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1 Definitions
• Indecomposable: doesn’t decompose as A⊕B. Weaker than irreducible.
• Irreducible: simple, i.e. no nontrivial proper submodules. Implies indecomposable.
• Completely reducible: Direct sum of irreducibles.
• Solvable: Derived series terminates.
• Borel: maximal solvable subalgebra.
• Radical: Largest solvable ideal.
• Semisimple: Direct sum of simple modules.

– Acts in a diagonalizable way.
• Antidominant weight:

〈
λ+ ρ, α∨

〉
6∈ Z>0, equivalently M(λ) = L(λ).

• Dominant weight:
〈
λ+ ρ, α∨

〉
6∈ Z<0.
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• Regular weight: λ is regular iff the isotropy/stabilizer group StabW (λ) :=
{
w ∈W

∣∣∣ wλ = w
}

=
1, equivalently |Wλ| = |W | so

〈
λ+ ρ, α∨

〉
6= 0 for all α ∈ Φ.

• Singular weight: Not regular.
• Linked: µ ∼ λ ⇐⇒ µ ∈W · λ, the orbit of λ under W , a.k.a. the linkage class of λ.
• Socle: Direct sum of all simple submodules.
• Radical: Intersection of all maximal submodules, smallest submodule such that quotient is

semisimple.
• Head: M/rad(M).

2 List of Notation
• M(λ): Verma Modules

• L(λ): Unique simple quotient of M(λ).

• N(λ) the maximal submodule of M(λ)

• The root system

Φ =
{
α ∈ h∨

∣∣∣ [hx] = α(h)x ∀h ∈ h
}

containing roots α

– Abstractly: spans a Euclidean space, λα ∈ ϕ =⇒ λ = ±1, and closed under reflections
about orthogonal hyperplanes.

• Φ+ the corresponding positive system (choose a hyperplane not containing any root), Φ :=
Φ+∐Φ−.

•

sα( · ) := ( · )− 2〈 · , α〉 α

‖α‖2

the corresponding reflection about the hyperplane Hα

• gα :=
{
x ∈ g

∣∣∣ [hx] = α(h)x ∀h ∈ h
}
the corresponding root space

• The triangular decomposition

g =
⊕
α∈Φ+

gα ⊕ h⊕
⊕
α∈Φ−

g−α := n− ⊕ h⊕ n+

• ∆ the corresponding simple system of size `, i.e α =
∑
δk∈∆

cδδk with cδ ∈ Z≥0.

• Λ =
{
λ ∈ E

∣∣∣ 〈λ, α∨〉 ∈ Z ∀α ∈ Φ
}
the integral weight lattice

• Λ+ = Z+Ω the dominant integral weights

– Ω := {ω1, · · · , ω`} the fundamental weights

2 LIST OF NOTATION 5



• [A : B] the composition factor multiplicity of B in a composition series for A.

• (A : B) the composition factor multiplicity of B in a standard filtration for A.

• Φ[λ] =
{
α ∈ Φ

∣∣∣ 〈λ, α∨〉 ∈ Z
}
the integral root system of λ

• ∆[λ] the corresponding simple system

• W[λ] the integral Weyl group of λ

• µ ↑ λ: strong linkage of weights

• Oχλ : the block corresponding to λ.

• chM :=
∑
λ∈h∨

(dimMλ)eλ the formal character.

3 Useful Facts
• λ dominant integral =⇒ wλ ≤ λ for all W .
• M(λ) is simple ⇐⇒ λ is antidominant.
• The dot action is given by w · λ = w(λ+ ρ)− ρ.
• For any filtration 0 ↪→Mn ↪→Mn−1 ↪→ · · · ↪→M1 ↪→M0 = M , we have

chM =
n∑
i=1

ch
(
M i/M i−1

)
,

i.e. the character ofM is the sum of the characters of its composition factors (with multiplicity).
• Head (M(λ)) = L(λ)
• rad(M(λ)) = N(λ)
• Soc (M(λ)) =? M(w0 · λ) = L(µ) for µ the unique antidominant highest weight in the block

determined by λ (?)
• Soc (M(w · λ)) = L(w0 · λ).
•

[M(λ) : L(µ)] ≥ 1 ⇐⇒ µ ↑ λ (strong linkage)

4 SL2 Theory
Definition The group and the algebra:

sl(n,C) =
{
M ∈ GL(n,C)

∣∣∣ det(M) = 1
}

sl(n,C) =
{
M ∈ GL(n,C)

∣∣∣ Tr(M) = 0
}
.

• The usual representation on C2: h has eigenvalues ±1, yields L(1).
• The adjoint representation on C3: adh = diag(2, 0,−2) with eigenvalues 0,±2, yields L(2).

4 SL2 THEORY 6



Generated by

x =
[
0 1
0 0

]
, h =

[
1 0
0 −1

]
, y =

[
0 0
1 0

]

with relations

[hx] = 2x
[hy] = −2y
[xy] = h

.

Some identifications:

Φ = A1

dim h = 1
Λ ∼= Z

Λr ∼= Z/2Z
Λ+ = {0, 1, 2, 3, · · ·}
W = {1, s0} λ

s0⇐⇒ −λ
χλ = χµ ⇐⇒ µ = λ,−λ− 2 (linked)

Π(M(λ)) = {λ, λ− 2, · · ·}
ρ = 1
α = 2

sα · λ = −λ− 2.

For λ dominant integral

N(λ) ∼= L(−λ− 2)
dimL(λ) = λ+ 1
Π(L(λ)) = {λ, λ− 2, · · · ,−λ}

dim (L(λ))µ = 1 ∀µ = λ− 2i.

• Simple modules are parameterized by dominant integral weights:

M(λ) is simple ⇐⇒ λ 6∈ Z≥0 = Λ+ ⇐⇒ dimL(λ) =∞

4 SL2 THEORY 7



Finite-dimensional irreducible representations (i.e. simple modules) of sl(2,C) are in bijection with
dominant integral weights n ∈ Λ, i.e. n ∈ Z≥0, are denoted M(n), and each admits a basis{

vi
∣∣∣ 0 ≤ i ≤ n

}
where

h · vi = (n− 2i)vi
x · vi = (n− i+ 1)vi−1

y · vi = (i+ 1)vi+1,

setting v−1 = vn+1 = 0 and letting v0 be the unique vector in L(n) annihilated by x.

• rad M(λ) = N(λ)
• hd M(λ) = L(λ).
• M(λ) for λ > 0 not integral is simple, however −λ− 2 6∈W · λ.
• λ ≥ 0 =⇒ chL(λ) = chM(λ)− chM(sα · λ) where sα · λ = −λ− 2.
• For λ ≥ 0, dimL(λ) = λ+ 1 and so

chL(λ) = eλ + eλ−2 + · · ·+ e−λ = eλ+1 − eλ−1

e1 − e−1 .

• For λ 6= ρ ∈ Z, the composition factors of M(λ) are M(λ), L(−λ− 2).
• There is an exact sequence

0 N(λ) M(λ) L(λ) 0

0 L(−λ− 2) M(λ) L(λ) 0

Characters:

chM(λ) = chL(λ) + chL(sα · λ)
chM(sα · λ) = chL(sα · λ).

We can think of this pictorially as the ‘head’ on top of the socle:
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M(λ) = L(λ)
L(sα · λ) .

We can invert the formula to get equation (2), which corresponds to inverting this matrix:

chL(λ) = chM(λ)− chM(sα · λ)
chL(sα · λ) = chM(sα · λ).

If λ 6∈ Λ+, then chL(λ) = chM(λ) and bλ,1 = 1, bλ,sα = 0 are again independent of λ ∈ h∨ \ Λ+.

5 SL3
sl(3,C) has root system A2:
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Φ = {±α,±β,±γ := α+ β}
∆ = {α, β}

Φ+ = {α, β, γ}
W = {1, sα, sβ, sαsβ, sβsα, w0 = sαsβsα = sβsαsβ} .

For λ regular, integral, and antidominant:

• M(λ) = L(λ)
• No other M(w · λ) is simple
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• Soc (M(w · λ)) = L(λ).
• [M(w · λ) : L(λ)] = [M(w · λ) : L(w · λ)] = 1 for all w.
• chL(sα · λ) = chM(sα · λ)− chM(λ).
• chM(sα · λ) = chL(sα · λ) + chL(λ).
• The Jantzen filtration when w ∈ {sαβ, sβα, w0} is given by

M(w · λ)0 = M(w · λ)
M(w · λ)1 =?
M(w · λ)2 = L(λ)
M(w · λ)≥3 = 0.

6 Wednesday January 8
Course Website: https://faculty.franklin.uga.edu/brian/math-8030-spring-2020

6.1 Chapter Zero: Review
Material can be found in Humphreys 1972.

Exercise 6.1.1 (Assignment Zero).
Practice writing lowercase mathfrak characters!

In this course, we’ll take k = C.

Definition 6.1.1 (Lie Algebra).
Recall that a Lie Algebra is a vector space g with a bracket

[ · , · ] : g⊗ g→ g

satisfying
• [xx] = 0 for all x ∈ g
• [x[yz]] = [[xy]z] + [y[xz]] (The Jacobi identity)

Note that the last axiom implies that x acts as a derivation.

Exercise 6.1.2 (?).
Show that [xy] = −[yx].

Hint: Consider [x+ y, x+ y]. Note that the converse holds iff ch k 6= 2.

Exercise 6.1.3 (?).
Show that Lie Algebras never have an identity.

6 WEDNESDAY JANUARY 8 11
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6.1 Chapter Zero: Review

Definition 6.1.2 (Abelian Lie Algebras).
g is abelian iff [xy] = 0 for all x, y ∈ g.

There are also the usual notions (define for rings/algebras) of:

• Subalgebras,
– A vector subspace that is closed under brackets.

• Homomorphisms
– I.e. a linear transformation ϕ that commutes with the bracket, i.e. ϕ([xy]) = [ϕ(x)ϕ(y)].

• Ideals

Exercise 6.1.4 (?).
Given a vector space (possibly infinite-dimensional) over k, then (exercise) gl(V ) := Endk(V ) is a
Lie algebra when equipped with [fg] = f ◦ g − g ◦ f .

Definition 6.1.3 (Representation).
A representation of g is a homomorphism ϕ : g→ GL(V ) for some V .

Example 6.1.1 (The adjoint representation).
The adjoint representation is

ad : g→ gl(g)
ad(x)(y) := [xy].

Representations give g the structure of a module over V , where x · v := ϕ(x)(v). All of the usual
module axioms hold, where now

[xy] · v := x · (·v)− y · (x · v)

Example 6.1.2 (?).
The trivial representation V = k where x · a = 0.

Definition 6.1.4 (Irreducible).
V is irreducible (or simple) iff V as exactly two g-invariant subspaces, namely 0, V .

Definition 6.1.5 (Completely Reducible Modules).
V is completely reducible iff V is a direct sum of simple modules, and indecomposable iff V can
not be written as V = M ⊕N , a direct sum of proper submodules.

There are several constructions for creating new modules from old ones:

• The contragradient/dual:

Definition 6.1.6 (Contragradient dual).

6 WEDNESDAY JANUARY 8 12



6.2 Semisimple Lie Algebras

V ∨ := homk(V, k) (x · f) = −f(x · v).

for f ∈ V ∨, x ∈ g, v ∈ V .

• The direct sum V ⊕W where

x · (v, w) = (x · v, x · w)

• The tensor product where

x · (v ⊗ w) = x · v ⊗ w + v ⊗ x · w

• homk(V,W ) where

(x · f)(v) = x · f(v)− f(x · v)

– Note that if we take W = k then the first term vanishes and this recovers the dual.

6.2 Semisimple Lie Algebras

Definition 6.2.1 (Derived Ideal).
The derived ideal is given by g(1) := [gg] := spank

({
[xy]

∣∣∣ x, y ∈ g
})

.

This is the analog of the commutator subgroup.

Lemma 6.1(The derived ideal detects abelian algebras).
g is abelian iff g(1) = {0}, and 1-dimensional algebras are always abelian.

Proof (?).
This follows because if [xy] := xy = yx then [xy] = 0 ⇐⇒ xy = yx.

�

Definition 6.2.2 (Simple algebras).
A lie algebra g is simple iff the only ideals of g are 0, g and g(1) 6= {0}.

Note that thus rules out the zero modules, abelian lie algebras, and particularly 1-dimensional lie
algebras.

Definition 6.2.3 (Derived Series and Solvability).
The derived series is defined by g(2) = [g(1)g(1)], continuing inductively. g is said to be solvable
if g(n) = 0 for some n.

Lemma 6.2(?).
Abelian implies solvable.

6 WEDNESDAY JANUARY 8 13



6.2 Semisimple Lie Algebras

Definition 6.2.4 (Nilpotent Algebras).
The lower central series of g is defined as gj+1 := [g, gj ]. The lie algebra g is nilpotent if
this series terminates at zero.

Remark 6.2.1.
Note that an element x of a Lie algebra is nilpotent iff adx is nilpotent as a matrix (so x is
ad-nilpotent), i.e. ad(x)n = 0 for some n. There is a result, Engel’s theorem, which relates these
two notions: a Lie algebra is nilpotent iff all of its elements are nilpotent (with potentially different
ns depending on x).

Definition 6.2.5 (Semisimple).
g is semisimple (s.s.) iff g has no nonzero solvable ideals.

Exercise 6.2.1 (?).
Show that simple implies semisimple.

Remark 6.2.2.

1. Semisimple algebras g will usually have solvable subalgebras.
2. g is semisimple iff g has no nonzero abelian ideals.

Definition 6.2.6 (Killing Form).
The Killing form is given by κ : g⊗g→ k where κ(x, y) = Tr(adx ad y), which is a symmetric
bilinear form.

Lemma 6.3(?).

κ([xy], z) = κ(x, [yz])

Definition 6.2.7 (Radical).
If β : V ⊗2 → k is any symmetric bilinear form, then its radical is defined by

radβ =
{
v ∈ V

∣∣∣ β(v, w) = 0 ∀w ∈ V
}
.

Definition 6.2.8 (Nondegenerate Bilinear Forms).
A bilinear form β is nondegenerate iff radβ = 0.

Lemma 6.4(?).
radκ E g is an ideal, which follows by the above associative property.
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Theorem 6.2.1(Characterization of Semisimplicity Using the Killing Form).
g is semisimple iff κ is nondegenerate.

Example 6.2.1 (?).
The standard example of a semisimple lie algebra is

g = sl(n,C) :=
{
x ∈ gl(n,C)

∣∣∣ Tr(x) = 0
}

Remark 6.2.3.
From now on, g will denote a semisimple lie algebra over C.

Theorem 6.2.2(Weyl’s Complete Reducibility Criterion).
Every finite dimensional representation of a semisimple g is completely reducible.

In other words, the category of finite-dimensional representations is relatively uninteresting – there
are no extensions, so everything is a direct sum. Thus once you classify the simple algebras (which
isn’t terribly difficult), you have complete information.

7 Friday January 10th
7.1 Root Space Decomposition
Let g be a finite dimensional semisimple lie algebra over C. Recall that this means it has no
proper solvable ideals. A more useful characterization is that the Killing form κ : g ⊗ g → g is a
non-degenerate symmetric (associative) bilinear form. The running example we’ll use is g = sl(n,C),
the trace zero n × n matrices. Let h be a maximal toral subalgebra, where x ∈ g is toral if x is
semisimple, i.e. adx is semisimple (i.e. diagonalizable).

Example 7.1.1 (?).
h is the diagonal matrices in sl(n,C).

Remark 7.1.1.
h is abelian, so ad h consists of commuting semisimple elements, which (theorem from linear algebra)
can be simultaneously diagonalized.

Definition 7.1.1 (Root Space Decomposition).
This leads to the root space decomposition,

g = h⊕
⊕
α∈Φ

gα.

7 FRIDAY JANUARY 10TH 15



7.2 Facts About Φ and Root Spaces

where

gα =
{
x ∈ g

∣∣∣ [hx] = α(h)x ∀h ∈ h
}

where α ∈ h∨ is a linear functional.

Here h = Cg(h), so [hx] = 0 corresponds to zero eigenvalues, and (fact) it turns out that h is its
own centralizer.

Definition 7.1.2 (Root System).
We then obtain a set of roots of h, g given by

Φ =
{
α ∈ h∨

∣∣∣ α 6= 0, gα 6= {0}
}

Example 7.1.2 (?).
gα = CEij for some i 6= j, the matrix with a 1 in the i, j position and zero elsewhere.

Remark 7.1.2.
The restriction κ|h is nondegenerate, so we can identify h, h∨ via κ (can always do this with vector
spaces with a nondegenerate bilinear form), where κ maps to another bilinear form ( · , · ). We thus
get a correspondence

h∨ 3 λ ⇐⇒ tλ ∈ h

λ(h) = κ(tλ, h) where (λ, µ) = κ(tλ, tµ).

7.2 Facts About Φ and Root Spaces

Definition 7.2.1 (Abstract Root System).
Let α, β ∈ Φ be roots.

1. Φ spans h∨ and does not contain zero.
2. If α ∈ Φ then −α ∈ Φ, but no other scalar multiple of α is in Φ.

• Note: see Remark 7.2.1.
3. (β, α∨) ∈ Z
4. sα(β) := β − (β, α∨)α ∈ Φ.

• Note: see Remark 7.2.2

Remark 7.2.1.
An aside:

• dim gα = 1.

• If 0 6= xα ∈ gα then there exists a unique yα ∈ g−α such that xα, yα, hα := [xα, yα] spans a
3-dimensional subalgebra in sl2, given by

xα =
[
0 1
0 0

]
, yα =

[
0 0
1 0

]
, hα =

[
1 0
0 −1

]
.
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7.2 Facts About Φ and Root Spaces

• Under the correspondence h ⇐⇒ h∨ induced by κ,

hα ⇐⇒ α∨ := 2α
(α, α)

Thus for all λ ∈ h∨,

λ(hα) = (λ, α∨) = 2(λ, α)
(α, α) .

• If α+ β 6= 0, then κ(gα, gβ) = 0.

