-adic topology).

To prove this claim, the map is given by

ι ∶ Sh((Speck)ét) → Discrete G-modules

F ↦ lim←Ð
k⊂L⊂ks

F(SpecL).

The idea here: you want to evaluate F on ks, which doesn’t make sense because ks is not locally
finitely-presented, so we take a limit instead. The claim is that the image is a discrete G-module and
this is an equivalence. This follows because each term is, and taking limits preserves this property.

Corollary 7.2.4(?).
H i((SpecK)ét ,F) =H i(G, ιF), which is the Galois cohomology.

Why? Derived functors only depend on the ambient category, so it suffices to check H0.

Proof (of claim).
We get a G-module since G acts on the entire diagram and thus its limit.

Exercise (?)
Check that this is a discrete G-module.

There is an inverse functor: given V → Speck an étale map, by the classification of étale
k-algebras we have V =∐k∈K′ Speck′ where K ′ is the set of all finite separable k′/k. Given a
discrete G-module M , send it to the Galois fixed points V →∏MG′

s where G′
s ∶= Gal(ks/k′).

Exercise (Check)
Check that this is an inverse, it follows from Galois descent.

∎

Proof (of corollary).
Γ(Speck,F) = (ιF )G, taking the G-invariants. So H0 ιÐ→ to taking invariants, and thus the
higher derived functors agree, where the RHS is group cohomology.

∎

Remark 7.2.7: Right now we’re only talking about things that look like Z/`Zn, but the goal when
proving the Weil conjectures will be using Z`. We’ll be trying to count some number by taking
traces, but if we take these in a ring where some prime is zero, this only gives a congruence class.
So when we define `-adic cohomology, we’ll take some inverse limit. If we take the constant sheaf
Z`, this doesn’t use the topology and will give the wrong answer.

Example 7.2.8(?): For E an elliptic curve, E(ks) is a discrete G-module. Under the above
correspondence, this goes to hom( ⋅ ,E) since an L-point of the curve is the same as a Galois-
invariant ks-point.
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E 7.3 How to Compute: Čech Cohomology e

△! Warning 7.3.1

1. Čech cohomology does not always compute étale cohomology! Note that this already happens
for bad topological spaces, where Čech doesn’t always compute sheaf cohomology, and this
can be true for schemes as well. Ex: A2 with a doubled origin.

2. Čech cohomology is not actually “computable”, since acyclic covers do not generally exist.

When does Čech cohomology compute sheaf cohomology? If you define a cover of your space, for
each object of the cover and each double intersect, the derived functors vanish.

Example 7.3.2(?): Take an algebraic curve, say as an open subset of a Riemann surface. There
are no étale maps to it which have this property: taking any Zariski open subset (thinking over
k = C) yields lots of interesting cohomology. So you can never find an acyclic cover.

Remark 7.3.3: This is one of the major differences between étale cohomology and singular coho-
mology of manifolds, and it makes things much more difficult. When defining an acyclic cover for
manifolds, you usually look for a cover by contractible objects, which works because manifolds are
locally contractible. Schemes are generally not locally acyclic. What is true is that schemes are
K(π,1), so étale cohomology can be computed in terms of group cohomology.

7.3.1 Defining Čech Cohomology

Definition 7.3.4 (Čech Complex)
Suppose U ∶= ⋃Ui →X is an étale cover, and suppose F ∈ Sh(Xét), then there is a complex of
projections:

X U U ×X U U ×X U ×X U ⋯

Here we interpret each term as the n-fold intersections in the cover. We can apply F to this
diagram to obtain a cosimplicial diagram of abelian groups. Given such a diagram, you can
take the alternating sum as differentials to obtain a chain complex

Č ⋅ (U/X,F) ∶= (0→ F(U) → F(U ×X U) → ⋯) .

This is the Čech Complex.

Remark 7.3.5: On usual topological spaces, there are two notions of the Čech complex: this one,
and the alternating Čech complex where you throw away self-intersections. This doesn’t work
in this setting, since these can be interesting objects here. E.g. there is not necessarily a section
Ui → Ui ×X Ui.
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Definition 7.3.6 (Total Čech Complex of the Étale Site)

Č ⋅ (Xét,F) ∶= limÐ→
U→X

Č ⋅ (U/X,F),

where the limit is taken over all covering families.

Remark 7.3.7: Note that taking direct limits is exact, so we can do this in either order. There are
potential set-theoretic issues ifX is not quasicompact; one fix is to only work in the finitely-presented
setting, which is the choice we’ll make here.

Definition 7.3.8 (Čech Cohomology)

Ȟ i(U/X,F) ∶=H i(Č ⋅ (U/X,F))
Ȟ ik(Xét,F) ∶=H i(Č ⋅ (Xét,F).

Proposition 7.3.9(?).
Ȟ0(U/X) = Ȟ0(Xét,F) =H0(Xét,F).

Proof (?).
This is the sheaf condition, i.e. which implies the following sequence is exact:

F(X) → F(U) → F(U ×X U).

That gives that the first term is equal to the last, and the middle term is the direct limit of
the kernel of this sequence and direct limits are exact.

∎

Proposition 7.3.10(?).
Ȟ i>0(U/X,I) ≅ Ȟ i>0(Xét,I) if I is injective.

Proof (?).
It’s enough to show that Č ⋅ (U/X,I) is exact away from 0. This is the statement of the first
equality, and the second equality is the direct limit of it.

Claim 1: There is an alternative characterization of the Čech complex. Let ZU ∶=
Z[homX( ⋅ , U)] be the free abelian group on this functor, i.e. to evaluate this on a scheme V
one takes homX(V,U) and the free abelian group on that. Then

Č ⋅ (U/X,I) = (hom(ZU ,I) → hom(ZU×XU ,I) → hom(ZU×XU×XU ,I) → ⋯) .

This follows from Yoneda’s lemma.

Claim 2: It’s enough to show that

Z→ ZU → ZU×XU → ⋯

is exact.
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This is because hom( ⋅ ,I) is exact, which is precisely how we obtain the complex from this in
the previous claim.

Claim 3: Let S be a set, then

Z→ Z[S] → Z[S × S] → ⋯

is always exact.
This follows for the same reason that the Amitsur complex is exact: base change to ZS , which
is a flat Z-module, and thus we get a nullhomotopy.

Exercise (?)
Check this!

∎

We need one more thing to show that Čech cohomology is isomorphic to the derived functor
cohomology:

Theorem 7.3.12(?).
If for all SESs of sheaves

0→ A→ B → C → 0 ∈ Sh(Xét)

we have an exact sequence

0→ Č(Xét,A) → Č(Xét,B) → Č(Xét,C) → 0 ∈ Sh(Xét)

then we get a LES in cohomology, then

Ȟ i(Xét,F) ∼Ð→H i(Xét,F) for all i.

Proof (?).
This comes from the theory of universal δ-functors. A derived functor is determined uniquely
by H0, what they do on injectives, and the fact that the LES from a SES is functorial. The
problem is that the second sequence above is always left-exact but not in general right-exact.
We’ll see a proof next time using spectral sequences.

∎

Theorem 7.3.13(Milne, III).
This is true if X is quasicompact and any finite subset of X is contained in an affine.

Remark 7.3.14: How can you check this condition? This holds if X is quasiprojective.
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8 Lecture 08: Computing Étale Cohomology

Recall the definition of Č(U/X,F) and Č(Xét,F) (Definition 7.3.8).

△! Warning 8.0.1
In general,

ȞXét,F /≅H(Xét,F),

but by a theorem of Milne this is true if X is quasicompact and any finite subset is contained in an
affine open. This is true if X is quasiprojective.

Remark 8.0.2: There is a version for which this does always work where Čech covers are replaced
with hpyercovers.

E 8.1 Čech to Derived Spectral Sequence e

Since we have enough injectives, take an injective resolution F → I0 → ⋯ which is exact and each
Ij is injective. We can apply the Čech complex functor to obtain a double complex

Č ⋅ (U/X,I0) → Č ⋅ (U/X,I1) → ⋯,

where the horizontal differentials come from the resolution and the vertical come from the Čech
complex. To any double complex, one can associate two spectral sequences. First consider taking
horizontal cohomology:

⋮ ⋮ ⋰

Č(U/X,I1) = I0(U ×X U) I1(U ×X U) ⋯

Č(U/X,I0) = I0(U) I1(U) ⋯

Taking the vertical cohomology yields

Ei,j2 = Ȟ i(U,Hj(F)),

where Hj is the presheaf V ↦Hj
ét(V,F). Now we take cohomology in the other order: taking the

vertical cohomology collapses to the bottom row, which are global sections, and so

Ei,j2 =H i(Γ(X,I))E∞,
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which is the derived functor cohomology. The spectral sequence thus converges in the following
way:

Ȟ i(U,Hj(F)) ⇒H i+j(Xét,F).