Remark 7.2.2.
If α+ β ∈ Φ, then [gαgβ] = gα+β.

Example 7.2.1 (?).
Example: If α = Eij , β = Ejk where k 6= i, then [Eij , Ejk] = Eik.

• g is generated as an algebra by the root spaces gα
• Root strings: If β 6= ±α, then the roots of the form α+ kβ for k ∈ Z form an unbroken string

α− rβ, · · · , α− β, α, α+ β, · · · , α+ `β

consisting of at most 4 roots where r − s = (α, β∨).

Example 7.2.2 (?).
The circled roots below form the root string for β:
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7.2 Facts About Φ and Root Spaces

In general, a subset Φ of a real euclidean space E satisfying conditions (1) through (4) is an
(abstract) root system. Note that when Φ comes from a g, we define E := RΦ.

7.2.1 The Root System

Definition 7.2.2 (Simple System).
There exists a subset ∆ ⊆ Φ such that

• ∆ is a C-basis for g∨
• β ∈ Φ implies that β =

∑
α∈∆

cαα with either

– All cα ∈ Z≥0 ⇐⇒ β ∈ Φ+ or β < 0.
– All cα ∈ Z≤0 ⇐⇒ β ∈ Φ− or β > 0.

∆ is called a simple system.

Definition 7.2.3 (Positive Roots, Height).
If ∆ = {a1, · · · , a`} then Φ+ are the positive roots, and if Φ+ 3 β =

∑
α∈∆

cαα, then the height

of β is defined as

ht(β) :=
∑

cα ∈ Z>0

Definition 7.2.4 (Root Lattice, Dual Root System).
Note that ZΦ := Λr is a lattice, and is referred to as the root lattice, and Λr ⊂ E = RΦ.
We also have

Φ+ =
{
β∨

∣∣∣ β ∈ Φ
}
,

the dual root system, is a root system with simple system ∆∨.

Proposition 7.2.1(Important subalgebras of a Lie algebra).

n = n+ :=
∑
β>0

gβ Upper triangular with zero diagonal,

n− :=
∑
β>0

g−β Lower triangular with zero diagonal,

b := h + n Upper triangular (the "Borel" subalgebra),
b− := h + n− Lower triangular..

Definition 7.2.5 (Triangular/Cartan Decomposition).

g = n− ⊕ h⊕ n
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7.2 Facts About Φ and Root Spaces

Fact 7.1.
If β ∈ Φ+ \∆, and if α ∈ ∆ such that (β, α∨) > 0, then β − (β, α∨)α ∈ Φ+ has height strictly less
than the height of β.

Remark 7.2.3.
By root strings, β − α ∈ Φ+ is positive root of height one less than β, yielding a way to induct on
heights (useful technique).

7.2.2 Weyl Groups

For α ∈ Φ, define

Sα : h∨ → h∨

λ 7→ λ− (λ, α∨)α.

This is reflection in the hyperplane in E perpendicular to α:

Figure 1: Reflection through a hyperplane

Note that s2
α = id.

Definition 7.2.6 (Weyl Group).
Define W as the subgroup of GL(E) generated by all sα for α ∈ Φ, this is the Weyl group of g
or Φ, which is finite and W =

〈
sα
∣∣∣ α ∈ ∆

〉
is generated by simple reflections.

By (4), W leaves Φ invariant. In factW is a finite Coxeter group with generators S =
{
sα
∣∣∣ α ∈ ∆

}
and defining relations (sαsβ)m(α,β) = 1 for α, β ∈ ∆ where m(α, β) ∈ {2, 3, 4, 6} when α 6= β and
m(α, α) = 1.
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Definition 7.2.7 (Crystallographic group).
If this finiteness on numerical conditions are met, then W is referred to as a Crystallographic
group.

8 Monday January 13th
8.1 Lengths
Recall that we have a root space decomposition g = h⊕

⊕
β∈Φ

gβ for finite dimensional semisimple lie

algebras over C. We have sβ(λ) = λ− (λ, β∨)β, for λ ∈ h∨ and the Weyl group

W =
〈
sβ
∣∣∣ β ∈ Φ

〉
=
〈
sα
∣∣∣ α ∈ ∆

〉
where ∆ = {ai} are the simple roots.

For w ∈W , we can take the reduced expression for w by writing w = s1 · · · sn with si simple and n
minimal. The length is uniquely determined, but not the expression. So we define `(w) := n where
`(1) := 0.

Fact 8.1.

1. `(w) is the size of the set
{
β ∈ Φ+

∣∣∣ wβ < 0
}

• The above set is equal to Φ+ ∩ w−1Φ−.
• In particular, for β ∈ Φ+, β is simple (i.e. β 3 ∆ iff `(sβ) = 1).
• Note: α is the only root that sα sends to a negative root, so sα(β) > 0 for all β ∈ Φ+\{α}.

2. `(w) = `(w−1) for all w ∈W , so `(w) is also the size of Φ ∩ wΦ (replacing w−1 with w)

3. There exists a unique w0 ∈W with `(w0) maximal such that `(w0) =
∣∣∣Φ+

∣∣∣ and w0(Φ+) = Φ−.

• Also `(w0w) = `(w0)− `(w) 1

4. For α ∈ Φ+, w ∈W , we have either

`(wsα) > `(w) ⇐⇒ w(α) > 0
`(wsα) < `(w) ⇐⇒ w(α) < 0

.

Taking inverses yields `(sαw) > `(w) ⇐⇒ w−1α > 0.

1Note that the product of reduced expressions is not usually reduced, so the length isn’t additive.
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8.2 Bruhat Order

8.2 Bruhat Order

Definition 8.2.1 (Bruhat Order).
Let S be the set of simple reflections, i.e. S =

{
sα
∣∣∣ α ∈ ∆

}
. Then define

T :=
⋃
w∈W

wSw−1 =
{
sβ
∣∣∣ β ∈ Φ+

}
.

This is the set of all reflections in W through hyperplanes in E.
We’ll write w′ t−→ w means w = tw′ and `(w′) < `(w). Note that in the literature, it’s also
often assumed that that `(w′) = `(w)− 1. In this case, we say w′ covers w, and refer to this
as the covering relation. So w′ → w means that w′ t−→ w for some t ∈ T . We extend this to
a partial order: w′ < w means that there exists a w such that

w′ = w0 → w1 → · · · → wn = w.

This is called the Bruhat-Chevalley order on W .

Corollary 8.2.1(?).
w′ < w =⇒ `(w′) < `(w), so 1 ∈W is the unique minimal element in W under this order.

It turns out that if we set w = w′t instead, this results in the same partial order. If you restrict T
to simple reflections, this yields the weak Bruhat order In this case, the left and right versions
differ, yielding the left/right weak Bruhat orders respectively. 2

Recall that lie algebras yield finite crystallographic coxeter groups.

Proposition 8.2.1(Properties of the Bruhat Order).
For (W,S) a coxeter group,

a. w′ ≤ w iff w′ occurs as a subexpression/subword of every reduced expression s1 · · · sn for
w, where a subexpression is any subcollection of si in the same order.a

b. Adjacent elements w′, w (i.e. w′ < w and there does not exist a w′′ such that w′ < w′′ < w)
in the Bruhat order differ in length by 1.

c. If w′ < w and s ∈ S, then w′s ≤ w or w′s ≤ ws (or both). i.e., if `(w1) = 2 = `(w2),
then the size of

{
w ∈W

∣∣∣ w1 < w < w2
}
is either 0 or 2.

w2

w1

2Note that this is because conjugating a simple reflection may not yield a simple reflection again.
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8.3 Properties of Universal Enveloping Algebras

aNote that this implies that 1 is not only a minimal element in this order, but an infimum.

8.3 Properties of Universal Enveloping Algebras
Let g be any lie algebra, and ϕ : g→ A be any map into an associative algebra. Then there exists
an object U(g) and a map i such that the following diagram commutes:

where ϕ̃ is a map in the category of associative algebras.

Moreover any lie algebra homomorphism g1 → g1 induces a morphism of associative algebras
U(g1)→ U(g2), where g generates U(g) as an algebra.

U(g) can be constructed as

U(g) = T (g)/
〈

[x, y]− x⊗ y − y ⊗ x
∣∣∣ x, y ∈ g

〉
.

Note that this ideal is not necessarily homogeneous.

Proposition 8.3.1(Properties of the Universal Enveloping Algebra).
• Usually noncommutative
• Left and right Noetherian
• No zero divisors
• g y U(g) by the extension of the adjoint action, (adx)(u) = xu−ux for x ∈ g, u ∈ U(g).
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8.4 Integral Weights

Theorem 8.3.1(Poincaré-Birkhoff-Witt (PBW).
If {x1, · · ·xn} is a basis for g, then

{
xt11 , · · · , x

tn
n

∣∣∣ ti ∈ Z+
}
(noting that xn = x ⊗ x ⊗ · · ·x

and Z+ includes 0) is a basis for U(g).

Corollary 8.3.1(?).
i : g → U(g) is injective, so we can think of g ⊆ U(g). If g is semisimple, then it admits
a triangular decomposition g = n− ⊕ h ⊕ n and choosing a compatible basis for g yields
U(g) = U(n−)⊗ U(h)⊗ U(n).
If ϕ : g→ GL(V ) is any Lie algebra representation, it induces an algebra representation U(g)
of U(g) on V and vice-versa. It satisfies

x · (y · v)− y · (x · v) = [xy] · v

for all x, y ∈ g and v ∈ V .

Remark 8.3.1.
Note that this lets us go back and forth between Lie algebra representations and associative algebra
representations, i.e. the theory of modules over rings.

Remark 8.3.2.
A note on notation: Z(g) denotes the center of U(g).

8.4 Integral Weights
We have a Euclidean space E = RΦ+, the R-span of the roots.

Definition 8.4.1 (Integral Weight Lattice).
We also have the integral weight lattice

Λ =
{
λ ∈ E

∣∣∣ (λ, α∨) ∈ Z ∀α ∈ Φ(or Φ+ or ∆)
}
.

Definition 8.4.2 (Ordering of Weights).
There is a sublattice Λr ⊆ Λ, which is an additive subgroup of finite index. There is a partial
order of Λ on E and h∨. We write

µ ≤ λ ⇐⇒ λ− µ ∈ Z+∆ = Z+Φ+

Definition 8.4.3 (Dominant Integral Weights).
For a basis ∆ = {α1, · · · , αn}, define a dual basis (wi, α∨j ) = δij . The fundamental weights are
given by a Z-basis for Λ. Then Λ is a free abelian group of rank `, and

Λ+ = Z+w1 + · · ·+ Z+w`

are the dominant integer weights.a
aNote that in Jantzen’s book, X is used for Λ and X+ correspondingly.
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9 Wednesday January 15th
9.1 Review

Definition 9.1.1 (Weyl Vector).
The Weyl vector is given by

ρ = ω1 + · · ·+ ω` = 1
2
∑
β∈Φ+

β ∈ Λ+.

Proposition 9.1.1(Properties of the Weyl vector).
envlist - If α ∈ ∆ then (ρ, α∨) = 1 - sα(ρ) = ρ− α.

Fact 9.1.
Let λ ∈ Λ+; a few facts:

1. The size of
{
µ ∈ Λ+

∣∣∣ µ ≤ λ} (with the partial order from last time) is finite.
2. wλ < λ for all w ∈W .

Definition 9.1.2 (Weyl Chamber).
The Weyl chamber for a fixed root in E a Euclidean space is

C =
{
λ ∈ E

∣∣∣ (λ, α) > 0 ∀α ∈ ∆
}

Remark 9.1.1.
Note that the hyperplane splits E into connected components, we mark this component as distin-
guished.

• A connected component of the union of hyperplanes is orthogonal to roots.
• They’re in bijection with ∆.
• They’re permuted simply transitively by W .

We also let C denote the fundamental domain.

9.2 Weight Representations
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9.3 Finite Dimensional Modules

Definition 9.2.1 (Weights, Weight Spaces, and Multiplicities).
For λ ∈ h∨, we let

Mλ :=
{
v ∈M

∣∣∣ h · v = λ(h)v ∀h ∈ h
}
.

denote a weight space of M if Mλ 6= 0. In this case, λ is a weight of M . The dimension of
Mλ is the multiplicity of λ in M , and we define the set of weights as

Π(M) :=
{
λ ∈ h∨

∣∣∣ Mλ 6= 0
}
.

Example 9.2.1 (?).
If M = g under the adjoint action, then Π(M) = Φ ∪ {0}.

Remark 9.2.1.
The weight vectors for distinct weights are linearly independent. Thus there is a g-submodule given
by
∑
λ

Mλ, which is in fact a direct sum. It may not be the case that
∑
λ

Mλ = M , and can in fact

be zero, although this is an odd situation. 3 In our case, we’ll have a weight module M =
⊕
λ

Mλ,

where h yM semisimply.

9.3 Finite Dimensional Modules
Recall Weyl’s complete reducibility theorem, which implies that any finite dimensional
g-module is a weight module. In fact, n, n− yM nilpotently.

Fact 9.2.

• Π(M) ⊂ Λ is a subset of the integral lattice.
• Π(M) is W -invariant.
• dimMλ = dimMwλ for any λ ∈ Π(M), w ∈W .

9.4 Simple Finite Dimensional sl(2,C)-modules
Fix the standard basis {x, h, y} of sl(2,C) with

[hx] = 2x
[hy] = −2y
[xy] = h.

3See Humphreys #1, #20.2, p. 110.
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9.4 Simple Finite Dimensional sl(2,C)-modules

Since dim h = 1, there is a bijection

h∨ ↔ C
Λ↔ Z

Λr ↔ 2Z
α→ 2
ρ→ 1.

There is a correspondence between weights and simple modules:

{Isomorphism classes of simple modules} ⇐⇒ Λ+ = {0, 1, 2, 3, · · ·}
L(λ) ⇐⇒ λ.

Moreover, L(λ) has a 1-dimensional weight spaces with weights λ, λ−2, · · · ,−λ and thus dimL(λ) =
λ+ 1.

Example 9.4.1 (?).

• L(0) = C, the trivial representation,
• L(1) = C2, the natural representation where sl(2,C) acts by matrix multiplication,
• L(2) = g, the adjoint representation.

Choose a basis {v1, · · · , vλ} for L(λ) so that Cv0 = Mλ, Cv1 = Mλ−2, · · ·CvλM−λ. Then

• h · vi = (λ− 2i)vi
• x · vi = (λ− i+ 1)vi−1, where v−1 := 0
• y · vi = (i+ 1)vi+1 where vλ+1 := 0.

We then say L(λ) is a highest weight module, since it is generated by a highest weight vector λ.
Then W = {1, sα}, where sα is reflection through 0 by the identification α = 2.

Figure 2: Weyl group reflection in sl2(C)
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10 Chapter 1: Category O Basics
The category of U(g)-modules is too big. Motivated by work of Verma in 60s, started by Bernstein-
Gelfand-Gelfand in the 1970s. Used to solve the Kazhdan-Lusztig conjecture.

10.1 Axioms and Consequences

Definition 10.1.1 (Category O).
O is the full subcategory of U(g) modules consisting of M such that

1. M is finitely generated as a U(g)-module.
2. M is h-semisimple, i.e. M is a weight module

M =
⊕
λ∈h∨

Mλ

3. M is locally n-finite, i.e.

dimC U(n)v <∞ ∀v ∈M.

Example 10.1.1 (?).
If dimM <∞, then M is h-semisimple, and axioms 1, 3 are obvious.

Lemma 10.1(?).
Let M ∈ O, then

4. dimMµ <∞ for all µ ∈ h∨.
5. There exist λ1, · · ·λr ∈ h∨ such that

Π(M) ⊂
λ⋃
i=1

(λi − Z+Φ+)

Figure 3: Forest structure of weights
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Proof (?).
By axiom 2, every v ∈M is a finite sum of weight vectors in M . We can thus assume that our
finite generating set consists of weight vectors. We can then reduce to the case where M is
generated by a single weight vector v. So consider U(g)v. By the PBW theorem, there is a
triangular decomposition

U(g) = U(n−)U(h)U(n)

By axiom 3, U(n)·v is finite dimensional, so there are finitely many weights of finite multiplicity
in the image. Then U(h) acts by scalar multiplication, and U(n−) produces the “cones” that
result in the tree structure:

Figure 4: Cones under tree structure of weights

A weight of the form µ = λi −
∑

niαi can arise from yn1
n1 · · ·.

Missing end of lecture.

�

11 Friday January 17th
Let M

1. Be finitely generated,
2. Semisimple M = ⊕λ∈h∨Mλ,
3. Locally finite
4. dimMµ <∞ for all µ ∈ h∨,
5. Satisfy the forest condition for weights.
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Theorem 11.0.1(Properties of O).
a. O is Noetherian a

b. O is closed under quotients, submodules, finite direct sums
c. O is abelian (similar to a category of modules)
d. If M ∈ O, dimL <∞, then L⊗M ∈ O and the endofunctor M 7→ L⊗M is exact
e. If M ∈ O, then M is locally Z(g)-finite b

f. M ∈ O is a finitely generated U(n−)-module.
aAscending chain condition on submodules, i.e. no infinite filtrations by submodules.
bRecall: this is the center of U(g)), i.e. dim span Z(g)v < ∞ for all v ∈ M .

Proof (of a and b).
See BA II, page 103.

�

Proof (of c).
Implied by (b), BA II Page 330.

�

Proof (of d).
Can check that L⊗M satisfies 2 and 3 above. Need to check first condition. Take a basis {vi}
for L and {wj} a finite set of generators for M . The claim is that B = {vi ⊗ wj} generates
L⊗M . Let N be the submodule generated by B.
For any v ∈ V , v ⊗ wj ∈ N . For arbitrary x ∈ g, compute

x · (v ⊗ wj) = (x · v)⊗ wj + x⊗ (v · wj).

Since the LHS is in N and the first term on the RHS is in N , the entire RHS is in N . By
iterating, we find that v ⊗ (u · wj) ∈ N for all PBW monomials u. So L⊗M ∈ O.