Exercise 8.1.1 (Good for getting used to spectral sequences)
Show that if Č(Xét, ⋅ ) is exact on Shab(Xét), then Ȟ ⋅ ≅H ⋅ . See Tohoku or Hartshorne, and
prove this using the Čech to derived functor spectral sequence.

E 8.2 Mayer-Vietoris e

Proposition 8.2.1(?).
Let U = U0 ∪U1 with each Ui a Zariski open subset. Then there exists a functorial LES

⋯ →Hs(U,F) ResÐÐ→Hs(U0,F) ⊕Hs(U1,F) ResÐÐ→Hs(U0 ∩U1,F) δÐ→Hs+1(U,F) → ⋯.

Proof (?).
Apply the Čech to derived spectral sequence to the cover U ∶= U0∐U1 → U . This says take

F(U) → F((U)×U2) → F((U)×U3) → ⋯.

None of these objects are empty, which doesn’t happen with the usual Čech complex of an
open cover, where the alternating complex is taken which doesn’t see all of these.

Claim: This complex is quasi-isomorphic to the 2-term complex

F(U0∐U1) = F(U0) × F(U1) → F(U0 ∩U1).

Exercise (?)
Prove this. This uses the fact that we have a Zariski cover instead of a general étale cover,
since it’s not true in general: a counterexample is Gm → Gm where x ↦ x2. The double
intersection won’t make sense, since it won’t be connected and there’s not a distinguished
component.

Given this, E2 vanishes outside of 2 columns, and considering computing H1 we have the
following situation:

0 1 2

0

1

2
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This is a general phenomenon: a spectral sequence collapsing onto two columns is the same
data as a long exact sequence.

Exercise (?)
Check this.

∎

E
8.3 Étale Cohomology Equals Zariski
Cohomology for Quasicoherent Sheaves

e

Theorem 8.3.1(Étale Cohomology for Quasicoherent Sheaves Equals Zariski Co-
homology).
Suppose X is a scheme and F ∈ QCoh(X) (for example, F ∶= OX). Then there is a canonical
isomorphism

H i(X,F) ∼Ð→H i(Xét,Fét) ∼Ð→H i(Xfppf ,F fppf),

The first term is the usual Zariski cohomology of a quasicoherent sheaf, the second is the étale
cohomology where Fét is the associated sheaf on the étale site given by pulling back to an étale
morphism, and the third is the same on fppf site, since the categories QCoh are canonically
isomorphic.

Remark 8.3.2: The derived functor cohomology

H i(Sh(Xzar),F) ∶= ExtiSh(Xzar)(Z,F)

since it only depends on the category of sheaves. This is because we’re taking the derived functors
of Γ, which is the same as Hom(Z, ⋅ ). This is equal to

H i(QCoh(X),F) ∶= ExtiQCoh(X)(OX ,F)

for the same reason, since it’s true for any sheaf of OX modules. This isomorphism is not just
formal, since QCoh is much smaller than Sh. The reason is that injective quasicoherent sheaves are
flasque (?), so it also computes derived functor cohomology. In general, it’s much harder to be an
injective object in the Sh than it is in QCoh, since it has to satisfy a lifting property with respect
to more maps.

Upshot: we already showed QCoh(Xét) ≅ QCoh(Xzar), but now we have this isomorphism in a
much larger category.
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8.3.1 Proof

Proof (?).
We’ll prove this in a special case: if X is quasicompact and separated, Čech cohomology
computes derived functor cohomology.

Claim 1: Every cover can be refined to a finite cover by affines, using quasicompactness.

Claim 2: Supposing X is affine and U →X is an fppf affine cover, then ČU/X,F is exact if
F = M̂ is the quasicoherent sheaf associated to some module M .

Proof (of claim 2).
Let U = SpecB,X = SpecA, and M ∈ A-mod.
Then we get the complex

M →M ⊗A B →M ⊗A B⊗A2 →M ⊗A B⊗A4 → ⋯,

which is the Amitsur complex. We showed that M was the kernel of the first map, and
we argued that since B was an fppf A-algebra, we can check this after tensoring with B,
in which case we had a section which yielded a nullhomotopy. This complex is exact as
in the argument used in the proof of descent.

∎

By this claim, we know that

Ȟ i(U/X,F) =
⎧⎪⎪⎨⎪⎪⎩

F(X) i = 0
0 i > 0.

for F quasicoherent and U,X affine.

Claim 3: When F is quasicoherent and X affine,

Ȟ i(Xét,F) =
⎧⎪⎪⎨⎪⎪⎩

F(X) i = 0
0 i > 0

.

Proof (?).
Affine covers are cofinal in the diagram of covers. We’re taking a direct limit and every
time we have something nonzero, we kill it by refining the cover.

∎

We’ll now prove this when X is separated and quasicompact. Take an affine cover U → X,
e.g. the Zariski open cover, and use the Čech-to-derived spectral sequence. Separatedness is
used since we’ll see things like 5-fold intersections, and we need to know that the cohomology
of this is zero, which will be true by the previous result.

Exercise (?)
Check this.
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∎

Remark 8.3.4: This holds in more generality, but we won’t need schemes that don’t satisfy this
property in this course.

Example 8.3.5(?): Let X = Pn and F = OX , then

H i(Pnét,Oét
X) =

⎧⎪⎪⎨⎪⎪⎩

k i = 0
0 i > 0

.

E 8.4 The Artin-Schreier Exact Sequence e

Example 8.4.1(?): Let X/Fp be a quasiprojective variety. What is the following cohomology?

H i(Xét,Fp) = ?.

In general, the strategy will be to use long exact sequences stemming from spaces where the
cohomology is known. We only know how to compute with quasicoherent sheaves, so we need to
put Fp in a SES. We can use the Frobenius: let Ga = hom( ⋅ ,A1), so Ga(U) = OU(U). Then Fp are
the fixed points of Frobenius, so we get a SES of schemes by carving out these points

0→ Fp → Ga
xp−xÐÐÐ→ Ga → 0.

This can be thought of as the sheaf O → O, f ↦ fp − f , but you can also think of it in terms of
representing objects A1.

Claim: This sequence is exact.

Proof (?).
This is the Artin-Schreier exact sequence. This is true at the level of representing objects, or
it can be checked by hand by showing that fp − f = 0 Ô⇒ f is constant.
For surjectivity, given f ∈ OU(U) = Ga(U), we need to solve xp−x = f étale-locally on U . This
naturally has a solution after base-changing:

Ga ×Ga U Ga

U Ga

∃g
f

The claim is that g is an étale cover. This follows because xp − x is an étale cover, since the
derivative is invertible, and thus g is a base change of an étale cover.

∎

We then get a LES
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0 H0(Xét,Fp) H0(Xét,Ga) H0(Xét,Ga) H1(Xét,Fp) ⋯

0 H0(Xét,Fp) H0(Xét,OX) H0(Xét,OX) H1(Xét,Fp) ⋯

xp−x δ

xp−x δ

For X = A1 = SpecFp[t], we get

0 H0(A1
ét,Fp) Fp[t] Fp[t] H1(A1

ét,Fp) 0

0 Fp Fp[t] Fp[t] coker(tp − t) 0

tp−t δ

In general, this cokernel is very large. This is why étale cohomology with Fp coefficients is not
particularly well-behaved, although taking a projective variety would yield finite dimensional objects
here, but not of the expected dimensions.

9 Lecture 09

Last time:

• The Čech-to-derived spectral sequence,
• The Mayer Vietoris LES,

– Computes the étale cohomology of a scheme using a Zariski open cover.

• Étale cohomology of quasicoherent sheaves,

– Agrees with Zariski cohomology, first legitimate computation!
– Use this to compute:

• Étale cohomology of Fp in characteristic p.

E
9.1 The LES of the Artin-Schreier Exact

Sequence e

Last time we had a scheme X/Fp and the Artin-Schreier exact sequence of sheaves of Xét:

0→ Fp → Oét
X

t↦tp−tÐÐÐÐ→ Oét
X → 0.

The map appearing here is referred to as the Artin-Schreier map f This works over arbitrary fields
of characteristic p, with a modified definition replacing tp.
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Exercise 9.1.1 (?)
Check that this is an additive homomorphism of abelian sheaves. This follows from the fact
that Frobenius itself is.

Remark 9.1.2: From here onward, H i will denote H i
ét.

Recall that we had a theorem last time (Theorem 8.3.1) showing that the étale cohomology of
quasicoherent sheaves is equivalent to the usual Zariski cohomology. From this we got a long exact
sequence:

H i(Xét,Fp) H i(X,OX) H i(X,OX)

⋯ H i−1(X,OX)

f

δ

We don’t know how to compute H i(Xét,Fp) generally, but the affine case is easy. For X affine,
H>0(X,OX) = 0, which in facts holds for any quasicoherent sheave replacing OX , and H0(X,Fp) =
(Fp)∣π0X ∣ where the exponent is the number of connected components of X. So we get an exact
sequence

H1(X,OX) 0

H0(X,Fp) = (Fp)∣π0X ∣ OX(X) OX(X)

0

f

Remark 9.1.3: H1(X,OX) is not finitely generated in general, e.g. take X ∶= A1, then coker(t↦
tp − t) as a map k[t] → k[t] is generally finite dimensional as a k-vector space. So in characteristic
p, cohomology with Fp coefficients is ill-behaved: a nice cohomology theory would assign to every
scheme a complex of finite dimensional vector spaces.

Remark 9.1.4: An aside: Ga is the representing object for Oét
X .

Remark 9.1.5: If X is proper, H i(Xét,Fp) is finite dimensional. Why? It follows from the
exact sequence: by proper pushforward for coherent cohomology, the terms we’re interested in are
sandwiched between finite dimensional objects.

Example 9.1.6(?): However, these groups still won’t have the expected dimension. For X ∶= E/k
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where k = k, ch(k) = p, we have

H1(E,Fp) =
⎧⎪⎪⎨⎪⎪⎩

Fp if E is ordinary
0 if E is supersingular.

This follows from the LES, since supersingularity is in terms of how Frobenius acts on the groups
appearing. This is not what you’d expect: E is a torus, so you’d expect dimH1 = 2.

Remark 9.1.7: So this cohomology don’t form a “good” cohomology theory in the sense that they
won’t prove the Weil conjectures or behave like the usual cohomology in characteristic zero, but
can still be interesting and useful. This data is closely related to e.g. crystalline cohomology.

E 9.2 The Étale Cohomology of a Field e

Example 9.2.1(?): We’ll try to compute H((Speck)ét ,F), the cohomology of the étale site of a
field, using Čech cohomology. We had an equivalence of categories

ShAb(Speck)ét
ι⇌
π
{Discrete G-modules} ,

where G = Gal(k/k) is the absolute Galois group of k. What were the functors? Given a sheaf,
you want to evaluate it on ks (the separable closure), but this doesn’t make sense since it’s not an
object on the étale site due to not being finitely presented. So you choose a separable closure, look
at all intermediate extensions, and take the direct limit of evaluating the sheaf on those extensions.
Going the other way, you can say what the value of a discrete G-module is on a finite extension
L/k by taking its Galois fixed points: the fixed points of Gal(L/L).

Corollary 9.2.2(?).

H i ((Speck)ét ,F) ∼Ð→H i(G, ιF).

Recall that this is because derived functor cohomology only depends on the equivalence class of
the ambient category. Comparing this to Čech cohomology, suppose we have a cover U ∶= SpecK
where L/k is a separable field extension. Take the Čech complex

Č(U/Speck,F) ∶= (F(U) → F(U ×U) → ⋯) .

Assume L/k is Galois with Galois group G(L/k). We can rewrite this complex by identifying
U ×U = G(L/k) × SpecL, yielding

Č(U/Speck,F) ∶= (F(U) → F(G(L/k) ×U) → F (G(L/k)2 ×U) → ⋯⋯) .

Exercise 9.2.3(?)
Show that this complex is the standard complex computing Galois cohomology
H i(G(L/k),F(U)). The terms are the same, so just identify the differentials. One can also
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take this as the definition of Galois cohomology.

As a corollary, this complex is quasi-isomorphic to the usual complex computing Galois cohomology,
since that complex is the direct limit Č(USpeck,F).

Question 9.2.4
When can étale cohomology can be computed as some kind of group cohomology?

Answer 9.2.5
This is true when X =K(π,1): it’s connected and all of its homotopy groups vanish above degree 1,
i.e. it’s a classifying space for a discrete group. E.g. S1 =K(Z,1), or a compact orientable surface
Σg of genus g ≥ 1 has a contractible universal cover, and thus Σg = K(π1Σg,1). In these cases,
singular cohomology is the group cohomology of π1. For G a finite group, BG will be an example,
although e.g. this will not be true for GLn. Another example will be affine curves.8

E 9.3 Torsors e

Goal for the next few classes: compute the étale cohomology of smooth (not necessarily projective)
curves over k = k, i.e. H i(Cét,Z/`nZ) where ` ≠ ch(k). We’ve seen what this is when ` = k, and the
answer will resemble the singular cohomology of a Riemann surface in terms of dimensions. This
will be hard for i > 2, but we’ll try to get to i = 0,1. We can compute i = 0, since we’re just asking
for global sections to a sheaf:

H i(Cét,Z/`nZ) = Z/`nZ,

since the definition of this sheaf was maps into Z/`nZ, which is disconnected and so any map in is
constant. For i = 1, we’ll use an interpretation in terms of torsors, which are supposed to generalize
principle homogeneous spaces. Typical example: given a space X, a Galois covering space will be a
torsor for the Galois group: G acts on X and simply transitively on every fiber.

Definition 9.3.1 (G-Torsors)

• Idea: for G ∈ ShGrp(Xét) a sheaf of (not necessarily abelian) groups, a G-torsor is a
sheaf F ∈ ShSet(Xét) with a G-action such that G acts on fibers simply and transitively.

• Actual definition: a torsor is a sheaf T ∈ ShSet(X) with an action G × T aÐ→ T (so G(U)
acts on T (U) for every U ∈Xét) such that the following map is an isomorphism:

G × T (a,π2)ÐÐÐ→ T × T,

given by crossing the action with the projection.

8Here a curve will be a smooth separated scheme of finite type of dimension 1 over an algebraically closed field. We
won’t assume properness, and we’ll generalize to singular curves.
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Remark 9.3.2: This says that T ×T ∼Ð→ G×T , and pulling back to T yields a “trivial torsor”, where
e.g. G itself is a G-torsor: a sheaf of sets with an action by a sheaf of groups, such taking G ×G G
the action becomes G↷ G. This is similar to base-changing to cover to check something, as in the
proof of fppf descent, and here we base-change to trivialize a torsor.

Example 9.3.3(?): Suppose G is a finite group and G ∈ Sh(Xét) is the constant sheaf regarding
G as a scheme. Then e.g. a G-torsor is a finite étale cover with Galois group G. If X is a smooth
curve, this is a Galois extension of the function field which is everywhere unramified.

Example 9.3.4(?): Gm ∶= (U ↦ OU(U×)) sending U to the invertible functions of U . Then
Gm = hom( ⋅ ,Speck[t, t−1]) is representable. E.g. a line bundle with the zero section deleted is a
Gm-torsor:

L ↝ SpecX⊕
n∈Z
L⊗OXn,

where we take the relative spec. Looking at fibers over a point in X, you get k[t, t−1], so these look
like Gm. How does Gm act on this? t ↷ L⊗n by tn. So the functor this represents is a Gm-torsor.
We’ll see later that there’s a natural bijection between Gm-torsors and line bundles, which becomes
an equivalence of categories if you only allow isomorphisms of line bundles.

Example 9.3.5(?): For G ∶= GLn, the claim is that G-torsors are in natural bijection with vector
bundles of rank n. Note that they are locally trivial, which is not obvious. To get this, take
E ↝ Fr(E), the frame bundle over E . This can be realized as the sheaf E ↝ IsomXét(O⊕n,E), i.e. its
value on a cover U is the set of isomorphisms over U of the trivial vector bundle E . So this gives a
functor from vector bundles and isomorphisms to GLn -torsors, noting that an isomorphism between
O⊕n and E is like a basis of every fiber and thus a basis for E . The reverse functor is

T ↝ (T ×O⊕nX ) /GLn,

using the diagonal action where we identify GLn ∶= Aut(O⊕nX ) and the quotient is in Shét. This
quotient kills T , so each fiber is isomorphic to the fiber of O⊕nX , where this is like GLn acting simply
transitively on T , but this twist O⊕nX in a way corresponding to how E is twisted.

Exercise 9.3.6(?)
Check that this is vector bundle. This uses that GLn is smooth.

Definition 9.3.7 (?)
A G-torsor T is split by a cover U → X iff T ∣Uét

≅ G∣Uét
as a torsor. If T is split by some

cover, we say T is locally trivial.

Remark 9.3.8: Suppose T is representable, so T →X. Then for the étale or fppf sites, then T is
split by itself, using the fact that base changing T to itself yields the trivial torsor.

Example 9.3.9(?): Suppose G is a finite étale group scheme over X, and T is a locally trivial
G-torsor split by some U .

Claim:
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1. T is representable

2. T is split by T

Proof (1 Ô⇒ 2).
T × T is trivial, so we need to verify that T ⇉ X. Base changing to T ×X U → U is a cover
since it’s finite étale, since it’s isomorphic to G ×U by the definition of local triviality.