�

Proof (of e).
Since v ∈M is a sum of weight vectors, wlog we can assume v ∈Mλ is a weight vector (where
λ ∈ h∨). For any central element z ∈ Z(g), we can compute

h · (z · v) = z · (h · v) = z · λ(h)v = λ(h)z · v.

Thus z · v ∈Mλ. By (4), we know that dimMλ <∞, so dim span Z(g)v <∞ as well.
�

Proof (of f).
By 5, M is generated by a finite dimensional U(b) submodule N . Since we have a triangular
decomposition U(g) = U(n−)U(b), there is a basis of weight vectors for N that generates M
as a U(n−) module.

�
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11.1 Highest Weight Modules

11.1 Highest Weight Modules

Definition 11.1.1 (Maximal Vector).
A maximal vector v+ ∈M ∈ O is a nonzero vector such that n · v+ = 0.

Remark 11.1.1.
By properties 2 and 3, every nonzero M ∈ O has a maximal vector.

Definition 11.1.2 (Highest Weight Modules).
A highest weight module M of highest weight λ is a module generated by a maximal vector
of weight λ, i.e.

M = U(g)v+ = U(n−)U(h)U(n)v+ = U(n−)v+

Theorem 11.1.1(Properties of Highest Weight Modules).
Let M = U(n−)v+ be a highest weight module, where v+ ∈Mλ. Fix Φ+ = {β1, · · · , βn} with
root vectors yi ∈ gβi .

a. M is the C-span of PBW monomials
〈
yt11 · · · y

tm
m

〉
of weight λ −

∑
tiβi. Thus M is a

module.
b. All weights µ of M satisfy µ ≤ λ
c. dimMµ <∞ for all µ ∈ T (M), and dimMλ = 1. In particular, property (3) holds and
M ∈ O.

d. Every nonzero quotient of M is a highest-weight module of highest weight λ.
e. Every submodule of M is a weight module, and any submodule generated by a maximal

vector with µ < λ is proper. If M is semisimple, then the set of maximal weight vectors
equals C×v+.

f. M has a unique maximal submodule N and a unique simple quotient L, thus M is
indecomposable.

g. All simple highest weight modules of highest weight λ are isomorphic.

Remark 11.1.2.
For such M , dim End(M) = 1. (Category O version of Schur’s Lemma, generalizes to infinite
dimensional case)

Proof (a through e).
Either obvious or follows from previous results. First few imply M is in O, and we know the
latter hold for such modules.

�

Proof (of f).
N is a sum of submodules, so N =

∑
Mi, proper submodules of M . So take L = M/N . To

see indecomposability, there exists a better proof in section 1.3.
�
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Proof (of g).
Let M1 = U(n−)v+

1 and M2 be define similarly, where the vi ∈ (Mi)λ have the same weight.
ThenM0 := M1⊕M2 implies that v+ := (v+

1 , v
+
2 ) is a maximal vector forM0. So N := U(n−)v+

is a highest weight module of highest weight λ.
We have the following diagram:

and since e.g. N →M1 is not the zero map, it is a surjection.
By (f), N is a unique simple quotient, so this forces M1 ∼= M2. Since M is simple, any nonzero
g-endomorphism ϕ must be an isomorphism, and so we take v+ 7→ cv+ for some c 6= 0. Note
that since ϕ is also a h-morphism, we have dimMλ = 1.
Since v+ generates M and

ϕ(u · v+) = uϕ(v+) = cu · v+,

ϕ is multiplication by a constant.
�

12 Wednesday January 22nd
Exercise 12.0.1 (?).
Try problems 1.1 and 1.3* in Humphreys.

Recall: In category O, we have finite dimensional, semisimple modules over C with triangular
decompositions.

If M is any U(g) module than a v+ ∈ Mλ a weight vector (so λ ∈ h∨) is primitive iff n · v+ = 0.
Note: it doesn’t have to be of maximal weight. M is a highest weight module of highest weight
λ iff it’s generated over U(g) as an associative algebra by a maximal vector v+ of weight λ. Then
M = U(g) · v+.

See structure of highest weight modules, and irreducibility.

Corollary 12.0.1(?).
If 0 6= M ∈ O, then M has a finite filtration with quotients highest weight modules, i.e. M0 ⊂
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12.1 Verma and Simple Modules

M1 ⊂ · · · ⊂Mn = M with Mi/Mi−1 highest weight modules.

Note that the quotients are not necessarily simple, so this isn’t a composition series, although we’ll
show such a series exists later.

Theorem 12.0.1(Module Span of Weight Vectors is Finite Dimensional).
Let V be the n submodule of M generated by a finite set of weight vectors which generate M
as a U(g) module, i.e. take the finite set of weight vectors and act on them by U(n). Then
dimC V <∞ since M is locally n-finite.

Note that n increases weights.

Proof (?).
Induction on n = dimV . If n = 1, M itself is a highest weight module. For n > 1, choose a
weight vector v1 ∈ V of weight λ which is maximal among all weights of V . Set M1 := U(g)v1;
this is a highest weight submodule of M of highest weight λ. (n has to kill v_1, otherwise it
increases weight and v1 wouldn’t be maximal.)
Let M = M/M1 ∈ O, this is generated by the image of V of V and thus dimV < dimV . By
the IH, M has the desired filtration, say

0 ⊂M2 ⊂Mn−1 ⊂Mn = M.

Let π : M →M/M1, then just take the preimages π−1(M i) to be the filtration on M .
�

Remark 12.0.1.
By isomorphism theorems, the quotients in the series for M are isomorphic to the quotients for M .

12.1 Verma and Simple Modules
Constructing universal highest weight modules using “algebraic induction”. Start with a nice
subalgebra of g then “induce” via ⊗ to a module for g.

Recall g = n− ⊕ h⊕ n, here h⊕ n is the Borel subalgebra b, and n corresponds to a fixed choice of
positive roots in Φ+ with basis ∆. Then U(g) = U(n−)⊗C U(b). Given any λ ∈ h∨, let Cλ be the
1-dimensional h-module (i.e. 1-dimensional C-vector space)on which h acts by λ.

Let {1} be the basis for C, so h · 1 = λ(h)1 for all h ∈ h. Then there is a map b → b/n ∼= h, so
make Cλ a b-module via this map. This “inflate” Cλ into a 1-dimensional b-module.

Note that h is solvable, and by Lie’s Theorem, every finite dimensional irreducible b-module is of
the form Cλ for some λ ∈ h∨.

Definition 12.1.1 (Verma Modules).

M(λ) := U(g)⊗U(b) Cλ := Indg
bCλ

is the Verma module of highest weight λ.
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12.1 Verma and Simple Modules

This process is called algebraic/tensor induction. This is a U(g) module via left multiplication,
i.e. acting on the first tensor factor.

Remark 12.1.1.
Since U(g) ∼= U(n−)⊗C U(h), we have M(λ) ∼= U(n−)⊗C Cλ, but at what level of structure?

• As a vector space (clear)
• As a n−-module via left multiplication
• As a h−-module via the ⊗ action.

In particular,M(λ) is a free U(n−)-module of rank 1. Note that this always happens when tensoring
with a vector space.

Consider v+ := 1⊗ 1 ∈M(λ). Note that U(n−) is not homogeneous, so not graded, but does have a
filtration. Then v+ is nonzero, and freely generates M(λ) as a U(n−)-module. Moreover n · v+ = 0
since for x ∈ gβ for β ∈ Φ+, we have

x(1⊗ 1) = x⊗ 1
= 1⊗ x · 1 since x ∈ b

= 1⊗ 0 =⇒ x ∈ n

= 0,

and for h ∈ h,

h(1⊗ 1) = h1⊗ 1
= 1⊗ h1
= 1⊗ λ(h)1
= λ(h)v+.

So M(λ) is a highest weight module of highest weight λ, and thus M(λ) ∈ O.

Remark 12.1.2.
Any weight λ ∈ h∨ is the highest weight of some M ∈ O. Let Π(M) denote the set of weights of a
module, then Π(M(λ)) = λ− Z+Φ+.

By PBW, we can obtain a basis for M(λ) as
{
yt11 · · · y

tm
m v+

∣∣∣ ti ∈ Z+
}
. Taking a fixed ordering

{β1, · · · , βm} = Φ+, then 0 6= yi ∈ g−βi . Then every weight of this form is a weight of some M(λ),
and every weight of M(λ) is of this form: λ−

∑
tiβi.

Remark 12.1.3.
The functor Indg

h( · ) = U(g)⊗b · from the category of finite-dimensional g-semisimple b-modules to
O is an exact functor, since it is naturally isomorphic to U(n−)⊗C · (which is clearly exact since
we are tensoring a vector space over its ground field).
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Proposition 12.1.1(Alternate construction of M(λ)).
Let I by a left ideal of U(g) which annihilates v+, so

I =
〈
n, h− λ(h) · 1

∣∣∣ h ∈ h
〉
.

Since v+ generates M(λ) as a U(g)-module, then (by a standard ring theory result) M(λ) =
U(g)/I, since I is the annihilator of M(λ).

Theorem 12.1.1(Universal Property of Verma Modules).
Let M be any highest weight module of highest weight λ generated by v. Then I · v = 0, so I
is the annihilator of v and thus M is a quotient of M(λ). Thus M(λ) is universal in the sense
that every other highest weight module arises as a quotient of M(λ).

Remark 12.1.4.
By theorem 1.2, M(λ) has a unique maximal submodule N(λ) (nonstandard notation) and a unique
simple quotient L(λ) (standard notation).

Theorem 12.1.2(Characterization of Simple Modules and Schur’s Lemma).
Every simple module in O is isomorphic to L(λ) for some λ ∈ h∨ and is determined uniquely
up to isomorphism by its highest weight. Moreover, there is an analog of Schur’s lemma:

dim homO(L(µ), L(λ)) = δµλ

, i.e. it’s 1 iff λ = µ and 0 otherwise.

Remark 12.1.5.
Up to isomorphism, we’ve found all of the simple modules in O, and most are finite-dimensional.

13 Friday January 24th
A standard theorem about classifying simple modules in category O:

Theorem (Classification of Simple Modules) Every simple module in O is isomorphic to L(λ) for
some λ ∈ h∨, and is determined uniquely up to isomorphism by its highest weight. Moreover,
dim homO(L(µ), L(λ)) = δλµ.

Proof Let L ∈ O be irreducible. As observed in 1.2, L has a maximal vector v+ of some weight λ.

Recall: can increase weights and reach a maximal in a finite number of steps.

Since L is irreducible, L is generated by that weight vector, i.e. LU(g) · v+, so L must be a
highest weight module.

Standard argument: use triangular decomposition.

By the universal property, L is a quotient of M(λ). But this means L ∼= L(λ), the unique
irreducible quotient of M(λ).
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13.1 1.4: Maximal Vectors in Verma Modules

By Theorem 1.2 part g (see last Friday), dim EndO(L(λ)) = 1 and homO(L(µ), L(λ)) = 0
since both entries are irreducible.

Theorem (1.2 f, Highest Weight Modules are Indecomposable) A highest weight module M is
indecomposable, i.e. can’t be written as a direct sum of two nontrivial proper submodules.

Proof (of Theorem 1.2 f) Suppose M = M1⊕M2 where M is a highest weight module of highest
weight λ. Category O is closed under submodules, so Mi are weight modules and have weight-
space decompositions. But Mλ is 1-dimensional (triangular decomposition, only C acts), and
thus Mλ ⊂ M1. Since Mλ is a highest weight module, it generates the entire module, so
M ⊂M1. The reverse holds as well, so M = M1 and this forces M2 = 0.

13.1 1.4: Maximal Vectors in Verma Modules
1.5: Examples in the case sl(2), over C as usual.

First, some review from Lie algebras.

Let g be any lie algebra, and take u, v ∈ U(g). Recall that we have the formula

uv = [uv] + vu,

where we use the definition [uv] = uv − vu.

Let x, y1, y2 be in g, what is [x, y1y2]? Use the fact that adx(y1, y2) acts as a derivation, and so
[x, y1y2] = [xy1]y2 +y1[xy2], which is a bracket entirely in the Lie algebra. This extends to an action
on U(g) by the product rule.

Recall that sl(2) is spanned by y = [0, 0; 1, 0], h = [1, 0; 0,−1], x = [0, 1; 0, 0], where each basis vector
spans n−, h, n respectively. Then [xy] = h, [hx] = 2x, [hy] = −2y, so EijEkl = δjkEil (should be
able to compute easily!).

Then h = C, so h∨ ∼= C where λ 7→ λ(h). So we identify λ with a complex number, this is kind of
like a bundle of Verma modules over C.

Consider M(1), then λ = 1 will denote λ(h) = 1. As in any Verma module, M(λ) ∼= U(n−)⊗C Cλ.
We can think of v+ as 1⊗ 1, with the action yv+ = y1⊗ 1. Note that y has weight −2.

Weight Basis
1 v+

-1 yv+

-3 y2v+

-5 y3v+

Consider how xy y2v+. Note that x has weight +2. We have
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13.2 Back to 1.4

x · y2v+ = x · y2 ⊗ 1λ
= ([xy2] + y2x)⊗ 1
= ([xy]y + y[xy])⊗ 1 + y2 ⊗ x · 1 moving x across the tensor because ?
= ([xy]y + y[xy])⊗ 1 + 0 since x is maximal
= (hy + yh)⊗ 1
= hy ⊗ 1 + y ⊗ h · 1
= hy ⊗ 1 + λ(h)1
= hy ⊗ 1 + 1
= ([xy] + yh)⊗ 1 + y ⊗ 1
= −2y ⊗ 1 + y ⊗ 1 + y ⊗ 1
= 0.

So y moves us downward through the table, and x moves upward, except when going from −3→ −1
in which case the result is zero.

Thus there exists a morphism ϕ : M(−3) → M(1), with image U(g)y2v+ = U(n−)y2v+. So the
image of ϕ is everything spanned by the bases in the rows −3,−5, · · ·, which is exactly M(−3). So
M(−3) ↪→M(1) as a submodule.

Motivation for next section: we want to find Verma modules which are themselves submodules
of Verma modules.

It turns out that im(ϕ) ∼= N(1). We should have M(1)/N(1) ∼= L(1). What is the simple module
of weight 1 for sl(2)? The weights of L(n) are n, n − 2, n − 4, · · · ,−n, so the representations
are parameterized by n ∈ Z+. These are the Verma modules for sl(2). What happens is that
y y −n→ −n− 2 gives a maximal vector, so the calculation above roughly goes through the same
way. So we’ll have a similar picture with L(n) at the top.

13.2 Back to 1.4
Question 1: What are the submodules of M(λ)?

Question 2: What are the Verma submodules M(µ) ⊂ M(λ)? Equivalently, when do maximal
vectors of weight µ < λ (the interesting case) lie in M(λ)?

Question 3: As a special case, when do maximal vectors of weight λ− kα for α ∈ ∆ lie in M(λ) for
k ∈ Z+?

Fix a Chevalley basis for g (see section 0.1) h1, · · · , h` ∈ h and xα ∈ gα and yα ∈ g−α for α ∈ Φ+.
Let ∆ = {α1, · · · , α`} and let xi = xαi , yi = yαi be chosen such that [xiyi] = hi.

Lemma For k ≥ 0 and 1 ≤ i, j ≤ `, then

a. [xj , yk+1
i ] = 0 if j 6= i

b. [hj , yk+1
i ] = −(k + 1)αi(hj)yk+1

i .

c. [xi, yk+1
i ] = −(k + 1)yi(k · 1− hi).
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Proof (sketch) Both easy to prove by induction since [xj , yi]→ αj−αi 6∈ Φ is a difference of simple
roots.

For k = 0, all identities are easy. For k > 0, an inductive formula that uses the derivation
property, which we’ll do next class.

14 Monday January 27th
14.1 Section 1.4
Fix ∆ = {α1, · · · , α`}, xi ∈ gαi and yi ∈ g−αi with hi = [xiyi].

Lemma For k ≥ 0 and 1 ≤ i, j ≤ `,

a. [xjyk+1
i ] = 0 if j 6= i

b. [hjyk+1
i ] = −(k + 1)αi(hj)yk+1

i

c. [xiyk+1
i ] = (k + 1)yki (k · 1− hi).

Proof (Sketch for (c)) By induction, where k = 0 is clear.

[x+ iyk+1
i ] = [xiyi]yki + yi[xiyki ]

= hiy
k
i + yi(−kyk−1

i ((k − 1)1− hi)) by I.H.
= (k + 1)yki hi − (k2 − k + 2k)yki
= −(k + 1)yki (k · 1− hi).

Proposition (Existence of Morphisms of Verma Modules) Suppose λ ∈ h∨, α ∈ ∆, and n :=
(λ, α∨) ∈ Z+. Then inM(λ), yn+1

α v+ is a maximal weight vector of weight µ := λ−(n+1)α <
λ.

Note this is free as an U(n−)-module, so v+ 6= 0. Note that n = λ(hα).

By the universal property, there is a nonzero homomorphism M(µ) → M(λ) with image
contained in N(λ), the unique maximal proper submodules of M(λ).

Proof Say α = αi. Fix j 6= i.

xiy
n+1
α ⊗ 1 = [xjyn+1

i ]⊗ 1 + yn+1
i ⊗ xj · 1

= [xjyn+1
i ]⊗ 1 + yn+1

i ⊗ 0 by a
= 0.
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14.1 Section 1.4

xiy
n+1
i ⊗ 1 = [xiyn+1

i ⊗ 1]
= −(n+ 1)yni (n · 1− hi)⊗ 1
= −(n+ 1)(n− λ(hi))1⊗ 1
:= −(n+ 1)(λ(hi)− λ(hi))1⊗ 1
= 0.

Since gαj generate n as a Lie algebra, since [gα, gβ ] = gα+β . This shows that n·yn+1
i v+ = 0, and

the weight of yn+1
i v+ is λ− (n+ 1)αi. So yn+1

i is a maximal vector of weight µ. The universal
property implies there is a nonzero map M(µ) → M(λ) sending highest weight vectors to
highest weight vectors and preserving weights. The image is proper since all weights of Mµ

are less than or equal to µ < λ.