Exercise (?)
Check that base-changing along a cover yields a cover, following from the axioms of a
site.

∎

Proof (of 1).
Observe that T ∣Uét

is representable, since it’s isomorphic to G∣Uét
as a scheme and G was a

finite étale group scheme. How to we go from representability on U to X? We can use that
descent is effective. Note that descent is not generally effective for schemes, but it is for affine
(over X) schemes. We use that étale Ô⇒ open and finite Ô⇒ proper Ô⇒ closed, yielding
surjectivity of T ×X U → U . We proved effectiveness for quasicoherent sheaves, and an affine
X-scheme is spec of a quasicoherent sheaf of algebras, so we descend that quasicoherent sheaf
of algebras.

∎

Remark 9.3.11: Given a torsor for a finite group scheme, it’s represented by a G-cover which is
not just a sheaf but rather an honest covering space.

E 9.4 Interpretation of H1 as Torsors e

Proposition 9.4.1(Interpretation of H1).
There is a bijection

{G-torsors split by
U→X } / ∼ ⇌ Ȟ1(U/X ,G),

which makes sense for G ∈ ShGrp(Xét)a and any covering family. I.e. looking at the formula
for the differential in Čech cohomology, if you only go up to degree 1 you don’t need to make
any choices.

aA sheaf of groups is a group object in the category ShSet.

Proof (?).
T ∣Uét

ϕÐ→ G∣Uét
is an isomorphism of torsors, so considering the two projections
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U ×X U

U

X

π1 π2

we get an isomorphism π1 ∗ T
∼Ð→ π∗2T coming from the fact that we’re pulling back along

U →X. Using the isomorphism above, we can view this as

π∗1T π∗2T

π∗1G π∗2G

∼

π∗1ϕ π∗2ϕ

g,∼

I.e., we can view the descent data pulled back from X as trivial torsors. Moreover, g ∈
Γ(U ×X U,G) ∶= Č1(U/X ,G).

Exercise (?)
Check that an automorphism of a trivial G-torsor is equivalent to an element of G. Think
about the case of a G-torsor for a point.

Claim: The cocycle condition implies that g is in the kernel of the Čech differential.

Exercise (?)
Check that if T1 ≅ T2 as torsors, the corresponding cocycles differ by a coboundary.

∎

Proposition 9.4.4(Identification of H1).
For any site τ and any sheaf F , we have correspondences

Ȟ1(τ,F) ⇌ {Locally trivial F-torsors}
∼Ð→H1(τ,F) if F is abelian,

where the last line is derived functor cohomology.

Proof (?).
Omitted, see Milne. Note that we know this for quasiprojective things, and the first isomor-
phism is more or less what we’ve just shown.

∎

Corollary 9.4.5.
So torsors split by a cover U are the same as Čech cohomology, so torsors split by some cover
(i.e. locally trivial) are the same as Čech cohomology of Xét:

{Locally trivial G-torsors} ⇌ Ȟ1(Xét,G).
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Why? Take the direct limit of both sides. Note that Čech H1 always computes derived H1.

Theorem 9.4.6(Grothendieck’s Generalization of Hilbert 90).
The following is a bijection:

Ȟ1(Xzar,GLn)
∼Ð→ Ȟ1(Xét,GLn) → Ȟ1(Xfppf ,GLn)

Remark 9.4.7: The content of this theorem: if you’re étale locally trivial, then you’re also Zariski
locally trivial.

Proof (?).
You need the fact that the locally split torsors are the same, although it’s true that any torsor
will be locally split.

Claim: A locally split GLn-torsor is the same as fppf descent data for a vector bundle.
Using fppf descent for vector bundles yields the theorem.

To be continued!
∎

10 Lecture 10

Remark 10.0.1: What we’ve been calling a torsor (a sheaf with a group action plus conditions)
is called by some sources a pseudotorsor (e.g. the Stacks Project), and what we’ve been calling a
locally trivial torsor is referred to as a torsor instead.

E 10.1 Proof of Grothendieck-Hilbert 90 e

Recall that statement of Theorem 9.4.6; we’ll now continue with the proof:

Proof (of Hilbert 90).

Observation
Let τ = Xzar,Xét,Xfppf , then the data of a GLn -torsor split by a τ -cover U → X is the same
as descent data for a vector bundle relative to U/X .

This descent data comes from the following:
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U ×X U

U

X

π1 π2

That U trivializes our torsor means that π∗T = π∗G as a G-torsor, where G acts on itself by
left-multiplication. We have two different ways of pulling back, and identifications with G in
both, yielding

π∗1π
∗T π∗2π

∗T

π∗1π
∗G π∗2π

∗G

∼

∼

Both of the bottom objects are isomorphic to G∣U×U .

Claim: The top horizontal map is descent data for T , and the bottom horizontal map is an
automorphism of a G-torsor and thus is a section to G. I.e. a section to GLn is an invertible
matrix on double intersections (satisfying the cocycle condition) and a cover, which is precisely
descent data for a vector bundle.
Using fppf descent, proved previously, we know that descent data for vector bundles is effective.
So if we have a locally trivial GLn -torsor on the fppf site, it’s also trivial on the other two
sites, yieldings the desired maps back and forth. Thus H1(Xét,GLn) is in bijection with
n-dimensional vector bundles on X.

∎

Exercise 10.1.2 (?)
See if Hilbert 90 is true for groups other than GLn.

E 10.2 Representability and Local Triviality e

Question 10.2.1
Suppose G is an affine flat X-group scheme. Are all G-torsors representable by a X-scheme?

Answer 10.2.2
Yes, by the same proof as last time, try working out the details. Idea: you can trivialize a G-torsor
flat locally and use fppf descent.

Question 10.2.3
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Given a G-torsor T that is fppf locally trivial, is it étale locally trivial?

Answer 10.2.4
In general no, but yes if G is smooth.

Proof (Sketch).
You can take an fppf local trivialization, trivialize by p itself, then slice to get an étale
trivialization. Given a torsor T →X, we can base change it to itself:

T ×X T T

T X
f

∃

The torsor T ×X T → T is trivial since there exists the indicated section given by the diagonal
map. Another way to see this is that T × T ≅ T ×G by the G-action map, which is equivalent
to triviality here. Here f is smooth map since G itself was smooth and the fibers of T are
isomorphic to the fibers of G. We can thus find some U such that

T ×X T T

T X

U

f

∃

closed

∃ét

Here “slicing” means finding such a U , and this can be done using the structure theorem for
smooth morphisms.

∎

Example 10.2.5(non-smooth group schemes):
• αp, the kernel of Frobenius on A1 or Ga,
• µp in characteristic p, representing pth roots of unity, the kernel of Frobenius on Gm,
• The kernel of Frobenius on any positive dimensional affine group scheme.
• µp ×GLn, etc.
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10.2.1 What Hilbert 90 Means

Example 10.2.6(?): Let X = Speck,n = 1, so we’re looking at H ⋅ (Speck,Gm).

H1 ((Speck)zar ,Gm) = 0
=H1 ((Speck)ét ,Gm)
=H1(Gal(ks/k), k×).

The first comes from the fact that we’re looking at line bundles of spec of a field, i.e. a point, which
are all trivial. The last line comes from our previous discussion of the isomorphism between étale
cohomology of fields and Galois cohomology. Etymology: the fact that this cohomology is zero is
usually what’s called Hilbert 90.9

Let’s generalize this observation.

Example 10.2.7(?): Let X be any scheme and n = 1, then H1(Xét,Gm) = Pic(X).

Example 10.2.8(?): Let’s compute H1(Xét, µ`) where ` is an invertible function on X. We have
a SES of étale sheaves, the Kummer sequence,

1→ µ` → Gm
z↦zpÐÐÐ→ Gm → 1.

This is exact in the étale topology since adjoining an `th power of any function gives an étale cover.
We get a LES in cohomology

0

H0(Xét, µ`) H0(Xét,Gm) H0(Xét,Gm)

H1(Xét, µ`) Pic(X) Pic(X)

H2(Xét, µ`) ⋯

z↦z`

[`]

We know that H0(Xét,Gm) are invertible functions on X, and the blue term is what we’d like to
compute. We’ll make some additional assumptions now.

Suppose now H0(X,OX) = k = k, then H0(Xét, µ`) = µ`(k) since it is the kernel of the `th power
map. We can also compute H1(Xét, µ`), since our diagram reduces to

9This is called “90” since Hilbert numbered his theorems in at least one of his books.
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0

µ`(k) k× k×

H1(Xét, µ`) Pic(X)[`] Pic(X)

H2(Xét, µ`) ⋯

z↦z`

δ

[`]

where surjectivity of δ follows from the fact that k = k and thus every element has an `th root,
making H1 the kernel of [`].

Example 10.2.9(?): Let X/k with k = k with ` invertible in k, then (claim) Z/`Z ≅ µ` given by
sending a generator to some choice of a primitive `th root of unity. To be explicit, we have a
representation Z/`Z = hom ( ⋅ ,Speck[t]/t(t − 1)⋯(t − ` + 1)) and µ` = Speck[t]/t` − 1. These are
both disjoint unions of points, and hence schemes of dimension zero since ` is invertible in the base
and the Chinese Remainder Theorem, so one can write down the isomorphism explicitly between
the schemes and hence the functors they represent.

Corollary 10.2.10(?).
If µ` ⊆ k, then

H i(Xét,Z/`Z) =H i(Xét, µ`).

Since the isomorphism depends on the choice of a primitive root, this will not be Galois equivariant,
which will come up when we talk about Galois actions on étale cohomology. This already happens
for H0, since G↷ Z/`Z trivially but not on µ`.

10.2.2 Geometric Interpretations

Let X be an affine scheme, we now know

H1(Xét,Fp) = coker(OX
xp−xÐÐÐ→ Ox),

the Artin-Schreier map, and these are Fp-torsors. We also know H1(Xét,Z/`Z) in terms of the LES
if k = k and ch(k) = p, and this is a Z/`Z-torsor. Being torsors here geometrically means they’re
covering spaces with those groups as Galois groups.

Question 10.2.11
How does one write down these torsors/covering spaces?
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Example 10.2.12(?): Given

[Y ] ∈H1(Xét,Fp) = coker(OX
xp−xÐÐÐ→ OX)

where we write [Y ] to denote thinking of the torsor as some geometric object, how to we write
down the covering space? Using Artin-Schreier, we can write Y = {yp − y = a} for some a ∈ OX , an
Artin-Schreier covering.

If ` ≠ ch(k) and [Z] ∈H1(Xét, µ`) and assume Pic(X) = 0. Then we can write

H1(Xét, µ`) = coker(OX
x↦x`ÐÐÐ→ OX×)

In this case, Z = {z` = f} where f ∈ OX× is an element representing the class in cohomology, and
µ` ↷ Z by multiplication by z.

Remark 10.2.13: The process of explicitly writing down covers is called explicit geometric
class field theory, which gives a recipe for writing down abelian covers of covers. In general, for
Pic(X) ≠ 0, the Picard group plays a crucial role.

E 10.3 Computing the Cohomology of Curves e

This is one of Daniel’s favorite topics in the entire course!

Theorem 10.3.1(?).
Let X/k be a smooth curve over k = k, then

H i(Xét,Gm) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

OX(X)× i = 0
Pic(X) i = 1
0 else,

noting that OX(X)× are the global sections of Gm, i.e. invertible functions on X.

The first two cases we’ve done, i > 1 is the hard case.

Corollary 10.3.2(?).
For X a smooth proper connected curve of genus g, k = k, and ` ≠ ch(k) is prime,

H i(Xét,Z/`nZ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Z/`nZ i = 0
Pic(X)[`n] = (Z/`nZ)2g i = 1
Z/`nZ i = 2
0 i > 2

.

Proof (of corollary).
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We’ll use some theory of abelian varieties: Pic0(X) = Jac(X), and we have a SES

0→ Jac(X) → Pic(X) degÐÐ→ Z→ 0,

where we identify the Néron-Severi group as Z.a We’ll use that Jac(X) is a g-dimensional
abelian variety, and so Jac(X)[`n] ≅Grp (Z/`nZ)2g.
The Kummer sequence

1→ µ`n → Gm → Gm → 1

yields a LES where we identify µ`n ≅ Z/`nZ:

0

H1(Xét,Z/`nZ) Pic(X) Pic(X)

H2(Xét,Z/`nZ) 0 0

[`]

So we’re just computing the kernel and cokernel of [`].
Computing H1: We’ll need one more fact: Jac(X)(k) is a divisible group. We can identify

H1(Xét,Z/`nZ) = Pic(X)[`n] = Jac(X) = (Z/`nZ)2g .

where the 2nd equality uses the fact that Pic(X) is an extension of Z by an abelian variety
and Z has no torsion, and the last equality is general theory of abelian varieties.
Computing H2: Since Jac(X) is divisible, we can identify

coker(Pic(X) [`n]ÐÐ→ Pic(X)) ≅ coker(Z [`n]ÐÐ→ Z) = Z/`nZ.

The vanishing of higher cohomology follows from the vanishing for Gm. So assuming the
theorem and the theory of abelian varieties proves this corollary.

∎
aSee Hartshorne Ch. 4, or anything that discusses cohomology of curves.

Exercise 10.3.3 (?)
Check this using the snake lemma after applying multiplication by ` to the SES.

Remark 10.3.4: X is a scheme over k, and if it started over some subfield L then Gal(L/k) ↷X
and thus the corresponding functors. These isomorphisms will not be Galois equivariant, and the
Z/`nZ showing up in degree 2 cohomology will admit a Galois action via the cyclotomic character.

10.3.1 Outline of Proof

Goal: we want to show that H>1(Xét,Gm) = 0 for X a smooth curve over k = k. Three ingredients:
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1. The Leray spectral sequence,

2. The divisor exact sequence,

3. Brauer groups.

E
10.4 Pushforwards and the Leray Spectral

Sequence e

Suppose X fÐ→ Y is a morphism of schemes, then we get a functor f∗ ∶ Sh(Xét) → Sh(Yét): given
F ∈ Sh(Xét), we have f∗F(U → Y ) ∶= F(U ×Y X). This is left-exact and thus has right-derived
functors R ⋅ f∗ ∶ ShAb(Xét) → ShAb(Yét).

How to think about this:

Figure 6: Cohomology of the fibers: but not quite!

This is not quite true, and the obstruction is called the base change property, which we’ll
see later in the course. What’s true in general is that Rif∗F is the sheafification of the presheaf
V →H i(f−1(V ),F), which is not quite the cohomology of the fibers since sheafification is somewhat
brutal.

Proposition 10.4.1(Derived pushforwards for finite morphisms).
If f is a finite morphism (e.g. a closed immersion) then R>0f∗ = 0.

Exercise 10.4.2 (Proof, must-do!)
Prove this. The claim is that f∗ is right-exact, which in this case shows it is exact. Check on
stalks. Compute that the stalk of f∗F at y ∈ Y is given by

f∗Fy = ⊕
x∈f−1(y)

Fx

for f a finite morphism (not necessarily unramified).
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Proposition 10.4.3(technical).
f∗ preserves injectives.

Exercise 10.4.4 (proof)
Prove this! You can do this by showing the following fact from category theory: this is true
for any functor with an exact left adjoint, which here is f∗ and is exact since filtered colimits
and sheafification are both exact, or alternatively you can check on stalks, since the stalks of
f−1 are the stalks of the original functor.

Corollary 10.4.5(The Leray Spectral Sequence).
Suppose X fÐ→ Y and Y gÐ→ Z are morphisms of schemes, then there is a spectral sequence

Rig∗R
jf∗F ⇒ Ri+j(g ○ f)∗F .

As a special case, for Z = Speck with k = k, then g∗, f∗ are taking global sections so we get

H i(Y,Rjf∗F) ⇒H i+j(X,F).

Proof (sketch).
There is a general statement (see Tohoku): given two functors between abelian functors where
the first preserves injectives, you get such a spectral sequence. How to explicitly compute this:
we can take an injective resolution F → I ⋅ and compute

Rif∗FHi(f∗I ⋅ ).

f∗I is a complex of injectives, and we want Hi+j(g∗f∗I ⋅ ) = Ri+j(g○f)∗F , and the content here
is that we don’t have to take an additional injective resolution of f∗I. Now take the spectral
sequence of the filtered complex f∗I ⋅ where the filtration is by the truncations τ≤pf∗I ⋅ where
you replace the pth term with the kernel of the differential and zero beyond this point. An
example of a differential is given by the following: there are SESs

0→ τ≤pf∗I ⋅ → τ≤p+1f∗I ⋅ →Hp+1(f∗I ⋅ ) = Rp+1f∗F → 0,

and applying RG∗ yields a map

Rp+1f∗F
δÐ→ Rq+1g∗τ≤pf∗I ⋅ ,

and after some splicing this δ will be the differential on E2.
∎

Next time: the Brauer group.
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E 11.1 Pushforwards (Continued) e

Last time: we saw the Leray spectral sequence, but no examples yet, so that’s what we’ll do now.
We had X fÐ→ Y

gÐ→ Z to which we associated the spectral sequence Rif∗Rjf∗( ⋅ ) ⇒ Ri+j(g ○ f)∗( ⋅ ).
To deduce existence we used that pushforwards preserve injectives, and we looked at some E2
differentials.