Consider sl(2), then M(1) ⊃ M(−3). Note that reflecting through 0 doesn’t send 1 to -3, but
shifting the origin to −1 and reflecting about that with sα· fixes this problem. Note that L(1) is
the quotient.

For λ ∈ h∨ and α ∈ ∆, we can compute sα ·λ := sα(λ+ρ)−ρ where ρ =
∑̀
j=1

ei. Then (wj , α∨i ) = δij

and (ρ, α∨i ) = 1.

sα · λ = sα(λ+ ρ)− ρ
= (λ+ ρ)− (λ+ ρ, α∨)α− ρ
= λ+ ρ− ((λ < α∨) + 1)α− ρ
= λ− (n+ 1)α
= µ.

So this gives a well-defined, nonzero map M(sα · λ)→M(λ) for sα · λ < λ.
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14.2 Section 1.5

Corollary Let λ, α, n be as in the above proposition. Let v+ now be a maximal vector of weight λ
in L(λ). Then yn+1

α v+ = 0.
Proof If not, then this would be a maximal vector, since it’s the image of the vector yn+1

i v+ ∈M(λ)
under the map M(λ)→ L(λ) of weight µ < λ. Then it would generate a proper submodules
of L(λ), but this is a contradiction since L(λ) is irreducible.

14.2 Section 1.5
Example: sl(2). What do Verma modules M(λ) and their simple quotients L(λ) look like?

Fix a Chevalley basis {y, h, x} and let λ ∈ h∨ ∼= C.

Fact 1 For v+ = 1⊗ 1λ, we have

M(λ) = U(n−)v+ = C
〈
yiv+

∣∣∣ i ∈ Z+
〉

is a basis for M(λ) with weights λ− 2i where α corresponds to 2. So the weights of M(λ) are
λ, λ− 2, λ− 4, · · · each with multiplicity 1.

Letting vi = 1
i!y

iv+ for i ∈ Z+; this is a basis for M(λ). Using the lemma, we have

h · vi = (λ− 2i)vi
y · vi = (i+ 1)vi+1

x · vi = (λ− i+ 1)vi−1.

14 MONDAY JANUARY 27TH 39



Note that these are the same for finite-dimensional sl(2)-modules, see section 0.9.

Fact (2) We know from the proposition that if λ ∈ Z+, i.e. (λ, α∨) ∈ Z+, thenM(λ) has a maximal
vector of weight

λ− (n+ 1)α = λ− (λ+ 1)2 = −λ− 2 = sα · λ.

Exercise Check that this maximal vector generates the maximal proper submodule

N(λ) = M(−λ− 2).

So the quotient L(λ) = M(λ)/N(λ) = M(λ)/M(−λ− 2) has weights λ, λ− 2, · · · ,−λ+ 2,−λ.
So when λ ∈ Z+, L(λ) is the familiar simple sl(2)-module of highest weight λ.

Fact (3) When λ 6∈ Z+,

• N(λ) = {0},
• M(λ) = L(λ),
• M(λ) is irreducible
• L(λ) is infinite dimensional.

Proof Argue by contradiction. If not, M(λ) ⊃M 6= 0 is a proper submodule. So M ∈ O, and thus
M has a maximal weight vector w+, and by the restriction of weights for modules in O, we
know w+ has height λ− 2m for some m ∈ Z+. Then w+ = cvi where 0 6= c ∈ C, and taking
v−1 := 0 and x · vi = (λ− i+ 1)vi−1 for i ≥ 1, so λ = i− 1 =⇒ λ ∈ Z+.

15 Friday January 31st
Theorem (Duals of Simple Quotients of Vermas) A useful formula: L(λ)∨ ∼= L(−w0).

Proof L(λ)∨ is a finite dimensional module, and (x · f)(v) = −f(x · v), so L(λ)∨ ∼= L(ν) for some
ν ∈ Λ+. The weights of L(λ)∨ are the negatives of the weight of L(λ). Thus the lowest weight
of L(λ) is w0λ, since wo reverses the partial order on h∨, i.e w0Φ+ = Φ−

Then

µ ∈ Π(L(µ)) =⇒ w0µ ∈ Π(L(λ)) =⇒ w0µ ≤ λ.

This shows that the lowest weight of L(λ) is w0λ, thus the highest weight L(λ)∨ is −w0λ by
reversing this inequality.

The inner product is W invariant and is its own inverse, so we can move it to the other side.

15.1 1.7: Action of Z(g)
Next big goal: Every module in O has a finite composition series (Jordan-Holder series, the quotients
are simple). Leads to Kazhdan-Lustzig conjectures from 1979/1980, which were solved, but are still
open in characteristic p case.

The technique we’ll use the Harish-Chandra homomorphism, which identifies Z(g) explicitly.
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15.1 1.7: Action of Z(g)

It’s commutative, a subalgebra of a Noetherian algebra, no zero divisors – could be a quotient, but
then it’d have zero divisors, so this seems to force it to be a polynomial algebra on some unknown.

Also note that Z(g) := Z(U(g)).

Recall: Z(g) acts locally finitely on any M ∈ O – this is by theorem 1.1e, i.e. v ∈Mµ and z ∈ Z(g)
implies that zv ∈Mµ. (The calculation just follows by computing the weight and commuting things
through.)

Let λ ∈ h∨ and M = U(g)v+ a highest weight module of highest weight λ. Then for z ∈ Z(g),
z · v+ ∈Mλ which is 1-dimensional. Thus z acts by scalar multiplication here, and z · v+ = χλ(z)v+.
Now if u ∈ U(u−), we have

z · (u · v+) = u · (z · v+) = u(χλ(z)v+) = χλ(z)u · v+.

Thus z acts on all of M by the scalar χλ(z).

Exercise Show that χλ is a nonzero additive and multiplicative function, so χλ : Z(g)→ C is linear
and thus a morphism of algebras. Conclude that kerχλ is a maximal ideal of Z(g).

Note: this is called the infinitesimal character.

Note that χλ doesn’t depend on which highest weight module Mλ was chosen, since they’re all
quotients of M(λ). In fact, every submodule and subquotient of M(λ) has the same infinitesimal
character.

Definition (Central/Infinitesimal Character) χλ is called the central (or infinitesimal) character,
and Ẑ(g) denotes the set of all central characters. More generally, any algebra morphism
χ : Z(g) → C is referred to as a central character. Central characters are in one-to-one
correspondence with maximal ideals of Z(g), where

χ ⇐⇒ kerχ
C[x1, · · · , xn] ⇐⇒ 〈x1 − a1, · · · , xn − an〉

where [a1, · · · , an] ∈ Cn.

Next goal: Describe χλ(z) more explicitly.

Using PBW, we can write z ∈ Z(g) ⊂ U(g) = U(n−)U(h)U(n). Some observations:

1. Any PBW monomial in z ending with a factor in n will kill v+, and hence can not contribute
to χλ(z).

2. Any PBW monomial in z beginning with a factor in n− will send v+ to a lower weight space,
so it also can’t contribute.

So we only need to see what happens in the h part. A relevant decomposition here is

U(g) = U(h)⊕
(
n−U(g) + U(g)n+

)
.

Exercise Why is this sum direct?
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Let pr : U(g)→ U(h) be the projection onto the first factor. Then χλ(z) = λ(prz) for all z ∈ Z(g).
Then if pr(z) = hm1

1 · · ·h
m`
` , we can extend the action on h to all polynomials in elements of h

(which is in fact evaluation on these monomials), and thus χλ(z) = λ(h1)m1 · · ·λ(h`)m` .

Note that for λ ∈ h∨, we’ve extended this to the “evaluation map” λ : U(g) ∼= S(h), the symmetric
algebra on h.

Why is this the correct identification? The RHS is T (h)/ 〈x⊗ y − y ⊗ x− [xy]〉, but notice that the
bracket vanishes since h is abelian, and this is the exact definition of the symmetric algebra.

Thus χλ = λ ◦ pr.

Observation:

λ(pr(z1z2)) = χλ(z1z1)
= χλ(z1)χλ(z2)
= · · ·
= λ(pr(z1)pr(z2)).

Exercise Show ∩λ∈h∨ kerλ = {0}.
Definition (Harish-Chandra Morphism) Let ξ = pr|Z(g) : Z(g)→ U(h).
Definition (Twisted Harish-Chandra Morphism) ξ is an algebra morphism, and is referred to as

the Harish-Chandra homomorphism.

See page 23 for interpretation of ξ without reference to representations.

Questions:

1. Is ξ injective?
2. What is im(ξ) ⊂ U(h)?

When does χλ = χµ? Proved last time: we introduced the · action and proved thatM(sα ·λ) ⊂M(λ)
where α ∈ ∆. It’ll turn out that the statement holds for all λ ∈W .

Wednesday: Section 1.8.

16 Wednesday February 5th
Recall the Harish-Chandra morphism ξ:

Z(g) U(g) = U(h)⊕ (n−U(g) + U(g)n)

U(h)

ξ pr

IfM is a highest weight module of highest weight λ then z ∈ Z(g) acts onM by scalar multiplication.
Note that if we have χλ(z) where z · v = χλ(z)v for all v ∈M , we can identify λ(pr(z)) = λ(ξ(z)).
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16.1 Central Characters and Linkage

16.1 Central Characters and Linkage
The χλ are not all distinct – for example, if M(µ) ⊂M(λ), then χµ = χλ. More generally, if L(µ)
is a subquotient of M(λ) then χµ = χλ. So when do we have equality χµ = χλ?

Given g ⊃ h with Φ ⊃ Φ+ ⊃ ∆, then define

ρ = 1
2
∑
β∈Φ+

β ∈ h∨.

Note that α ∈ ∆ =⇒ sαρ = ρ− α.

Definition (Dot Action) The dot action of W on h∨ is given by

w · λ = w(λ+ ρ)− ρ,

which implies (ρ, α∨) = 1 for all α ∈ ∆. Then ρ =
∑̀
i=1

w.

Exercise Check that this gives a well-defined group action.
Definition (Linkage Class) µ is linked to λ iff µ = w · λ for some w ∈ W . Note that this is an

equivalence relation, with equivalence classes/orbits where the orbit of λ is
{
w · λ

∣∣∣ w ∈W}
is called the linkage class of λ.

Note that this is a finite subset, since W is finite. Orbit-stabilizer applies here, so bigger stabilizers
yield smaller orbits and vice-versa.

Example w · (−ρ) = w(−ρ+ ρ)− ρ = −ρ, so −ρ is in its own linkage class.
Definition (Dot-Regular) λ ∈ h∨ is dot-regular iff |W · λ| = |W |, or equivalently if (λ+ ρ, β∨) 6= 0

for all β ∈ Φ.

To think about: does this hold if Φ is replaced by ∆?

We also say λ is dot-singular if λ is not dot-regular, or equivalently StabW ·λ 6= {1}.

I.e. lying on root hyperplanes.

Exercise If 0 ∈ h∨ is regular, then −ρ is singular.
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16.1 Central Characters and Linkage

Proposition (Weights in Weyl Orbit Yield Equal Characters) If λ ∈ Λ and µ ∈W · λ, then χµ =
χλ.

Proof Start with α ∈ ∆ and consider µ = sα · λ. Since λ ∈ Λ, we have n := (λ, α∨) ∈ Z by
definition. There are three cases:

1. n ∈ Z+, then M(sα · λ) ⊂M(λ). By Proposition 1.4, we have χµ = χλ.

2. For n = −1, µ = sα · λ = λ+ ρ− (λ+ ρ, α∨)α − ρ = λ+ n+ 1 = λ+ 0. So µ = λ and
thus Mµ = Mλ.

3. For n ≤ −2,
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16.2 1.9: Extending the Harish-Chandra Morphism

(µ, α∨) = (sα · λ, α∨)
= (λi(n+ 1)α, α∨)
= n− 2(n+ 1)
= −n− 2
≥ 0,

so χµ = χsα·µ = χsα·(sα·λ) = χλ. Since W is generated by simple reflections and the linkage
property is transitive, the result follows by induction on `(w).

Exercise (1.8) See book, show that certain properties of the dot action hold (namely nonlinearity).

16.2 1.9: Extending the Harish-Chandra Morphism
We want to extend the previous proposition from λ ∈ Λ to λ ∈ h∨. We’ll use a density argument
from affine algebraic geometry, and switch to the Zariski topology on h∨ ⊂ Cn.

Fix a basis ∆ = {a1, · · · , a`} and use the Killing form to identify these with a basis for h =
{h1, · · · , h`}. Similarly, take {w1, · · · , w`} as a basis for h∨, and we’ll use the identification

h∨ ⇐⇒ A`

λ ⇐⇒ (λ(h1), · · · , λ(h`)).

We identify U(h) = S(h) = C[h1, · · · , h`] with P (h∨) which are polynomial functions on h∨. Fix
λ ∈ h∨, extended λ to be a multiplicative function on polynomials. For f ∈ C[h1, · · · , h`], we
defined λ(f). Under the identification, we send this to f̃ where f̃(λ) = λ(f).

Note: we’ll identify f and f̃ notationally going forward and drop the tilde everywhere.

Then W acts on P (h∨) by the dot action: (w · f̃)(λ) = f̃(w−1 · λ).

Exercise Check that this is a well-defined action.

Under this identification, we have

h∨ ⇐⇒ A`

Λ ⇐⇒ Z`.

Note that Λ is discrete in the analytic topology, but is dense in the Zariski topology.

Proposition (Polynomials Vanishing on a Lattice Are Zero) A polynomial f on A` vanishing on
Z` must be identically zero.

Proof For ` = 1: A nonzero polynomial in one variable has only finitely many zeros, but if f
vanishes on Z it has infinitely many zeros.
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For ` > 1: View f ∈ C[h1, · · · , h`−1][h`]. Substituting any fixed integers for the hi for i ≤ `−1
yields a polynomial in one variable which vanishes on Z. By the first case, f ≡ 0, so the
coefficients must all be zero and the coefficient polynomials in C[h1, · · · , h`−1] vanish on Z`−1.
By induction, these coefficient polynomials are identically zero.

Corollary (Lattices Are Zariski-Dense in Affine Space) The only Zariski-closed subset of A` con-
taining Z` is A` itself, so the Zariski closure Z` = A` and Z` is dense in A`.

17 Friday February 7th
So far, we have χλ = χw.·λ if λ ∈ Λ and w ∈W . We have h∨ ⊃ Λ which is topologically equivalent
to A` ⊃ Z`, where Z` is dense in the Zariski topology.

For z ∈ Z(g), we have χλ(z) = χW ·λ(z) and so λ(ξ(z)) = (w · λ)(ξ(z)) where ξ : Z(g) → U(h) =
S(h) ∼= P (h∨) where we send λ(f) to f(λ).

Then ξ(z)(λ) = ξ(z)(w · λ) for all λ ∈ Λ, and so ξ(z) = w−1ξ(z) on Λ. But both sides here
are polynomials and thus continuous, and Λ ⊂ h∨ is dense, so ξ(z) = w−1ξ(z) on all of h∨. I.e.,
χλ = χw·λ for all λ ∈ h∨.

This in fact shows that the image of Z(g) under ξ consists of W -invariant polynomials.

It’s customary to state this in terms of the natural action ofW on polynomials without the row-shift.
We do this by letting τρ : S(h)

∼=−→ S(h) be the algebra automorphism induced by f(λ) 7→ f(λ− ρ).
This is clearly invertible by f(λ) 7→ f(λ+ ρ). We then define

ψ : Z(g) ξ−→ S(h) τρ−→ S(h)

as this composition; this is referred to as the Harish-Chandra (HC) homomorphism.

Exercise Show χλ(z) = (λ+ ρ)(ψ(z)) and χw·λ(w(λ+ ρ))(ψ(z)), where w( · ) is the usual w-action.

Replacing λ by λ+ ρ and w by w−1, we get

wψ(z) = ψ(z)

for all z ∈ Z(g) and all w ∈W where (wψ(z))(λ) = ψ(z)(w−1λ).

We’ve proved that

Theorem (Character Linkage and Image of the HC Morphism)

a. If λ, µ ∈ h∨ that are linked, then χλ = χµ.

b. The image of the twisted HC homomorphism ψ : Z(g) → U(h) = S(h) lies in the
subalgebra S(h)W .

Example Let g = sl2. Recall from finite-dimensional representations there is a canonical element
c ∈ Z(g) called the Casimir element. For O, we need information about the full center Z(g)
(hence introducing infinitesimal characters).

Expressing c in the PBW basis yields c = h2 + 2h + 4yx, where h2 + 2h ∈ U(h) and
4yx ∈ n−U(g) + U(g)n.
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Enveloping algebra convention: xs, hs, ys

Then ξ(c) = pr(c) = h2 + 2h, and under the identification h∨ ⇐⇒ C where λ ⇐⇒ λ(h), we
can identify ρ ⇐⇒ ρ(h) = 1. The row shift is given by ψ(c) = (h− 1)2 + 2(h− 1) = h2 − 1.
This is W -invariant, since sαh = −h. But W = 〈sα, 1〉, so sα generates W .

We also have χλ(c) = (λ+ ρ)(ψ(c)) = (λ+ 1)2 − 1. Then

χλ(c) = χµ(c) ⇐⇒ (λ+ 1)2 − 1 = (µ+ 1)2 ⇐⇒ µ = λ or µ = −λ− 2

But λ = 1 · λ and −λ− 2 = sα · λ, so Z(g) = 〈c〉 := C[c] as an algebra. So these characters
are equal iff µ = w · λ for w ∈W .

18 Section 1.10: Harish-Chandra’s Theorem
Goal: prove the converse of the previous theorem.

Theorem (Harish-Chandra) Let ψ : Z(g)→ S(h) be the twisted HC homomorphism. Then

a. ψ is an isomorphism of Z(g) onto S(h)W .

b. For all λ, µ ∈ h∨, χλ = χµ iff µ = w · λ for some w ∈W .

c. Every central character χ : Z(g)→ C is a χλ.

Proof (of (a)) Relies heavily on the Chevalley Restriction Theorem (which we won’t prove here).

Initially we have a restriction map on polynomial functions θ : P (g) → P (h). We identified
P (g) = S(g∨), the formal polynomials on g∨. However, for g semisimple, we can identify
S(g∨) ∼= S(g) via the Killing form.

By the Chinese Remainder Theorem, θ : S(g)G → S(h)W is an isomorphism, where the
subgroup G ≤ Aut(g) is the adjoint group generated by

{
exp (ad)x

∣∣∣ x is nilpotent
}
.

It turns out that S(g)G is very close to Z(g) – it is the associated graded of a natural filtration
on Z(g). This is enough to show that ψ is a bijection.

Proof (of (b)) We’ll prove the contrapositive of the converse.

SupposeW ·λ∩W ·µ = ∅ and both are in h∨. Since these are finite sets, Lagrange interpolation
yields a polynomial that is 1 on W · λ and 0 on W · µ. Let g = 1

|W |
∑
w∈W

w · f .

Note: definitely the dot action here, may be a typo in the book.

Then g is a W · invariant polynomial with the same properties. By part (a), we can get rid of
the row shift to obtain an isomorphism ξ : Z(g)→ S(h)(W ·), the W · invariant polynomials.
Choose z ∈ Z(g) such that ξ(z) = g, then χλ(z) = λ(ξ(z)) = λ(g) = g(λ) = 1. So χµ(z) = 0
similarly, and χλ = χµ.

Proof (of (c)) This follows from some commutative algebra, we won’t say much here. Look at
maximal ideals in C[x, y, · · · ] which correspond to evaluating on points in C`.
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Remark Chevalley actually proved that S(h)W ∼= C(p1, · · · , p`) where the pi are homogeneous
polynomials of degrees d1 ≤ · · · ≤ d`. These numbers satisfy some remarkable properties:∏

di = |W | and d1 = 2 (these are called the degrees of W )

19 Section 1.11
Theorem (Category O is Artinian) Category O is artinian, i.e. every M ∈ O is Artinian (DCC)

and dim homg(M,N) <∞ for every M,N .

Recall that O is known to be Noetherian from an earlier theorem. This will imply that every M
has a composition/Jordan-Holder series, so we can take composition factors and multiplicities.

Most interesting question: what are the factors/multiplicities of the simple modules and Verma
modules?

20 Wednesday February 12th
20.1 Infinitesimal Blocks
We’ll break up category O into smaller subcategories (blocks).

Recall theorem 1.1 (e): Z(g) acts locally finitely on M ∈ O, and M has a finite filtration with
highest weight sections, so M should involve only a finite number of central characters χλ (where
λ ∈ h∨).

Note: an analog of Jordan decomposition works here because of this finiteness condition. This
discussion will parallel the JCF of a simple operator on a finite dimensional C-vector space.
However, this involves the entire center instead of just scalar matrices, so the analogy is
diagonalizing a family of operators simultaneously.

Let χ ∈ Ẑ(g) and M ∈ O, and

Mχ :=
{
v ∈M

∣∣∣ ∀z ∈ Z(g), ∃n > 0
∣∣∣ (z − χ(z))n · v = 0

}
Idea: write

z = χ(z) · 1 + (z − χ(z) · 1),

where the first is a scalar operator and the second is (locally) nilpotent on Mχ. Thus we can always
arrange for z to act by a sum of “Jordan blocks”:

20 WEDNESDAY FEBRUARY 12TH 48



20.1 Infinitesimal Blocks

Some observations:

• Mχ are U(g)-submodules of M .
• The subspaces Mχ are linearly independent
• Z(g) stabilizes each Mµ since Z(g) and U(h) are a commuting family of operators on Mµ.
• We can write

Mµ =
⊕

χ∈Ẑ(g)

(Mµ ∩Mχ),

and since M is generated by a finite sum of weight spaces, M =
⊕

χ∈Ẑ(g)

Mχ.

• By Harish-Chandra’s theorem, every χ is χλ for some λ ∈ h∨.

Let Oχ be the full subcategory of modules M such that M = Mχ; we refer to this as a block.

Note: full subcategory means keep all of the hom sets.

Proposition (O Factors into Blocks, Indecomposables/Highest Weight Modules Lie in a Single Block)
O =

⊕
λ∈h∨

Oχλ . Each indecomposable module in O lies in a unique Oχ. In particular, any

highest weight module of highest weight λ lies in Oχλ .

Thus we can reduce to studying Oχλ .

Remark: Oχλ has a finite number of simple modules
{
L(w · λ)

∣∣∣ w ∈W}
and a finite number of

Verma modules
{
M(w · λ)

∣∣∣ w ∈W}
.
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20.2 Blocks

20.2 Blocks
Let C be a category with is artinian and noetherian, with L1, L2 simple modules. We say L1 ∼ L2
if there exists a non-split extension

0→ L1 →M → L2 → 0,

i.e. Ext1
O(L2, L1) 6= 0. In particular, M equivalently needs to be indecomposable. We then extend

∼ to be reflexive/symmetric/transitive to obtain an equivalence relation.

L1 ends up being the socle here.

This partitions the simple modules in C into blocks B. More generally, we say M ∈ C belongs to B
iff all of the composition factors of M belong to B. Although not obvious, there are no nontrivial
extensions between modules in different blocks. Thus each simple module (generally, just an object)
M ∈ C decomposes as a direct sum of submodules (subobjects) with each belonging to a single
block.

Question: Is Oχ a block of O? The answer is not always. Because each indecomposable module in
O lives in a simple Oχ By the definition, it’s clear that each block is contained in a single simple
infinitesimal block Oχ.

The block containing L1, L2 will be contained in the same infinitesimal block, and continuing
the composition series puts all composition factors in a single block.

Proposition (Integral Weights Yield Simple Blocks) If λ is an integral weight, so λ ∈ Λ, then
Oχλ is a (simple) block of O.

Proof It suffices to show that all L(w ·λ) for w ∈W lie in a single block. We’ll induct on the length
of w. Start with 2 = sα for some α ∈ ∆. Let µ = sα · λ. If µ = λ, i.e. λ is in the stabilizer,
then we’re done.

Otherwise, assume WLOG µ < λ in the partial order, using the fact that λ ∈ Λ. (The
difference between these is just an integer multiple of α.)

By proposition 1.4, we have the following maps:

M(µ) N(λ) M(λ)

N(µ) N = ϕ(N(µ))

ϕ6=0

Then ϕ induces a map L(µ) ϕ−→M(λ)/N , where the codomain here is a highest weight module
with quotient L(λ). Since highest weight modules are indecomposable and thus lie in a single
bloc, L(µ) and L(λ) are in the same block.

Note that if v+ generates M(λ), v+ +N generated the quotient.

Now inducting on `(w), iterating this argument yields all L(w · λ) (as w varies) in the same
block.

Example This isn’t true for non-integral weights. Let g = sl(2,C) with λ ∈ R \ Z and λ > −1.
Then
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µ = sαλ

= −λ− 2
<R −1

with the usual ordering on R, but µ 6> λ in the ordering on h∨: we have λ− µ = 2λ+ 2, but
α ≡ 2 and thus these don’t differ by an element of 2Z.

Thus µ, λ are in different cosets of ZΦ = Λr in h∨. However, M(λ),M(µ) are simple since
λ, µ are not non-negative integers.

By exercise 1.13, there can be no nontrivial extension, so they’re in different homological
blocks but in the same Oχλ since µ = sα · λ. So this infinitesimal block splits into multiple
homological blocks.

Friday: 1.14 and 1.15.

21 Friday February 14th
Recall that we have a decomposition

O =
⊕

χ∈Ẑ(g)

Oχ

into infinitesimal blocks, where O0 := Oχ0 is the principal block. Since 0 ∈ h∨, we can associate
χ0,M0, L(0) = C the trivial module for g.

21.1 1.14 – 1.15: Formal Characters
Some background from finite dimensional representation theory of a finite group G over C. The
hope is to find matrices for each element of G, but this isn’t basis invariant. Instead, we take traces
of these matrices, which is less data and basis-independent This is referred to as the character of
the representation, and in nice situations, the characters determine the irreducible representations.

For a semisimple lie algebra g and a finite dimensional representation M , it’s enough to keep track
of weight multiplicities when g is the lie algebra associated to a compact lie group G. From this
data, the characters can be recovered. So the data of all pairs (dimMλ, λ ∈ h∨) suffices. To track
this information, we introduce a formal character.

Remark: If G is a group and k is a commutative ring, kG is the group ring of G. This has the
following properties:

•
∑

aigi +
∑

bigi =
∑

(ai + bi)gi
•
(∑

aigi
)(∑

bigi
)

=
∑
i,j

aibjgigj

Let ZΛ be the integral group ring of the lattice. Since Λ is an abelian group, and the additive
notation would be more difficult. So we write Λ multiplicatively and introduce e(λ) for λ ∈ h∨,
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21.1 1.14 – 1.15: Formal Characters

where e(λ)e(µ) = e(λ + µ). For M a finite dimensional g-module, the formal character of M is
given by

chM =
∑
λ∈Λ

(M(λ))e(λ) ∈ ZΛ.

This satisfies

• ch(M ⊕N) = ch(M) + ch(N)
• ch(M ⊗N) = ch(M) ch(N)
• For ch(M) =

∑
aµe(µ) and ch(N) =

∑
bνe(ν), we have

ch(M) ch(N) =
∑
λ

 ∑
µ+ν=λ

aµbν

e(λ)

By Weyl’s complete reducibility theorem, any semisimple module decomposes into a sum of sim-
ple modules. Thus it suffices to determine that characters of simple modules L(λ) for λ ∈ Λ+,
corresponding to dominant integral weights. Then we can reconstruct ch(M) from chL(λ) for
M ∈ O.

Specifying the weight spaces dimensions is equivalent to a function chM : h∨ → Z+ where chM (λ) =
dimMλ. The analogy of e(λ) in this setting is the characteristic function eλ where eλ(µ) = δλµ for
µ ∈ h∨. We can thus write the function

chM =
∑
λ∈h∨

(dimMλ)eλ.

When dimM < ∞, chM has finite support, although we generally don’t have this in O. In this
setting, multiplication of formal characters corresponds to convolution of functions, i.e.

(f ∗ g)(λ) =
∑

µ+ν=λ
f(µ)g(ν).

Define

X =
{
f : h∨ → Z

∣∣∣ supp(f) ⊂ ∪i≤n
(
λi − Z+Φ+

)
for some λ1, · · · , λn ∈ h∨

}
Idea: this is a “cone” below some weights.

This makes X into a Z-module with a well-defined convolution, thus X is a commutative ring where

• eλ ∈ X for all λ
• e0 = 1
• eλ ∗ eµ = eλ+µ.

If M ∈ O, then chM ∈ X by axiom O5 (local finiteness).

Example: chL(λ) = e(λ) +
∑
µ<λ

mλµe(µ), where mλµ = dimL(λ)µ ∈ Z±.
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21.2 1.16: Formal Characters of Verma Modules

Definition (Principal Block) Let X0 be the additive subgroup of X generated by all chM for
M ∈ O.

Proposition (Additivity of Characters, Correspondence with K(O) )

a. If 0→M ′ →M →M ′′ → 0 is a SES in O, then chM = chM ′ + chM ′′.

b. There is a 1-to-1 correspondence

X0 ⇐⇒ K(O)
chM ⇐⇒ [M ],

where K is the Grothendieck group.

c. If M ∈ O and dimL <∞, then ch(L⊗M) = chL ∗ chM .

Remark: (a) implies that chM is the sum of the formal characters of its composition factors with
multiplicities. Thus

chM =
∑

L simple
[M : L] chL.

Proof (of a) Use the fact that dimMλ = dimM ′λ + dimM ′′λ
Proof (of b) Check that the obvious maps are well-defined and mutually inverse.
Proof (of c) Because of the module structure we’ve put on the tensor product (L ⊗ M)λ =∑

µ+ν=λ
Lµ ⊗Mν .

Remark: The natural action of W on Λ or on h∨ extends to ZΛ and X if we define

w · e(λ) := e(wλ) w ∈W, λ ∈ Λ or h∨.

If λ ∈ Λ+, then w(chL(λ)) = chL(λ) since dimL(λ)µ = dimL(λ)wµ. Thus the characters of simple
finite-dimensional modules are W -invariant.

21.2 1.16: Formal Characters of Verma Modules
1: We have a similar formula

chM(λ) = chL(λ) +
∑
µ<λ

aλµ chL(µ)

with aλµ ∈ Z+ and aλµ = [M(λ) : L(µ)].

This all happens in a single block of O, which has finitely many simple and Verma modules.
In fact, the sum will be over

{
µ ∈W · λ

∣∣∣ µ < λ
}
. But computing L(µ) is difficult in general.
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Since the set of weights W · λ is finite, we can totally order it in a way that’s compatible with the
partial order on h∨ (so ≤ in the partial order implies ≤ in the total order). So if we order the
weights µi indexing the Verma modules in columns and indexing the simple modules in the rows,
this is an upper triangular matrix with 1s on the diagonal. This can inverted since it’s unipotent,
with the inverse of same upper triangular form.

2: We can write

chL(λ) = chM(λ) +
∑

µ<λ, µ∈W ·λ
bλµ chM(µ) bλµ ∈ Z

This expresses the character in terms of Verma modules, which are easier to compute.

Next time: formulas for the characters

22 Monday February 17th
22.1 Character Formulas
Last time: The second character formula (equation (2)),

chL(λ) = chM(λ) +
∑

µ<λ, µ∈W ·λ
bλ,µ chM(µ).

Note that bλ,µ ∈ Z, and this formula comes from inverting the previous one.

Holy grail: characters of simple modules!

We can write M(λ) ∼= U(n−)⊗C Cλ as a h-module. Define p : h∨ → Z where p(γ) is the number of
tuples (tβ)β∈Φ+ where tβ ∈ Z+ and γ = −

∑
β∈Φ+

tββ. We have supp(p) = −Z+Φ+, which gives us

something like a negative quadrant of the lattice.

The function p is essentially the Kostant partition function. The advantage here is that p ∈ X
(defined last time, support is less than some finite weights?).

Observation: p = chM(0) since U(n−)⊗ Cλ=0 has PBW basis ∏
β∈Φ+

y
tβ
β ⊗ 1λ=0

∣∣∣ tβ ∈ Z+

 .
Example: Let g = sl(3), then Φ+ = {α1, α2, α1 + α2}. Then γ = −(α1 + 2α2) corresponds to
(1, 2, 0), (0, 1, 1) so p(γ) = 2. If γ = −(2α1 + 2α2), this corresponds to (2, 2, 0), (1, 1, 1), (0, 0, 2) so
p(γ) = 3.

Note: just the number of ways of obtaining −γ as a linear combinations of roots.

In general, dimM(0)γ = p(γ).
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22.1 Character Formulas

Proposition (Characters as Convolution Products) For any λ ∈ h∨, we have chMλ
= p∗eγ , taking

the convolution product.

In particular, chM(0) = p.

Proof (of Proposition) We have the following computation:

(p ∗ eλ)(λ+ γ) = p(γ)eλ(λ)
= p(γ)1
= p(γ)
= dimM(λ)λ+γ as a weight space .

Note that we can also write equation (2) as

chL(λ) =
∑
w·λ≤λ

bλ,w chM(w · λ).

Here bλ,w ∈ Z and in fact bλ,1 = 1.

Example: Let g = sl(2). We know

chM(λ) = chL(λ) + chL(sα · λ)
chM(sα · λ) = chL(sα · λ).

We can think of this pictorially as the ‘head’ on top of the socle:

M(λ) = L(λ)
L(sα · λ) .

The formula above corresponds to the matrix[
1 1
0 1

]

We can invert the formula to get equation (2), which corresponds to inverting this matrix:

chL(λ) = chM(λ)− chM(sα · λ)
chL(sα · λ) = chM(sα · λ).

Note that the coefficients bw,λ ∈ {0,±1} in this equation are independent of λ ∈ Λ+.

If λ 6∈ Λ+, then chL(λ) = chM(λ) and bλ,1 = 1, bλ,sα = 0 are again independent of λ ∈ h∨ \ Λ+.

Question: To what extent to bλ,w depend on λ? The answer is seemingly “not much”.
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22.2 Category O Methods

22.2 Category O Methods
Note: skipping chapter 2 since we’re focusing on infinite dimensional representations.

22.2.1 Hom and Ext

Recall that hom( · , · ) is left exact but not exact, and is either covariant or contravariant depending
on which variable is fixed. So taking hom of a SES yields a LES involving the derived functors
Extn. Convention: Ext0 := hom and Ext1 := Ext.

Let A,C be U(g)-modules. Consider two short exact sequences

0→ A→ B → C → 0
0→ A→ B′ → C → 0.

where B,B′ are extensions of C by A.

We say two such sequences are equivalent iff there is an isomorphism making this diagram commute:

B

A C

B′

∼=

The set ExtU(g)(C,A) of equivalence classes of extensions is a group under an operation called “Baer
sum” (see Wikipedia) in which the identity is the class of the split SES

0→ A→ A⊕ C → C → 0.

It turns out that the first right-derived functor of hom defined using projective resolutions, namely
Ext1, is isomorphic to Ext. In particular, each SES leads to a pair of LESs given by applying
hom( · , D) and hom(E, · ) for D,E ∈ U(g)-mod.

Warning: Even if A,C ∈ O, there’s no guarantee B ∈ O for B an extension. In this case, we
define ExtO(C,A) to be only those extensions lying in O.

Proposition (Homs and Exts for Vermas and Quotients) Let λ, µ ∈ h∨.

a. IfM is a highest weight module of highest weight µ and λ 6< µ, then ExtO(M(λ),M) = 0.
Contrapositive: nontrivial extensions force the strict inequality µ < λ. In particular,
ExtO(M(λ), X) = 0 for X = L(λ),M(λ).

b. If µ ≤ λ, then ExtO(M(λ), L(µ)) = 0.

c. If µ < λ, then ExtO(L(λ), L(µ)) ∼= homO(N(λ), L(µ)).