Example 11.1.1(?): Let X πÐ→ Z ∶= Speck, where k ≠ k necessarily. The spectral sequence for the
functors π∗,Γ yields the Leray spectral sequence H i(k,Rjπ∗F) ⇒ H i+j(Xét,F). The LHS is the
étale cohomology of Speck, i.e. Galois cohomology. The Galois module corresponding to Rjπ∗F is
Hj(Xks ,F) by taking the k points of this functor So the Leray spectral sequence yields

H i(k,Hj(Xks,ét,F)) ⇒H i+j(Xét,F).

Consider k a finite field and X/k a smooth projective variety. Then the Galois cohomology is given
by

H i(k, V ) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

V G i = 0 the invariants
VG i = 1 the coinvariants
0 i > 1

This follows from computing the cohomology of Ẑ. Supposing we knew that the cohomological
dimension of a smooth projective variety was 2n over k (e.g. taking F ∶= Z/`Z above), then the
cohomological dimension of X would be 2n+ 1. This follows from E2 vanishing for i > 1 in this case.

Remark 11.1.2: A general fact about the Leray spectral sequence for smooth proper morphisms:
let X πÐ→ Y such a morphism, then there is a spectral sequence

H i(Y,Rjπ∗Q) ⇒H i+j(X,Q).

A fact due to Deligne is that this degenerates at E2, which is proved with `-adic cohomology (going
through Weil II) using the theory of weights. Note that this is false for smooth proper morphisms
between manifolds! Instead, for varieties, they behave more like products instead of “twisted”
things.

11.1.1 Explicit Characterizations

We’ll now be explicit about what these pushforwards are, so we’ll give another description of them:
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Proposition 11.1.3(?).
Let X πÐ→ Y , then Riπ∗F is the sheaf associated to the presheaf U →H i(π−1(U)ét,F).

Proof (?).
Choose an injective resolution F → I ⋅ , then Hi(π∗I ⋅ ) ∶= Riπ∗F . Let’s compute this pushfor-
ward in another way: we have

Presh(Xét) Presh(Yét)

Sh(Xét) Sh(Yét)

π∗

a=sheafification
π∗

f=forget

Here the induced map on presheaves is exact although the forgetful functor may not be. This
is because a sequence of presheaves is exact iff it’s exact on every open, but π∗ just pulls back
opens. This diagram commutes since what you get in the top-right corner is already a sheaf,
and sheafification is the identity on sheaves. We can thus factor π∗ to obtain

Riπ∗F = Hi ∗ π∗I ⋅ = Hi(a ○ π ○ f(I ⋅ ))
= a ○ π∗ (Hi(f(I ⋅ ))) .

where we’ve used the fact that π∗, s are exact. Why isn’t the inner term zero, since I ⋅ is
an exact complex of sheaves? Epimorphisms are different in the categories of sheaves and
presheaves, so it may not be exact when viewed as a complex of presheaves. These terms are
explicitly the functors U →H i(U,F), since I ⋅ ∣U is an injective resolution of F . We can now
evaluate this on an open of Y , so we get

a((U étÐ→ Y ) →H i(π−1(U),F)) ,

which is sheafifying the functor we want.

11.1.2 Explicit Characterizations

∎

Example 11.1.4(?): Suppose X is an integral scheme and η ι
↪Ð→ X is its generic point. Suppose

F ∈ Sh(ηét). How to we understand Riι∗F? We can compute its stalks: suppose x → X is a
geometric point, then

(Riι∗F)
x
= limÐ→

(U,u)
(Riι∗F)(U)

=H i(Uη, F∣Uη).

where we take limits over U étÐ→X and u→ U is a geometric point above x.

Exercise 11.1.5 (Important, must-do)
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Let OX,xa be the stalk of OX at x and Kx
b be its fraction field. Then

(Riι∗F)
x
=H i(Kx, F∣Kx),

where the RHS is either the Galois cohomology of k or the étale cohomology of Speck.
aThe strictly Henselian ring of X at x.
bThe strictly Henselian field of X at x.

Idea: these are the étale local rings, and this says you can compute the stalk of a cohomology sheaf
in terms of these strictly Henselian local rings.

E
11.2 Étale Cohomology of Curves:

Reducing to Galois Cohomology
e

Goal: we want to understand H>1(X,Gm) where X/k is a curve over k = ks which is separably
closed. We’ll reduce this to questions in Galois cohomology.

Proposition 11.2.1(?).
Let X/k (with k not necessarily algebraically closed) be a regular (integral) variety and η ↪X
is the generic point. Then there is a SES in Sh(Xét):

0→ Gm
ResÐÐ→ η∗Gm

DivÐÐ→ ⊕
z∈X,codim 1

ιz∗Z→ 0,

where the middle term can be thought of as pushing forward Gm from the étale site of η or
pulling back Gm to it, which is just Gm again, and pushing forward again, and the last term
is the sheaf of divisors.

Remark 11.2.2: The first map is either the unit or the counit of the adjunction η∗ ⇌ η∗, which
is the restriction. The second map comes from noting that on an étale morphism U →X, this is a
bunch of rational functions and you can take its divisor. This gives a number for each codimension
1 point: the order of vanishing. All but finitely many numbers will be zero, so you get a section to
the last sheaf.

Proof (of exactness).
1: Gm → η∗Gm is injective. This reduces to showing Gm(U) → Gm(Uη) is injective, where Uη
is the fiber over η, since this is O×U →⊕

ηi

Oηi which is a sum over generic points of U . This

uses that X is reduced.
2: Exactness in the middle. Given f ∈ η∗Gm(U) with Div(f) = 0, we want to show f comes
from Gm(U). We need to show f, f−1 are regular, and it’s enough to show that f is regular.
We’re using that if we have a finite type ring over a field A, then by a fact from commutative
algebra,

A = ⋂
p∈Spec1(A)

Ap
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which is the intersection of localizations over all height 1 primes. Being in this intersection
is equivalent to having non-negative divisors, where here we’ve used that regularity implies
normality.
3: Surjectivity at the end. We need to show that every divisor is étale locally principle, and
thus Zariski locally. A global section to the last sheaf is a Weil divisor, and we want to show
each is principle. This is equivalent to being Cartier, which is true here by regularity.

∎

Corollary 11.2.3(?).
There’s a LES:

⋯ H i−1(Xét, ⊕
codim(z)=1

ιz∗Z)

H i(Xét,Gm) H i(Xét, η∗Gm) H i(Xét, ⊕
codim(z)=1

ιz∗Z)

⋯

The blue term is what we’d like to compute, and the other terms are the cohomology of
pushforwards and thus appear in the Leray spectral sequence.

Proposition 11.2.4(?).
Let X/k be a curve where k = ks. Then

H i>0(Xét, ⊕
codim z=1

ιz∗Z) = 0.

Proof (?).
It’s enough to show that H>0(Xét, ιz∗Z) = 0 using that cohomology commutes with direct
sums. Using the Leray spectral sequence, we get

H i(Xét,R
j
ιz∗

Z) ⇒H i+j(zét,Z)

What are the coefficients on the LHS? We proved that pushforwards on closed immersions are
exact, by checking on stalks, so we have

Rjιz∗Z =
⎧⎪⎪⎨⎪⎪⎩

ιz∗Z j = 0
0 j > 0

.

We can also compute

Hs(zét,Z) =
⎧⎪⎪⎨⎪⎪⎩

Z s = 0
0 s > 0

.

since the zero term is global sections and k is separably (algebraically) closed, and the Galois
cohomology vanishes in i > 0. So we get a degenerate spectral sequence with one column,
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yielding

H i(Xét, ιz∗Z) =H i(zét,Z) =
⎧⎪⎪⎨⎪⎪⎩

Z i = 0
0 i > 0

.

∎

Corollary 11.2.5(?).
If X/k is a smooth curve over k = ks then we have an isomorphism

H>1(Xét,Gm) ∼Ð→H>i(Xét, η∗Gm).

New goal: compute the RHS, which is not quite Galois cohomology but is pushed forward from a
field. Using the Leray spectral sequence, we get

H i(Xét,R
jη∗Gm) ⇒H i+j(η,Gm),

where the RHS is Galois cohomology. We’re interested in the j = 0 region of the spectral sequence.
Let’s try to understand the stalks at geometric points:

(Rjη∗Gm)
x
=Hj(Kx,Gm),

where the field appearing is the strict Henselization from the earlier discussion. We’ll be able to
compute this if we have the following theorem:

Theorem 11.2.6(?).
Let K be the function field of a curve or an algebraically closed field, or K =Kx is the strict
Henselian field of a geometric point of a curve over a separably (algebraically) closed field.
Then

H>0(K,Gm) = 0.

This will suffice since R>0η∗Gm = 0, yielding a spectral sequence where E2 = E∞:

H i(Xét, η∗Gm) =H i(η,Gm) = 0 if i > 0.