(c) is useful, homs can be easier to compute. Can just look at radical structure of N , i.e. just
the head.

d. ExtO(L(λ), L(λ)) = 0.
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Proof (of (a)) Given an extension 0→M
f−→ E

g−→M(λ)→ 0 where M is a highest weight module
of highest weight µ 6< λ. We want to show it splits.

Claim: Let v+ be a maximal vector ofM(λ), let v be its preimage under g, then v is a maximal
vector of weight λ in E. For x ∈ n, we can think of the RHS as a quotient and identify

x · v +M = x · (v +M)
= x · v+

= 0
= 0 +M,

and for these to be equal this implies x · v ∈ M . But x · v has weight > λ; since µ 6> λ, M
has no such weights. So we must have x · v = 0 ∈ E, and v is a maximal vector.

It’s also the case that U(n−) acts freely on v, since it acts freely on its image in the quotient
M(λ). So v generates a submodule 〈v〉 ≤ E isomorphic to M(λ). This defines a splitting
(because of the freeness of this action) given by h(v+) = v.

Proof (of (b)) Follows from (a).

Proof (of (c)) Look at the SES 0→ N(λ)→M(λ)→ L(λ)→ 0. Apply homO( · , L(µ)) to get the
LES

· · · → homO(M(λ), L(µ))→ homO(N(λ), L(µ))
→ ExtO(L(λ), L(µ))→ ExtO(M(λ), L(µ))→ · · ·

and since L(λ) is the only simple quotient of M(λ), so the first hom is zero. Similarly, the
last ExtO is zero by (b), and the middle is an isomorphism.

Proof (of (d)) Replace µ by λ in the LES, now term 2 above is zero since Π(L(λ)) < λ. Term 4 is
zero by (b), and thus term 3 is zero.

Next section: duality in category O.

23 Monday February 24th
23.1 Antidominant Weights
Recall that for λ ∈ h∨, we can associate Φ[λ] and W[λ] and consider W[λ] ·λ. When λ ∈ Λ is integral
and µ ∈Wλ ∩ Λ+, we have M(µ)→ L(µ) its simple quotient, which is finite-dimensional.

Definition (Antidominant) λ ∈ h∨ is antidominant if (λ+ ρ, α∨) 6∈ Z>0 for all α ∈ Φ+. Dually, λ
is dominant if (λ+ ρ, α∨) 6∈ Z<0 for all α ∈ Φ+.

Note that most weights are both dominant and antidominant. Example: take λ = −ρ. We won’t
use the dominant condition often.
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23.1 Antidominant Weights

Remark For λ ∈ h∨, W ·λ and W[λ] ·λ contain at least one antidominant weight. Let µ be minimal
in either set with respect to the usual ordering on h∨. If (µ + ρ, α∨) ∈ Z>0 for some α > 0,
then sα · µ < µ, which is a contradiction. So any minimal weight will be antidominant.

Proposition (Equivalent Definitions of Antidominant) Fix λ ∈ h∨, as well as W[λ],Φ[λ], Then
define Φ+

[λ] := Φ[λ] ∩ Φ+ ⊃ ∆[λ]. TFAE:

a. λ is antidominant.
b. (λ+ ρ, α∨) ≤ 0 for all α ∈ ∆[λ].
c. λ ≤ sα · λ for all α ∈ ∆[λ].
d. λ ≤ w · λ for all w ∈W[λ].

In particular, there is a unique antidominant weight in W[λ] · λ.

Proof (a implies b) (λ+ ρ, α∨) ∈ Z for all α ∈ ∆[λ] or Φ+[λ].

Proof (b implies a) Suppose (b) and (λ+ ρ, α∨) ∈ Z for all α ∈ Φ+. Then α ∈ Φ+ ∩Φ[λ], which is
equal to Φ+

[λ] by the homework problem. So α ∈ Z+∆[λ], and thus (claim) (λ+ ρ, α∨) ≤ 0 by
(b). Why? Replace α∨ with a bunch of other α∨i for which (λ+ ρ, α∨i ) < 0 and sum.

Proof (b iff c) sα · λ = λ− (λ+ ρ, α∨)α.

Proof (d implies c) Trivial due to definitions.

Proof (c implies d) Use induction on `(w) in W[λ]. Assume (c), and hence (b), and consider
`(w) = 0 =⇒ w = 1. For the inductive step, if `(w) > 0, write w = w′sα in W[λ] with
α ∈ ∆[λ]. Then `(w′) = `(w)− 1, and by Proposition 0.3.4, w(α) < 0.

We can then write

λ− w · λ = (λ− w′ · λ) + (w′ · λ− w · λ).

The first term is ≤ 0 by hypothesis, so noting that the w action is not linear but still an
action, we have

w′ · λ− w · λ = w · sα · λ− w · λ
= w(sαλ− λ) by 1.8b
= w(−(λ+ ρ, α∨)α)
= −(λ+ ρ, α∨)(wα)
= −1(∈ Z−)(< 0),

which is a product of three negatives and thus negative.

A remark from page 56: Even when λ 6∈ Λ, we can decompose Oχ into subcategories Oλ. We then
recover Oχ as the sum over Oλ for antidominant λ’s in the intersection of the linkage class with
cosets of Λr. These are the homological blocks.
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23.2 Tensoring Verma and Finite Dimensional Modules

23.2 Tensoring Verma and Finite Dimensional Modules
First step toward understanding translation functors, which help with calculations.

By Corollary 1.2, we know that every N ∈ O has a filtration with every section being a highest
weight module. We will improve this result to show that ifM is finite-dimensional and V is a Verma
module, then V ⊗M has a filtration whose sections are all Verma modules. This is important for
studying projectives in a couple of sections.

Theorem (Sections of Finite-Dimensional Tensor Verma are Verma) Let M be a finite dimen-
sional U(g)-module. Then T := M(λ)⊗M has a finite filtration with sections M(λ+ µ) for
µ ∈ Π(M), occuring with the same multiplicities.

Proof Use the tensor identity

(
U(g)⊗U(b) L

)
⊗C M ∼= U(g)⊗U(b) (L⊗C M),

where

• L ∈ U(b)-mod.
• M ∈ U(g)-mod.
• L⊗M ∈ U(b)-mod via the tensor action.

The LHS is a U(g)-module via the tensor action, and the RHS has an induced U(g)-action.

See proof in Knapp’s “Lie Groups, Lie Algebras, and Cohomology”. This is true more
generally if g is any lie algebra and b ≤ g any lie-subalgebra.

Recall from page 18 that the functor Indg
h is exact on finite-dimensional b-modules. Assume

L,M are finite-dimensional, and set N := L⊗C M . Take a basis v1, · · · , vn of weight vectors
for N of weights ν1, · · · , νn. Order these such that νi ≤ νj ⇐⇒ i < j.

Set Nk to be the U(b) 〈vk, · · · , vn〉 for 1 ≤ k ≤ n, which is a decreasing filtration since acting
by U(b) moves along this list of vectors/weights to the right. By induction on n, this filtration
induces a filtration on U(g)⊗U(b) N whose sections are Verma modules.

This yields

Indg
bNk/ Indg

bNk+1 ∼= M(νk).

The intermediate quotients will be 1-dimensional submodules, which will induce up to highest
weight modules. We’ll finish the proof next time.

24 Wednesday February 26th
We want to show the following identity:

(
U(g)⊗U(b) L

)
⊗C M ∼= U(g)⊗U(b) (L⊗C M).
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24.1 Standard Filtrations

Assume L and M are finite dimensional. Then for N = L⊗M , there is a basis of weight vectors
v1, · · · , vn, ν1, · · · , νm with νi ≤ νj ⇐⇒ i ≤ j. Moreover

Nk = C 〈vk, · · · , vn〉 = U(b) 〈vk, · · · , vn〉 ,

and we have a natural filtration

0 ⊂ Nn ⊂ · · · ⊂ N1 = N

with Ni/Ni+1 ∼= Cvi as b-modules.

We thus obtain

Indg
bNi/ Indg

bNi+1 ∼= Indg
bCvi = M(vi)

by exactness of the Ind functor. Apply this to L = Cλ, then the LHS is M(λ)⊗C M , where M is
finite dimensional. On the RHS, N = Cλ ⊗M has the same dimension as M with weights λ + µ
for µ ∈ Π(M). Thus M(λ)⊗M has filtration with quotients M(λ+ µ) over µ ∈ Π(M), which was
the theorem we had last time.

Remark The proof shows that M(λ)⊗M has a submodules M(λ+ µ) for any maximal weight µ
of M , and a quotient M(λ + ν) where ν is any minimal weight of M . We knew that every
M ∈ O has a finite filtration, but here the quotients are now Verma modules. This will help
us study projectives later, which we need to study higher Exts.

24.1 Standard Filtrations
There are several main players in the theory of highest-weight categories, of which Oχλ is one:

• Simple modules: L(λ)
• Standard modules M(λ)
• Costandard modules M(λ)∨
• Indecomposable projectives P (λ)
• Tilting modules T (λ).

Definition (Standard Filtration/Verma flag) A standard filtration of M ∈ O is a filtration with
subquotients isomorphic to Verma modules.

Note that when M has a standard filtration, the submodules are not unique, but the length,
subquotients, and multiplicities are unique. We can thus use K(O) or formal characters as an
invariant, since the multiplicities (M : M(λ)) are well-defined.

If M,N have standard filtration, then so does M ⊕ N by concatenation. In this case, (M ⊕ N :
M(λ)) = (M : M(λ)) + (N : M(λ)).

Proposition (Submodules and Direct Summands Also Have Standard Filtrations) Let M ∈ O
have a standard filtration. Then

a. If λ is maximal in Π(M), then M has a submodule isomorphic to M(λ) and M/M(λ)
has a standard filtration

0 = M0 ⊂ · · · ⊂Mn = M.
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24.1 Standard Filtrations

b. If M = M ′ ⊕M ′′, then M ′ and M ′′ have standard filtrations.
c. M is free as a U(n−)-module.

Proof (of (a)) By assumption on λ, M has a maximal vector of weight λ, and thus the universal
property yields a nonzero morphism ϕ : M(λ)→M .

The claim is that ϕ is injective, from which the proof follows. Proof of claim: choose a minimal
index i such that ϕ(M(λ)) ⊂ Mi in the filtration. Follow this with the subquotient map to
yield

ψ : M(λ)→M i := Mi/Mi−1 ∼= M(µ),

which is nonzero by minimality of i.

Thus λ ≤ µ, and by our assumption, this implies λ = µ. But then ψ sends highest weight
vectors to highest weight vectors and is free, so ψ is an isomorphism. Thus ϕ is injective and
M(λ) ⊂M .

We can now write M(λ) ∩ Mi−1 = kerψ = 0, so we obtain a direct sum decomposition
Mi
∼= Mi−1 ⊕M(λ). We thus obtain a SES

0→Mi−1 →M/M(λ)→M/Mi → 0.

We can easily construct standard filtrations for Mi−1 and M/Mi, so the middle term also has
a standard filtration. Thus M/M(λ) has a standard filtration of length one less than that of
M .

Proof (of(b)) By induction of the filtration length n of M . If n = 0, M is a Verma module and
thus indecomposable and there’s nothing to show.

For n ≥ 1, let π ∈ Π(M) be maximal (which we can always find for M ∈ O)) and WLOG
M ′λ 6= 0.

By the universal property, we have a nonzero composition

M(λ) M ′ M

6=0

Applying (a) to this composite map,

1. It must be injective, so M(λ) ↪→M ′

2. M/M(λ) ∼= M ′/M(λ)⊕M ′′ has a standard filtration of length n− 1.

By induction, M ′/M(λ) and M ′′ have standard filtrations, and thus so does M ′.

Proof (of (c)) By induction on n: if n = 1, then M ∼= M(λ) is U(n−)-free. Otherwise, if n > 1, by
(a) M(λ) ⊂M and M/M(λ) has a standard filtration of length n− 1. By induction, M/M(λ)
is U(n−)-free, and hence so is M .

Theorem (Multiplicities of Vermas) IfM has a standard filtration, then (M : M(λ)) = dim homO(M,M(λ)∨).

Proof By induction on the filtration length n. If n = 1, M is a Verma module, and (M(µ) :
M(λ)) = δµλ = dim homO(M(µ),M(λ)∨) by Theorem 3.3c.
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24.2 Projectives in O

For n > 1, consider

0→Mn−1 →M →M(µ)→ 0.

Apply the left-exact contravariant functor homO( · ,M(λ)∨) to obtain

0 hom(M(µ),M(λ)∨) hom(M,M(λ)∨) hom(Mn−1,M(λ)∨) Ext(M(µ),M(λ)∨) · · ·

δµλ
(M : M(λ)) =
(Mn−1:M(λ)) +
δµλ

(Mn−1:M(λ))
by induction 0 by Thm 3.3d

24.2 Projectives in O
We want to show that O has enough projectives, i.e. every M ∈ O is a quotient of a projective
object. We’ll also want to show O has enough injectives, i.e. every modules embeds into an injective
object.

Definition (Projective Objects) If A is an abelian category, an object P ∈ A is projective iff the
left-exact functor homA(P, · ) is exact, or equivalently

P

M N 0

f
∃f̃

In other words, there is a SES

hom(P,M)→ hom(P,N)→ 0,

which precisely says that every f in the latter has a lift f̃ in the former by surjectivity.

Definition (Injective Objects) An object Q ∈ A is injective iff homA( · , Q) is exact, i.e.

0 N M

Q

g
∃g̃

i.e.,

homA(M,Q)→ homA(N,Q)→ 0

so every g in the latter has a lift to g̃ in the former.

In O, having enough projectives is equivalent to having enough injectives because ( · )∨ is an exact
contravariant endofunctor, which sends projectives to injectives and vice-versa. Thus we’ll focus on
projectives.
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25 Friday February 28th
Recall that λ ∈ h∨ is dominant iff for all α ∈ Φ+, we have (λ + ρ, α∨) 6∈ Z<0. Equivalently, as in
Proposition 3.5c, λ is maximal in its W[λ]· orbit.

25.1 Constructing Projectives
Proposition (Dominant Weights Yield Projective Vermas, Projective Tensor Finite-Dimensional is Projective) a.

If λ ∈ h∨ is dominant, then M(λ) is projective in O.

b. If P ∈ O is projective and dimL <∞< then P ⊗C L is projective.

Proof a. We want to find a ψ making this diagram commute:
v+ ∈M(λ)

M p(v+) ∈ N 0

ϕ
ψ

π

Assume ϕ 6= 0. Since M(λ) ∈ Oχλ , we have ϕ(M(λ)) ⊂ Nχλ . WLOG, we can assume
M,N ∈ Oχλ , and if v+ is maximal, p(v+) is maximal. By surjectivity of π, there exists a
v ∈M such that v 7→ p(v+). Then M ⊃ U(n)v is finite dimensional, so it contains a maximal
vector whose weight is linked to λ since M ∈ Oχλ .

But since λ is dominant, there is no such weight greater than λ, so v itself must be this
maximal vector. Then by the universal property of M(λ), there is a map ψ : M(λ) → M
where v+ 7→ v making the diagram commute.

Note nice property: Vermas are projective iff maximal in orbit.

b. We want to show F = homO(P ⊗ L, · ) is exact. But this is isomorphic to

homO(P,homC(L, · )) ∼= homO(P,L∨ ⊗C · ).

Thus F is the composition of two exact functors: first do L∨⊗C · , which is exact since C is a
field, and homO(P, · ) is exact since P is projective.

Example Let M(−ρ) be the Verma of highest weight ρ. This is irreducible because −ρ is an-
tidominant, and projective since −ρ is dominant. In fact W · (−ρ) = {−ρ} by a calculation.
Thus

L(−ρ) = M(−ρ) = P (−ρ) = M(−ρ)∨,

so all 4 members of the highest weight category here are equal.

By convention, there is notation M(−ρ) = ∆(−ρ) and M(−ρ)∨ = ∇(−ρ).

Note that we always have Ext0(L(−ρ), L(−ρ)) = 0, and every Oχ−ρ ∈M is equal to
⊕

L(−ρ)⊕n.

So this is referred to as a semisimple category.

Theorem (O has Enough Projectives and Injectives) O has enough projectives and injectives.
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25.2 3.9 Indecomposable Projectives

Proof Step 1

For all λ ∈ h∨, there exists a projective mapping onto L(λ). Clearly µ := λ+ nρ is dominant
for n� 0, i.e. for n large enough there are no negative integers resulting from inner products
with coroots. Thus M(µ) is projective, and since nρ ∈ Λ+, we have dimL(nρ) < ∞. This
implies P := M(µ)⊗ L(nρ) is projective by the previous proposition.

Apply w0 reverses the weights, so w0(nρ) = −nρ. Note that this doesn’t happen for all
weights, so this property is somewhat special for ρ. In particular, since nρ was a highest
weight, −nρ is a lowest weight.

By remark 3.6, P has a quotient isomorphic to M(µ−nρ) = M(λ). Thus P �M(λ)→ L(λ),
and L(λ) is a quotient of a projective. This establishes the result for simple modules.

Remark: By theorem 3.6, P has a standard filtration with sections M(µ + ν) for
ν ∈ Π(L(nρ)). In particular M(λ) occurs just once since

dimL(nρ)−nρ = dimL(nρ)w0(nρ) = dimL(nρ)nρ = 1,

with all µ+ ν > λ.

Step 2

Use induction on Jordan-Hilder length to prove that any 0 6= M ∈ O is a quotient of a
projective. For ` = 1, M is simple, and by Step 1 this case holds.

Assume ` > 1, then M has a submodule L(λ) obtained by taking the bottom of a Jordan-
Holder series, so there is a SES

0→ L(λ) α−→M
β−→ N → 0.

By induction, since `(N) = `(M)− 1, there exists a projective module Q ϕ−→ N which extends
to a map ψ : Q→M .

If ψ is surjective, we are done. Otherwise, then the composition length forces ψ(Q) ∼= N , and
by commutativity there is a section γ : N → ψ(Q) splitting this SES. Thus M ∼= L(λ)⊕N ,
and by 1, there are projectives P ⊕Q projecting onto each factor, so M is projective.