Upshot: this reduces the computation of the étale cohomology of a curve to Galois cohomology.
Proving this theorem is hard, and will lead us to Brauer groups.10

E 11.3 Brauer Groups e

10Another one of Daniel’s favorite topics in the course!
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Definition 11.3.1 (Cohomological Brauer Group)
Let X be a scheme, then the cohomological Brauer group is defined as

Br(X) ∶=H2(Xét,Gm)tors.

In good situations, this group has a good geometric interpretation, so let’s true to understand it
this way in terms of PGLn -torsors.

Claim: There is a natural map

⋃
n

{étale-locally split PGLn -torsors} →H2(Xét,Gm).

Idea: there is a SES
1→ Gm → GLn → PGLn → 1 ∈ ShGrp(Xét).

It’s not obviously exact on the right, since it’s not quite true that a map into PGLn is an invertible
matrix modulo scaling: this is true locally, but it’s the sheafification of this, so why is there a
surjection? The key input is that GLn → PGLn is smooth, and thus has sections étale-locally. This
map is a Gm-torsor, which we know are Zariski-locally trivially, so this sequence is exact in the
Zariski topology and thus also in the étale topology.

Suppose T is an étale-locally trivial PGLn -torsor, then the LES essentially has the following map:

⋯ →H2(Xét,PGLn)
δÐ→H2(Xét,Gm) → ⋯.

This doesn’t make sense a priori since this is not a sequence of abelian sheaves. Let’s true to
associate to T some [T ] ∈ H2(Xét,Gm). We can first write down [T ] ∈ Ȟ1(Xét,PGLn): we get a
PGLn cocycle out a torsor by choosing a trivializing map U → X so that T ∣U = PGLn∣U . This
yields a cocycle in PGLn(U ×X U).

To be continued.

12 Lecture 12

E 12.1 Brauer Groups e

Goal: for C a curve over k = k, we’ve computed

H i(C,Gm) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

O×C(C) i = 0
Pic(C) i = 1
0 i > 1

.
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Currently i > 1 is a mystery, so today we’ll look at i = 2. Recall that we’ve reduced this to the Galois
cohomology of the function field H i(k(C),Gm) and of the strict Henselization 11 H i(Kx,Gm).

Today we’ll try to understand the Galois cohomology of a field with coefficient in k×, or Gm thought
of as a sheaf on the étale site. We’ll discuss i = 2, and a general principle in group cohomology is
that if one understands i = 1,2 then one can often understand all degrees.

In general, H1 has a geometric interpretation: torsors. H2 is much harder: they classify more
general objects called gerbes. A miracle is that H2(Gm) has real meaning, and is very closely
related to real physical objects (certain torsors). Recall that we defined the cohomological Brauer
group of X (Definition 11.3.1) as

Brcoh ∶= Br′(X) ∶=H i(Xét,Gm)tors.

We also started defining the Brauer group by considering

⋃
n

{étale locally trivial PGLn -torsors}
δÐ→H2(Xét,Gm),

and defining Br(X) ∶= im f as a set, which is a reasonably concrete geometric object. This map
came from a LES in cohomology, coming from a SES of sheaves, not all of which were abelian. The
definition of δ was the boundary map of

⋃
n
H1(Xét,PGLn)

δÐ→H2(Xét,Gm) (1)

arising from the SES of sheaves of groups on Xét,

1→ Gm Ð→ GLm Ð→ PGLn → 1.

We argued last time that this was exact in the Zariski topology since the RHS map was a Gm-
torsor and thus Zariski locally trivial. What does δ mean? 12

Remark 12.1.1: Making the LES here is a little subtle. You get a long exact sequence of sets here
which terminates at the H2 we’re interested in, although one usually doesn’t get a map of the form
H1(C) →H2(B) for a SES AÐ→ B Ð→ C, you need that A is abelian (or in the center).

We’ll now try to make δ explicit in terms of Čech cohomology, which is the only way we have to
make sense of the LHS set in equation (1). We defined it to be the set of étale locally trivial PGLn -
torsors, which has a description in terms of Ȟ1 : the boundary map doesn’t usually make sense for
a nonabelian group, but it does in very low degrees such as i = 1. So we need to implement the
snake lemma. Start with [T ] ∈ H i(Xét,PGLn) where T is a PGLn - torsor split by U Ð→ X. On
U ×X U , descent data is given by a section Γ(U ×X U,PGLn) as a sheaf. This is because descent
data is an isomorphism on this double intersection and an automorphism of PGLn is the same as a
section to PGLn. This descent data satisfies the cocycle condition. How do we apply the boundary
map to an element in the Čech complex? After refining U we can lift this descent data to a section
s ∈ Γ (U ×X U,GLn). Note that H2 (Gm) is represented by a section to Gm of U ×X U ×X U . We
11The stalk of the structure sheaf, OC,x.
12Best reference: Giraud, “Cohomologie non Abelienne”.
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started with something satisfying the cocycle condition but lifted in an arbitrary way, so it may
not still satisfy the cocycle condition. We can write

π∗23π
∗
12s (π13s)−1 ∈ Γ (U ×X U ×X U,Gm) .

A priori it’s just a section to GLn but we know that this goes to 1 in PGLn, meaning it must comes
from Gm. The LHS is a 2-cocycle representing an element of H2 (Xét,Gm).

Exercise 12.1.2 (?)
Check that d of this element is zero.

Slogan 12.1.3
δ ([T ]) is the obstruction to lifting a PGLn -torsor T to a GLn -torsor. If this class vanishes, a lift
exists.

Remark 12.1.4: This is what you might expect: the image of something coming from a boundary
map is the obstruction to coming from the previous map. This class is called the Brauer class of
T .

We’ve just mapped from a set to a group, so we don’t know that the image is a group yet, and we
don’t yet know that the image is in Brcoh since we don’t know if the image is torsion.

12.1.1 Geometric Interpretations of PGLn -Torsors Brauer Classes

There is a general principle: suppose T ∈ ShSet (Xét) and G = Aut (T ) as a sheaf, whose sections
are given on an open U by pulling back T to U and compute its automorphisms, where for example
T is a scheme. There is a natural bijection

{ Locally split
G-torsors } ⇌ { forms of T} .

An example of this has come up before: namely that GLn -torsors corresponded to vector bundles.
This is recovered by taking T to be the trivial vector bundle and G = GLn Here a form is defined to
be a sheaf on Xét locally isomorphic to T . The map here is given by sending a form F to Isom (F,T ).
This is locally split since F is locally trivial, i.e. locally isomorphic to T , and so base-changing to
some cover where F will make this torsor split. The reverse map is sending τ → (τ × T ) /G, taking
the sheaf quotient, which gets rid of τ and making the fibers isomorphic to T instead.

Example 12.1.5(?): GLn -torsors correspond to vector bundles. Note that this isn’t an equivalence
of categories: there are maps of vector bundles which don’t come from maps of torsors, e.g. any
map that is not an isomorphism. Here the left/right arrows mean that there is a bijection between
sets, up to isomorphism on each side.
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Example 12.1.6(?): Let G = PGLn, then what are objects with automorphism group Aut (G) =
PGLn? An example that works here is Autx (Px) = PGLn.

Exercise 12.1.7 (?)
You may have seen this stated over an algebraically closed based field, but (nontrivially) this
holds over a general base. Prove this.
(Hint: you may need to use the theorem on formal functions or formal GAGA.)

Corollary 12.1.8(?).
There is a natural bijection

{PGLn -torsors} ⇌ {Forms of Pn−1}

These are referred to as Severi-Brauer X-Schemes a .
aIf x = Speck is a point, then these are referred to as Severi-Brauer Varieties.

Example 12.1.9(?): The algebra A ∶= Matn×n has Aut(A) = PGLn, which is usually referred to
as the Noether-Skolem theorem. Thus there is a bijection

{PGLn -torsors} ⇌ {Forms of Matn×n=EndOx(Onx )}

The RHS are referred to as Azumaya algebras, and over a field these are central simple algebras.
There is a fact (which we may see) that such algebras over a field are always division algebras.

Question 12.1.10
How can we combine these to send forms of Pn−1 directly to an Azumaya algebra?

Remark 12.1.11: Key takeaway: the Brauer group (which we’ll soon prove is a group) has
concrete representative. These are the forms of Pn−1, which you can think of as étale locally trivial
Pn−1 bundles, or forms of a matrix algebra, i.e. coherent sheaves of algebras which étale locally
endomorphisms of the trivial bundle.

E 12.2 Twisted Sheaves e

People usually think about Brauer groups as one of these two objects. We’ll discuss a third way.
When we defined the boundary map, we took descent data from PGLn, i.e. elements of this group
on double intersections, and we lifted those to GLn.