0 L(λ) M N 0

P

α β

γ
ϕ

ψ

25.2 3.9 Indecomposable Projectives
Definition (A Projective Cover) A projective cover of M ∈ O is a map π : PM → M where PM

is projective and π is an essential epimorphism, i.e. no proper submodule of PM is mapped
surjectively onto M by πM .

It is an algebraic fact that in an Artinian (abelian) category with enough projectives, every module
has a projective cover that is unique up to isomorphism.
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See Curtis and Reiner, Section 6c.

Definition (The Projective Cover for a Weight) For λ ∈ h∨, denote πλ : P (λ) � L(λ) to be a
fixed projective cover of L(λ).

26 ? March 2nd
P

P (λ) L(λ) 0

ψ
ϕ

πλ?

P

P P (λ) 0
ψ

L(λ)
L(µ) = P (λ).

M(µ)

M(λ)

L(µ)

L(λ)

L(µ)

27 ? March 3rd

28 Monday March 16th
Proposition (Chains of Containments of Vermas for Dominant Integral) Suppose λ+ ρ is dom-

inant integral, then

• M(w · λ) ⊂M(λ) for all w ∈W
• [M(λ) : L(w · λ)] > 0 for all w ∈W

More precisely, if w = s1 · · · s` is reduced with si = sαi with αi ∈ ∆ and λk = sk · · · s1 · λ,
then

M(w · λ) = M(λn) ⊂M(λn−1) ⊂ · · · ⊂M(λ0) = M(λ)
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Moreover (λk + ρ, α∨k+1) ∈ Z+ for 0 ≤ k ≤ n− 1 and so

λn ≤ λn−1 ≤ · · · ≤ λ0.

Proof By induction on n = `(w). The n = 0 case is obvious. For `(w) = k + 1, write w′ = sk · · · s1.
From section 0.3, (w′)−1αk+1 > 0. We can compute

(λk + ρ, α∨k+1) = (w′ · · ·λ+ ρ, α∨k+1)
= (w′(λ+ ρ), α∨k+1)
= (λ+ ρ, (w′)−1α∨k+1)
= (λ+ ρ, ((w′)−1αk+1)∨)
∈ Z+

since λ+ ρ ∈ Λ+ and (w′)−1αk+1 ∈ Φ+.

This means that λk+1 = sk+1λk ≤ λk. By proposition 1.4, reformulated in terms of the dot action,
we have a map M(λk+1) ↪→M(λk), and nonzero morphisms are injective by 4.2a.

Exercise (4.3) If λ+ ρ ∈ Λ+, Soc M(λ) = M(wo · λ), and moreover if λ ∈ Λ+
0 then the inclusions

in the proposition are all proper.

Remark For general µ ∈ Λ, it is not so easy to decide whenM(w ·µ) ⊂M(µ). The basic problem is
that Proposition 1.4 only works for simple roots, whereas we can have sγ ·µ < µ for γ ∈ Φ+\∆
with no obvious way to constrct an embedding M(sγ · µ) ⊂M(µ). See the following example.

Example Let g = sl(3,C).

β

α

α + β

sl(3,C)

We don’t know if there’s a diagonal map indicated by the question mark in the following
diagram:
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28.1 (4.4) Simplicity Criterion: The Integral Case

λ ∈ Λ+

µ = sα · λ sβ · λ

sαsβ · λ = sα+βλ = sγλ

?

Next few sections: any root reflection that moves downward through the ordering induces a con-
tainment of Verma modules.

28.1 (4.4) Simplicity Criterion: The Integral Case
Theorem (Vermas Equal Quotients iff Antidominant Weight) Let λ ∈ h∨ be any weight. Then

M(λ) = L(λ) ⇐⇒ λ is antidominant.

The proof for λ integral is fairly easy, because antidominance reduces to a condition involving simple
roots, where we can use our Verma module embedding criterion from Proposition 1.4.

Proof (Integral Case) Assume λ ∈ Λ.

=⇒ : Assume M(λ) is simple but λ is not antidominant. Then since λ ∈ Λ, (λ+ ρ, α∨) is a
positive integer for some α ∈ ∆. But then sαλ < λ so M(sα · λ) ⊂M(λ) by 1.4 and 4.2. But
then N(λ) 6= 0, which contradicts irreducibility.

⇐= : Assume λ is antidominant. By proposition 3.5, λ < w · λ for all w ∈ W . Since all
composition factors of M(λ) and L(w · λ) where w · λ ≤ λ. This can only happen if w · λ = λ,
and so the only possible composition factor is L(λ). Since [M(λ) : L(λ)] is always equal to
one, M(λ) is simple.

Remark The reverse implication still works in general if W is replaced by W[λ]. To extend the
forward implication, we need to understand embeddings M(sβ · · ·λ) ↪→M(λ) when β is not
simple.

28.2 Existence of Embeddings (Preliminaries)
Lemma (Commuting Nilpotents) Let a be a nilpotent Lie algebra (e.g. n−) and x ∈ a, u ∈ U(a),

then for every n ∈ Z+ there exists a t ∈ Z+ such that xtu ∈ U(a)xn.

See Engel’s theorem

Proof Use the fact that adx acts nilpotently on U(a), so there exists a q ≥ 0 such that (adx)q+1u =
0.

Let `x, rx be left and right multiplication by x on U(a). Then adx = `x − rx, and `x, rx adx
all commute.

Choosing t ≥ q + n, we have
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xtu = `txu

= (rx + adx)tu

=
t∑
i=0

(
t

i

)
rt−ix (adx)iu

=
q∑
i=0

(
t

i

)(
(adx)iu

)
xt−i

∈ U(a)xt−q

⊂ U(a)xn

This will be useful when moving things around by positive roots that are not simple.

29 Monday March 30th
Reminder of what we did already: we started on chapter 4, going into more detail on the structure
of Verma modules and morphisms between them. We showed that the socle is an irreducible Verma
modules, any nonzero morphism is injective, and the dimension of the hom space is at most 1. We
ended showing a proposition about how to commute elements.

Proposition (Key Result: Containments of Vermas When Applying Weyl Elements) Let λ, µ ∈
h∨ and α ∈ ∆ be simple. Assume that n := (λ+ ρ, α∨) ∈ Z and M(sα · µ) ⊂M(µ) ⊂M(λ).
Then either

a. n ≤ 0 and M(λ) ⊂M(sα · λ), or
b. n > 0 and M(sα · µ) ⊂M(sα · λ) ⊂M(λ).

In either case, M(sα · µ) ⊂M(sα · λ).

Proof (of (a)) Use proposition 1.4 (exchanging λ and sα · λ).

29.1 Proof (of (b))
Assume n > 0. Then M(sα · λ) ⊂ M(λ) by proposition 1.4. Set s = (µ + ρ, α∨) ∈ Z+. Denote
maximal vectors as follows:
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29.2 4.6: Existence of Embeddings

Apply the lemma about nilpotent lie algebras to n−, yα, u, and n, then there exists a t > 0 such
that ytαu ∈ U(n−)ynα. Then

ytα · v+
λ = ytαu · v+

λ ∈ U(n−)ynα · v+
λ ⊆M(sα · λ).

Now there are two cases.

Case 1:

If t ≤ s, we can apply ys−tα to equation star to obtain ysα · v+
λ ∈ M(sα · λ). Thus we have the

containment we wanted to prove.

Case 2:

Suppose t > s. We can’t divide in the enveloping algebra, but recall the identity in lemma 1.4(c):

[xαytα] = tyt−1
α (hα − t+ 1).

Thus

[xαytα] · v+
µ = t(s− t)yt−1

α · v+
µ .

Calculating the bracket another way, the LHS is equal to xαytα · v+
µ − ytαxα · v+

µ and the second term
is zero, so this is in M(sα ·λ) by equation star. We can then iterate if t− 1 > s, reducing the power
of yα until we get down to ysα · v+

µ ∈M(sα · λ), in which case we are done by case 1.

�

29.2 4.6: Existence of Embeddings
Theorem (Verma’s Thesis: Existence of Embeddings) Let λ ∈ h∨ and α ∈ Φ+ and assume µ :=

sα · λ ≤ λ. Then M(µ) ⊂M(λ).
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29.2.1 Proof

Assume λ ∈ Λ is integral and µ is linked to λ, all weights involved are integral. Without loss
of generality, µ < λ, since we can apply a Weyl group element to place it in the dominant Weyl
chamber.

1. Since µ is integral, choose w ∈ W such that µ′ := w−1 · µ ∈ Λ+ − ρ. Following the notation
in proposition 4.3, write w = sn · · · s1, µk = sk · · · s1 · µ′. Then µ′ = µ0 ≥ µ1 ≥ · · · ≥ µn = µ,
which yields a chain of inclusions of Verma modules M(µ0) ⊃M(µ1) ⊃ · · ·.

2. Set λ′ = w−1λ and λk = sk · · · s1 · λ′ so λ0 = λ′ and λn = λ. Note that since µ 6= λ, we have
µk 6= λk.

3. How are µk and λk related? Set wk = sn · · · sk+1. It can be checked that µk = w−1
k sαwk ·λk =

sβkλk where βk =
∣∣∣w−1

k

∣∣∣ ∈ Φ+ is the choice of whichever is positive by Humphreys 1, Lemma
9.2. In particular, µk − λk ∈ Zβk.

4. We have µ′ = µ0 ≥ · · · ≥ µk ≥ µk+1 ≥ · · · ≥ µn = µ. Since λ′ < µ′ (because µ′ is the unique
dominant weight inW ·λ but µ < λ, so the inequalities must switch at some k. So say λk < µk
but λk+1 > µk+1, where k is chosen to be the smallest index for which this happens. Note
that all of the weights are linked to λ.

5. We want to show that M(µk+1) ⊂M(λk+1), · · · ,M(µ) = M(µn) ⊂M(λn) = M(λ).

6. First, µk+1 − λk+1 = sk+1 · µk − sk+1 · λk, where the LHS is some negative times βk+1, and
the RHS is equal to sk+1(µk − λk), which is a positive times βk by exercise 1.8. Since sk+1
permutes the positive roots other than αk+1, this forces βk = βk+1 = αk+1. So we have
µk+1 = sαk+1λk+1 which by proposition 1.4 implies that M(µk+1) ⊂M(λk+1).

7. Combining 1 and 6, we have M(µk+2) = M(sk+2 · µk+1) ⊂M(µk+1) ⊂M(λk+1). This is the
setup of proposition 4.5 and wither alternative leads to M(µk+2) ⊂ M(λk+2) = M(sαk+2 ·
λk+1),

8. Since this increases the index, we can iterate step 7 to complete step 5 and get the desired
containment.

30 Wednesday April 1st
Exercise Work through the steps for sl(3), due next Thursday.

Preview of next sections:

• 4.8: Simplicity Criterion, General Case
– Now that we know M(sα · λ) ⊂ M(λ) whenever sαλ ≤ λ for α ∈ Φ+ (and not just
α ∈ ∆) we can easily complete the proof of theorem 4.4 by copying the argument from
the integral case.

• 4.9: Blocks of O, revisited
– Skip, mainly relevant for nonintegral weights (c.f. Proposition 1.13 for the description

of integral blocks)
• 4.10: Example: Antidominant Projectives

– Skip, at least for now
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30.1 4.11: Application to sl(3,C)

30.1 4.11: Application to sl(3,C)
The simplest nontrivial case, what can we say about the Verma modules?

We have ∆ = {α, β} and Φ+ = {α, β, γ := α+ β}. The Weyl group is

W = {1, sα, sβ, sαsβ, sβsα, w0 := sαsβsα = sβsαsβ} .

We first consider an integral regular linkage class W · λ, and we way choose an antidominant λ and
assume

(λ+ ρ, α∨) ∈ Z<0 ∀α ∈ Φ+ e.g. λ = −2ρ

Then Wλ = {1}, given by the stabilizer of the isotropy subgroup, and |W · λ| = 6. So there are 6
Verma modules to understand, and we have the following diamond:

The middle two edges are sγ , and each edge corresponds to an inclusion of Verma modules (with the
inclusions going upward). By Verma’s theorem, the Bruhat order corresponds to these inclusions.

1. M(λ) = L(λ) since λ is antidominant by Theorem 4.4
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30.2 Chapter 5: Highest Weight Modules II

2. By the same theorem, no other M(w · λ) is simple. Then by Proposition 4.18, Theorem 4.2c,
we have Soc M(w · λ) = L(λ) for all w ∈W

3. Consider M(sα · λ) and set µ := sα · λ and the only possible composition factors are L(µ) and
L(λ) and [M(µ) : L(µ)] = 1. If we use Theorem 4.10, this multiplicity is 1 in the socle and
we’re done. If we don’t, could it be larger than 1? Since ExtO(L(λ), L(λ)) = 0, we can not
have the following situation:

The first extension doesn’t exist, since the higher L(λ) would drop down to give the bottom
diagram, which contradicts Soc M(µ) = L(λ).

So the only possibilities are multiplicity 1, and M(sα · λ) = L(sα · λ) which lives over L(λ),
so chL(sα · λ) = chM(sα · λ)− chM(λ).

Similary for M(sβ · λ).

4. For the higher weights in the orbit, we need more theory. We know there are inclusions
x ≤ w =⇒ M(x · λ) ⊂M(w · λ) according to the Bruhat order - so every edge in the weight
poset is a reflection, so use Verma’s theorem.

[M(w · λ) : L(x · λ)] =
{
≥ 1 ?
0? ?

.

We’ll skip 4.12,4.13, 4.14.

30.2 Chapter 5: Highest Weight Modules II
Development by BGG after 1970s, based on partly incorrect proof in Verma’s thesis.

30.2.1 5.1: The BGG Theorem

Which simple modules occur as composition factors of M(λ)?
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Definition (Strongly Linked Weights) For µ, λ ∈ h∨, write µ ↑ λ if µ = λ or there exists an α ∈ Φ+

such that µ = sα · λ < λ, i.e. (λ + ρ, α∨) ∈ Z>0. Extend this relation transitively: if there
exists α1, · · · , αr ∈ Φ+ such that µ = (sα1 · · · sαr) · λ ↑ (sα2 · · · sαr ↑ · · · ↑ sαrλ ↑ λ, we again
write µ ↑ λ and say µ is strongly linked to λ, yielding a partial order on h∨.

Theorem (Strong Linkage implies Verma Embedding) Let µ, λ ∈ h∨.

• (Verma) If µ ↑ λ then M(µ) ↪→M(λ). In particular, [M(λ) : L(µ)] > 0.
• ??? ???

Corollary [M(λ) : L(µ)] 6= 0 ⇐⇒ M(µ) ↪→M(λ).

The situation is not as straightforward as it might appear (and as Verma believed). Namely, if
0 = M0 ⊂ · · · ⊂ Mn = M(λ) is a composition series and if Mi/Mi−1 ∼= L(µ) 3 v+

µ , there need not
be any preimage of v+

µ which is a maximal vector in M(λ), leading to a map M(µ) ↪→M(λ).

However, when this happens, there will always be some other Mj/Mj−1 ∼= L(µ) where a preimage
of a maximal vector is maximal in M(λ), leading to the required embedding.

30.2.2 5.2 Bruhat Ordering

In the case of “ρ-regular” integral weights, the BGG theorem has a nice reformulation in terms of
W and the Bruhat ordering. Fix λ ∈ Λ antidominant and ρ-regular, so (λ + ρ, α∨) ∈ Z<0 for all
α ∈ Φ+.

As in the discussion of sl(3), this means that |W · λ| = |W | and [M(w ·λ) : L(µ)] 6= 0 implying that
µ = x · λ for some x ∈W . What can we say about the relative positions of w and x?

Suppose that w ∈W,α ∈ Φ+ and sα ·(w ·λ) < w ·λ so thatM(sαw ·λ) ↪→M(w ·λ). Our assumption
is equivalent to

Z>0 3 (w · λ+ ρ, α∨) = (w(λ+ ρ), α∨)
= (λ+ ρ, w−1α∨)
= (λ+ ρ, (w−1α)∨)
⇐⇒ w−1α ∈ Φ− ⇐⇒ (w−1sα)α ∈ Φ+

⇐⇒ `(w) > `(w′) where w′ = sαw

⇐⇒ w′
sα−→ w.

31 Friday April 3rd
Recall from last time that we defined a new partial order for all positive roots generated by “reflecting
down”, namely strong linkage. We had a theorem: µ ↑ λ =⇒ M(µ) occurs as a composition factor
of M(λ). We also have a side-arrow notation w′ sα−→ w indicates that w′ = sαw and w′ is shorter
than w. We conclude that x · λ ↑ w · λ ⇐⇒ x ≤ w for x,w ∈ W , where the RHS is the usual
Bruhat order and is notably independent of λ.

Corollary Let λ ∈ Λ be antidominant and ρ-regular and x,w ∈W . Then

[M(w · λ) : L(x · λ)] 6= 0 ⇐⇒ M(x · λ) ↪→M(w · λ) ⇐⇒ x ≤ w
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31.1 Jantzen Filtration

Note that this statement is why we use antidominant instead of dominant, since this equation
now goes in the right direction.

31.1 Jantzen Filtration
Theorem (The Jantzen Filtration and Sum Formula) Given λ ∈ h∨, M(λ) has a terminating

descending filtration satisfying

a. Each nonzero quotient has a certain nondegenerate contravariant form (3.14)

b. M(λ)i = N(λ)

c. ∑
i>0

chM(λ)i =
∑

α>0,sα·λ<λ
chM(sα · λ)

(the Integer sum formula, very important)

Note that the sum on the RHS is over
{
α ∈ Φ+

[λ]

∣∣∣ sα · λ < λ
}

:= Φ+
λ .

Fact Soc M(λ) = L(µ) for the unique antidominant µ in W[λ] · λ. Moreover, [M(λ) : L(µ)] = 1.