Definition 12.2.1 (Twisted Sheaves)
Let U →X be an étale cover and suppose α ∈ Γ(U×XU×XU,Gm) represents [α] ∈Hsi(Xét,Gm).
Then an α-twisted sheaf is a quasicoherent sheaf on U , an isomorphism ϕ ∶ π∗1F

∼Ð→ π∗2F
(which looks like descent data) which satisfies the cocycle condition up to α, i.e.

π∗23ϕ ○ π∗12ϕ = απ∗13ϕ.
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Remark 12.2.2: Note that if α were the constant function 1, this would be the descent data for
a quasicoherent sheaf, so we’re twisting what it means to be a sheaf. This is exactly what we did
when defining a PGLn -torsor, where we lifted to get isomorphisms between the GLn sheaves on the
double overlaps. These failed to satisfy the cocycle condition, and the Brauer class measured this
failure. So in defining δ, our intermediate step was a twisted sheaf.

So we’ll define the category QCoh(X,α) whose objects are α-twisted sheaves and whose morphisms
are morphisms of sheaves on U commuting with ϕ.

Example 12.2.3(?): QCoh(X,1) is canonically isomorphic to QCoh(X), which is the very famous
theorem of étale descent.

12.2.1 Categorical Properties

Proposition 12.2.4(?).
Let α,α′ be two cocycles for Gm. Then

1. [α] ∈ Br(X) (so its in the image the boundary map from PGLn) iff there exist a twisted
vector bundle.a

2. QCoh(X,α) is an abelian category (easy) and has enough injectives (hard) is X is “nice”.

3. There is a functor

⊗ ∶ QCoh(X,α) ×QCoh(X,α′) Ð→ QCoh(X,αα′),

where is α,α′ are defined on different covers than one passes to a common refinement,
and a functorb

hom ∶ QCoh(X,α) ×QCoh(X,α′) Ð→ QCoh(X,α′α−1).

4. There are functors

Symn,Λn Ð→ QCoh(X,α) Ð→ QCoh(X,nα).

5. QCoh(X,q) ∼Ð→ QCoh(X).
aNote that we’ve proved this already since Br = im δ, but part of our construction of δ involved constructing
an α-twisted sheaf out of a PGLn -torsor.

bThis and the tensor functor come from homming (resp. tensoring) the sheaves together and using the pseudo
descent data.

Proof (Sketch/Discussion).
For (1), if α ∈ Br(X), then there is PGLn -torsor whose boundary is α, and our construction
of δ yielded an α-twisted vector bundle. Given such a bundle, one can obtain a Brauer
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class by constructing a twisted form a Pn: take the projectivization. Then the quasi descent
data becomes actual descent data since the failure was precisely in scalars, which you’re now
modding out by.
For (3), just work out what happens to α,α′ when tensoring or homming. Similarly, all of the
rest except for (2) follow from definitions.

∎

Exercise 12.2.5 (?)
Try to prove (3) and (4).

12.2.2 The Brauer Group is a Group

Corollary 12.2.6(?).
Br(X) is a group.

Proof (?).
Let E ,E ′ be α,α′-twisted vector bundles respectively, we want to show that there exists an
αα′-twisted vector bundle. We can take E ⊗E ′, and then just note that having a twisted vector
bundle is the same as having a Brauer class. For inverses, suppose α is a Brauer class and E is
a twisted vector bundle. To get an α−1-twisted vector bundle, one can just take the dual E∨.

∎

E 12.3 Results On Twisted Bundles e

Proposition 12.3.1(?).
Suppose that α is a 2-cocycle for Gm, then [α] is trivial iff there exists an α-twisted line
bundle.

Lemma 12.3.2(?).
If [α] = [α′], then QCoh(X,α) ≃ QCoh(X,α′).

Note that this is not a canonical equivalence.

Exercise 12.3.3 (?)
Prove this lemma.

Proof (of proposition, Ô⇒ ).
If α is trivial, then [α] = [1] in which case QCoh(X,α) ≃ QCoh(X) are equivalent categories
and OX is an honest line bundle.

∎
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Proof (⇐Ô ).
Suppose you have an α-twisted line bundle. Then writing down a line bundle is done by taking
a cover, taking the trivial bundle on each open, and then the double intersections have gluing
data in the form of s ∈ Γ(Gm). To prove α is a trivial Brauer class, note that the descent data
(gluing data) is the same as a section β ∈ Γ(U ×X U,Gm). Then the Čech differential δ̌ satisfies
δ̌(β) = α, and thus by definition α = 0 ∈H2(Gm).

∎

Corollary 12.3.4(?).
Suppose E is an α-twisted vector bundle of rank n. Then [α] ∈H2(Xét,Gm) is n-torsion.

Proof (?).
We’ve just proved this for n = 1, so for the general case, note that we can consider ΛnE is a
αn-twisted line bundle. Then by the previous proposition, [αn] − [α]n is trivial.

∎

Corollary 12.3.5(?).

Br(X) ⊆ Br′(X) =H2(Xét,Gm)tors.

12.3.1 Examples of Brauer Classes

Example 12.3.6(?): . X ∶= {x2 + y2 + z2 = 0} over R is a smooth conic with no rational points.
We now via stereographic projection that a smooth projective conic with a rational point would be
isomorphic to P1, so this becomes isomorphic to P1 after base-changing to C where it does have a
rational point. So X/C ≅ P1, which implies that X is a twisted form of P1

R. In fact, δ ([X]) generates
Br(R) = Z/2Z.

Example 12.3.7(?): 2. Hamilton’s Quaternions are a division algebra and hence an Azumaya
algebra representing the same element.

Remark 12.3.8: Given an α-twisted sheaf E , taking the projectivization yields a Severi-Brauer.
Since E was a vector bundle with descent data twisted by a scalar and projectivizing kills scalars,
this yields honest descent data. But descent data is not effective for schemes. So to say that
this is actually a variety instead of a sheaf representing this descent, an extra argument is needed:
projective space is anti-canonically polarized. Descent data for a polarized variety – a variety plus
an ample line bundle – then descent is effective, and projective space has a canonical polarization
given by the dual of the canonical sheaf.

Taking End(E) yields an Azumaya algebra since taking End here kills the twisting cocycle and
yields an honest sheaf of algebras. It’s locally isomorphic to a matrix algebra since passing to any
cover where E is trivialized yields a matrix algebra. Moreover, there is a way to go from Azumaya
algebras to Severi-Brauers, by taking moduli of certain ideals, so we have a diagram
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{Severi-Brauers}

E ∈ {Twisted sheaves}

{Azumaya algebras}

P( ⋅ )

End( ⋅ )

Example 12.3.9(3): An example from class field theory: Br(Qp) = Q/Z.

Remark 12.3.10: Over a field, any 2-torsion Brauer class is represented by a quaternion algebra:
using the usual formula where e.g. i2 = −1, you change −1 to some other numbers. In particular,
the coset [1

2
] ∈ Q/Z is represented by an algebra resembling the usual quaternions.

Example 12.3.11(?): There is a map

0Ð→ Br(Q) Ð→ ⊕
r∈PQ

Br(Qr)
εÐ→ Q/ZÐ→ 0,

where P is the set of places of Q including ∞ (i.e. R) and the summands are the completions of Q
at each place.

Exercise 12.3.12 (Fun!)
Use the Severi-Brauer interpretation to show that if α ∈ Br(Q) then α∣Qν = 0 for all ν.

How to interpret multiplication: let A1,A2 be Azumaya algebras representing α1, α2, then A1 ⊗A2
is an Azumaya algebra representing α1 ⋅ α2. This follows because being an Azumaya algebra is a
local property, so one can just pass to a cover where this reduces to a fact that matrix algebras are
closed under tensor products.

Let P1 ∶= P(E) and P2 ∶= P(E ′) are Severi-Brauers representing α1, α2 respectively. Then P(E ⊗ E ′)
represents α1α2. This is because Severi-Brauers come with a natural embedding into projective
space given by the canonical line bundle, and this yields a geometric way to write down this space.

Question 12.3.13
It’s not easy to write down equations for Severi-Brauers. We can do this for curves (conics), but
surfaces are difficult and we don’t know how to do much for threefolds.

Question 12.3.14
(The Period-Index question) Given α ∈ Br(X), what is the minimum rank or the gcd of the ranks
of an α-twisted vector bundle? We can do this for 2-torsion over a field, but this is generally a
hard question. In general, if you have an α-twisted bundle of rank n then it’s n-torsion, but the
converse is known by examples not to be true. Asking for explicit (and small) representatives of
these objects is generally a hard question.
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Next time: use this theory to understand H i(k,Gm) for k a field. We’ll try to prove the following:

Theorem 12.3.15(?).

1. If K(C) is the function field of a curve over k = k, then H2(K(C),Gm) = 0 and thus
Br(K) = 0.

2. If Kk is strictly Henselian, then H2(Kx,Gm) = 0.

This will be the key ingredient in computing the étale cohomology of curves.
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