Now suppose M(λ)n 6= 0 but M(λ)n+1 = 0. Each M(λ)i ⊃ Soc M(λ) = L(µ), since they’re
submodules, and each M(sα · λ) ⊃ L(µ), using the uniqueness of µ. By looking at coefficients of
chL(µ) on each side of the sum formula, we obtain n =

∣∣∣Φ+
∣∣∣.

Exercise (5.3) When λ is antidominant, integral, and ρ-regular, then n = `(w). More generally,
for nonintegral, n = `λ(w) where `λ is the length function of the system (W[λ],∆[λ]).

Some natural questions:

1. Is the Jantzen filtration unique for properties (a)-(c)?
2. What are the “layer multiplicities” [M(λ) : L(µ)]?
3. Are the layers M(λ) semisimple? If so, is the Jantzen filtration the same as the canonical

filtrations with semisimple quotients (the radical or socle filtrations)?
4. When M(µ) ⊂M(λ), how do the respective Jantzen filtrations compare?

A guess for (4): Assume µ ↑ λ, set r =
∣∣∣Φ+

λ

∣∣∣ − ∣∣∣Φ+
µ

∣∣∣, which is the difference in lengths of the two
Jantzen filtrations.

Is it true that:

with M(µ) ∩M(λ)i = M(µ)i−r for i ≥ r?

31 FRIDAY APRIL 3RD 74



31.1 Jantzen Filtration

This is called the Jantzen conjecture and turns out to be true.

Thought equivalent to KL-conjecture, but turned out to be deeper. See decomposition theorem,
sheaves on flag varieties, no simple algebraic proof until recently. See chapter 8.

Recall that we obtained a hexagon:

We have

Φ+
w·λ =

{
γ ∈ Φ+|sγ · (w · λ) < w · λ

}
= {α, α+ β}

with corresponding weights sγ(w · λ) = sβ · λ, sα · λ. Thus we have a two-step filtration, and we’ve
worked out the characters of the pieces previously.

Thus
n∑
i=1

chM(w · λ)i = chM(sα · λ) + chM(sβ · λ)

= chL(sα · λ) + chL(sβ · λ) + 2 chL(λ)

where we know the last expression explicitly. Since n has the be the number of L(λ)s occurring on
the RHS, we must have n = 2.

We can reason thatM(w ·λ)2 = L(λ), since any composition factor inM(w ·λ)2 recurs inM(w ·λ)1,
and so

chM(w · λ)1 = chN(w · λ)
= chL(sα · λ) + chL(sβ · λ) + chL(λ).

We then obtain the following structure on the sections/subquotients of the Jantzen filtration
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31.2 Showing Jantzen Implies BGG

where the subquotients move upward through the diagram, e.g. the middle is M(w · λ)1/M(w · λ)2.

Exercise (Last Assignment)

1. Try to work on the Jantzen filtration sections forM(w0·λ). List completely any additional
assumptions or facts needed to deduce M(w0 · λ)i uniquely.

2. Continue 4.11 in the case where λ is singular Does this allow you to deduce that structure
of all M(w · λ) using the Jantzen sum formula?

3. Work out the non-integral case for sl(3,C). (There are four different cases to consider
here.)

31.2 Showing Jantzen Implies BGG
We’ll prove that [M(λ) : L(µ)] 6= 0 =⇒ µ ↑ λ.

Proof By induction on the number of linked weights µ ≤ λ

If λ is minimal in its linkage class, then M(λ) = L(λ) so µ = λ and λ ↑ λ trivially.

Otherwise, inductively suppose [M(λ) : L(µ)] > 0 with µ < λ. Then [M(λ)1 : L(µ)] > 0 since
M(λ)1 = N(λ). By the sum formula, [M(sα ·λ) : L(µ)] > 0 for some α ∈ Φ+

λ . Then sα ·λ < λ
so the number of linked weights ν ≤ sα · λ is smaller than for λ.

So by induction,

and µ ↑ λ as required.

Example: sl(4,C) with Dynkin diagram · → · → ·.

If λ = (0,−1, 0) ∈ Λ+ − ρ with coordinates with respect to the fundamental weight basis for Λ or
h∨. Then take w = s2s3, x = s3s2s3s1s2, then µ = w · λ = (1,−2,−1) and µ − x · µ = α1 + α3 so
x · µ < µ.

However, Verma’s direct calculations in U(sl(4,C)) showed that M(x · µ) 6⊂M(µ), so x · µ 6↑ µ.

The explanation (due to Verma) is that x · µ = xw · λ, using the fact that s1, s3 commute,

xw = (s3s2s3s1s2)s2s3

= s3s2s3s3s1

= s3s2s1.

and s2s3, s3s2s1 are not related in the Bruhat order.

This is because there is no root reflection relating the two. Note that this can be seen by
considering subexpressions: a < b iff a occurs as some deleted subexpression of b.

So it’s possible to have one weight less than another with no inclusion of the Verma modules.
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32 Monday April 6th
Note that most of the theory thus far has not relied on the properties of C, so Jantzen’s strategy
was to extend the base field to K = C(T ), rational functions in T , then setting gK := K ⊗C g. The
theory over K adapts to A = C[T ], the PID of polynomials in one variable T with K as its fraction
field and the “Lie algebra” gA = A⊗C g.

Setup: Let A be any PID, for example Z or C[T ], and M a free A-module of finite rank r. Let
e, f ∈ M and suppose M has an A-valued symmetric bilinear form denoted ( · , · ). Since M is
finite rank, we can choose a basis {ei}r, so the matrix F of this form relative to this basis has
nonzero determinant D depending on the choice of basis. A change of basis is realized by some
P ∈ GL(r,A), giving F ′ = P tFP (note that forms change by a transpose instead of an inverse) and
detP ∈ A×. Thus D only changes by a unit u = (detP )2.

We can define the dual module M∗ = homA(M,A) which is also free of rank r, and contains a
submodule M∨ consisting of functions e∨ : M → A given by e∨(f) = (e, f) for any fixed e ∈ M .
Surprisingly, this doesn’t give every hom: e.g. if the form only has even outputs. Since ( · , · ) is
nondegenerate, the map ϕ : M →M∨ sending e to e∨ is an isomorphism.

We’ll now invoke the structure theory of modules over a PID: There exists a basis of M∗ given by
{e+ i∗}r where M∨ has a basis {die∗i }

r for some scalars 0 6= di ∈ A. We can define a dual basis
of M given by {ei}r where e∗i (ej) = δij . We can similarly get a separate dual basis {fi} where
f∨i = die

∗
i .

We can compare these two bases:

(ei, fj) = f∨j (ei) = dje
∗
j (ei) = djδij

(Formula 1)

Thus up to units, D =
r∏
i=1

di, so this hybrid matrix is one way to compute this determinant.

Fix a prime element in A, then there is an associated valuation vp : A → Z+ where vp(a) = n if
pn
∣∣∣ a but pn+1 - a. Since p is prime, M := M/pM makes sense and is a finitely generated module

over the field A = A/pA; thus M is a vector space.

We’ll now define a filtration: for n ∈ Z+, define M(n) =
{
e ∈M

∣∣∣ (e,M) ⊂ pnA
}
. Then

M = M(0) ⊃M(1) ⊃ · · ·

is a decreasing filtration, with corresponding images M(n) that are vector spaces.

Lemma For A a PID, p ∈ A prime, A = A/pA with valuation vp and M a free A-module with a
nondegenerate symmetric bilinear form wrt some basis of M having nonzero determinant D
Then

a. vp(D) =
∑
n>0

dimAM(n).

b. For each n, the modified bilinear form (e, f)n := p−n(e, f) on M(n) induces a nondegen-
erate form on M(n)/M(n+ 1).
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Proof (of (a))

1. For f ∈M , write f =
∑

aijfj in terms of the given basis, and (ei, f) = aidi. For n > 0,
we have

f ∈M(n) ⇐⇒ vp((ei, f)) ≥ n∀i
⇐⇒ vp(aidi) ≥ n
⇐⇒ vp(ai) + vp(di) ≥ n
⇐⇒ vp(ai) ≥ n− ni ni := vp(di)

This ai must be divisibly by p at least n−ni times. This M(n) is spanned by
{
fi
∣∣∣ ni ≥ n}∪{

pn−nifi
∣∣∣ ni < n

}
.

2. SoM(n) has basis
{
f i
∣∣∣ ni ≥ n} and dimM(n) = #

{
i
∣∣∣ ni ≥ n}. In particular,M(n) =

0 for n� 0 since there are only finitely many ni. Thus

∑
n>0

dimM(n) =
∑
n>0

#
{
i
∣∣∣ ni > n

}
=

r∑
i=1

ni

=
r∑
i=1

vp(di)

= vp

(
r∏
i=1

di

)
= vp(D)

Proof ( of (b) )

1. Note that (e, f) ∈ pnA =⇒ (e, f)n ∈ A, so this is well-defined on M(n). To see that
it’s well-defined on M(n) we must show that e ∈ pM(n).

(e, pM(n))n ⊂ pA
=⇒ (e,M(n))n ⊂ p−n(pM,M(n)) ⊂ p−n+1(M,M(n)) ⊂ p−n+1pnA = pA

So there is an induced form (e, f)n on M(n).

To show it’s nondegenerate, need to compute the radical.

• If f ∈M(n+ 1) then

(f,M(n))n = p−n(f,M(n)) ∈ p−n(f,M)ep−npn+1A = pA

so f ∈ rad( · , · )n
• See notes.
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33 Wednesday April 8th
Recall that we are setting up Jantzen’s filtration. Let A be a PID, p ∈ A prime, A = A/pA, M
a free A-module of rank r, with a nondegenerate symmetric bilinear form ( · , · ) having nonzero
determinant wrt some basis of M . Define M(n),M(n) as before

Lemma

1. vp(D) =
∑
n>0

dimAM(n)

2. For each n, the modified bilinear form induces a nondegenerate form on M(n)/pM(n)?

33.1 Proof of Jantzen’s Theorem
Let A = C[T ] and K = C(T ) its fraction field, and let gA = A⊗C g and gK = K ⊗C g, which is a
Lie algebra that is split over K, i.e. every h ∈ hK = K ⊗C h has all eigenvalues of adh in K.

The theory we need carries over to the extended setting. The plan is the following:

• Construct and look at basic properties of Verma modules (1.3-1.4)
• Look at properties of their contravariant forms (3.14 - 3.15)
• Find a simplicity criterion (4.8)

We’ll use Lemma 5.6 to construct filtrations on the weight spaces of the extended Verma module,
then reduce mod T (using evaluation morphisms) to assemble the Jantzen filtration for the original
C-module.

Given λ ∈ h∨, set λT = λ+ Tρ ∈ h∨K . For all α ∈ Φ, we have

(λT + ρ, α∨) = (λ+ ρ, α∨) + T (ρ, α∨) 6∈ Z,

since this is a linear polynomial. So λT is antidominant.

Therefore M(λT ) is simple, and equivalently (unique up to scalars) its nonzero contravariant form
is nondegenerate.

The module U(gA) ∼= A⊗CU(g) is a natural “A-form” of U(gK) ∼= K⊗CU(g). This yieldsM(λT )A,
an A-form of M(λT ), where each weight space is an A-module of finite rank.

Some remarks about contravariant forms on highest weight modules: given M and such a form
( · , · ) : M ×M → C, the transpose serves as an adjoint and we have (uv, v′) = (v, τ(u)v′).

Distinct weight spaces are orthogonal, i.e. (Mµ,Mν) = 0 since

(hv, v′) = µ(h)(v, v′)
= (v, hv′) = ν(h)(v, v′)

where µ(h) 6= ν(h), implying (v, v′) = 0.

We can compute

(uv+ ∈Mµ, u
′v+ ∈Mµ) = (v+, τ(u)u′v′) = a(v+, v+)
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33.1 Proof of Jantzen’s Theorem

for some a ∈ A, since λT = λ + Tp maps hA → A. We can use the decomposition U(g) =
U(h)⊕ (n−U(g) + U(g)n), where n+ kills v+ and n− lowers into an orthogonal weight space, and
so this pairing only depends on (v+, v+).

Note that the radical of this bilinear form is a maximal submodule.

The weights are of the form λT − ν for ν ∈ n+Φ+ = Λ+
r . Apply lemma 5.6 to the A-form Mλ−ν of

M(λT )λT−ν to get a decreasing finite filtration of A-submodules

Mλ−ν(0) = MλT−v(1) ⊃ · · ·

where MλT−ν(i) =
{
e ∈MλT−ν

∣∣∣ (e,MλT−ν) ⊂ T iA
}
.

For each i ≥ 0, set M(λT )iA =
∑
ν∈Λ+

r

MλT−ν(i). This yields a decreasing filtration of A-submodules.

Next we want to “set T = 0”: formally, pass to the quotient M = M/TM over the field A =
A/TA ∼= C. Since λT = λ + Tρ

T=0−−−→ λ, we have M(λT )A ∼= M(λ) and the filtration becomes a
decreasing filtration of M(λ).

By the lemma, the sections of this filtration inherit nondegenerate contravariant forms, proving (a).
By the proof of that lemma, the filtration on each individual weight space terminates at 0.

Claim: Some M(λ)n+1 = 0.

Proof If not, since M(λ) has finite length, we must have 0 6= M(λ)n = M(λ)n+1 = · · · for some
n. Choose some u ∈ h∨ such that M(λ)nµ = 0, but then 0 6= M(λ)nµ = M(λ)nµ = · · ·, a
contradiction.

For a proof of (c), we want to show
∑
i>0

chM(λ)i =
∑
α∈Φ+

chM(sα · λ). We can show that the LHS

is given by
· · · =

∑
i>0

∑
ν∈Λ+

r

dimM(λ)iλ−ν

=
∑
i>0

∑
ν

dim
(
M(ΛT )iA

)
λT−ν

e(λ− v)

=
∑
i

∑
ν

dimMλT−ν(i)e(λ− ν)

=
∑
ν

∑
i

dimMλT−ν(i)e(λ− ν)

=
∑
ν

vT (Dν(λT ))e(λ− v) Lemma 5.6a.

where Dν(λT ) is the determinant of the matrix of the contravariant form on the λT − ν weight
space of M(λT ).

Fact (Jantzen, Shapovalov): Up to a nonzero scalar multiple depending on a choice of basis of
U(n−),

Dν(λT ) =
∏
α>0

∏
r∈Z>0

(
(λT , ρ, α∨)− r

)P (ν−rα)
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where P is the Kostant partition function.

We can calculate vT of this, which doesn’t depend on the scalar:

(λT + ρ, α∨)− r = (λ+ ρ, α∨)− r + T (ρ, α∨)

=⇒ vT (· · · ) =
{

1 (λ+ ρ, α∨) = r > 0 ⇐⇒ α ∈ Φ+
λ

0 else
.

We then have

vT (Dν(λT )) =
∑
α∈Φ+

λ

P (ν − (λ+ ρ, α∨)α).

Thus the LHS is given by

· · · =
∑
ν∈Λ+

r

∑
α∈Φ+

λ

P (ν − (λ+ ρ, α∨)α)e(λ− ν)

=
∑
α∈Φ+

λ

∑
σ∈Λ+

r

P (σ)e(λ− (λ+ ρ, α∨)α− σ)

=
∑
α∈Φ+

λ

chM(sα · λ),

where we’ve used what we know about characters of Verma modules.

Note that the proof of the determinant formula is technical.

We’ll skip chapter 6 on KL theory.

34 Friday April 10th
34.1 Translation Functors
Extremely important, allow mapping functorially between blocks (recalling O =

⊕
Oχλ) and in

good situations gives an equivalence of categories.

Definition (Projection Functors) A projection functor prλ : O → Oχλ where M =
⊕
µ

Mχµ 7→

Mχλ .

Convention: From now on, all weights will be integral

Proposition (Properties of Projection Functors)

1. prλ is an exact functor.
2. hom(M,N) ∼=

⊕
λ

hom(prλM, prλN)

3. prλ(M∨) = (prλM)∨
4. prλ maps projectives to projectives
5. prλ is self-adjoint
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34.1 Translation Functors

Proof

1. Given
0 f−→ N

g−→ P → 0,
we can decompose this as

0→
⊕
λ

Mχλ ⊕fλ−−→
⊕
λ

Nχλ ⊕gλ−−→
⊕
λ

P λ → 0,

which gives exactness on each factor.
2. We can move direct sums out of homs.
3. Write prλ

((⊕
Mχλ

)∨)
and use theorem 3.2b to write as (Mχλ)∨.

4. prλ(P ) is a direct summand of a projective and thus projective.
5. We have hom(prλM,N) = hom(prλM,prλN) = hom(M, prλN).

Definition (Translation Functors) Let λ, µ ∈ Λ with ν = µ− λ integral. Then there exists w ∈W
such that ν̃ := wν ∈ Λ+ is in the dominant chamber. Define the translation functor

Tµλ = prµ(L(ν̃)⊗C prλ(M)),
where we use the fact that ν̃ dominant makes L(ν̃) finite-dimensional.

This is a functor Oχλ → Oχµ .

Proposition (Propoerties of Translation Functors)

1. The translation functor is exact.
2. Tµλ (M∨) =

(
TµλM

)∨
3. It maps projectives to projectives.

Proof

1. It is a composition of exact functors, noting that tensoring over a field is always exact.
2. Use proposition 12, L(ν̃) is self-dual, and A∨ ⊗B∨ ∼= (A⊗B)∨.
3. Use proposition 1 and previous results, e.g. L⊗C ( · ) preserves projectives if dimL <∞

(Prop 3.8b).

Proposition (Adjoint Property of Translation Functor) hom(TµλM,N) ∼= hom(M,T λµN), which
also holds for every Extn.

Proof We have
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34.1 Translation Functors

But L(ν̃)∨ ∼= L(−w0ν̃) and −w0ν̃ = w0w(λ− µ) is the dominant weight in the orbit of λ− µ
used to define T λµ .

For the second part, use a long exact sequence – if two functors are isomorphic, then their
right-derived functors are isomorphic.

Does this functor take Vermas to Vermas? I.e. do we haveM(w·λ) 7→M(w·µ) when TµλOχλ → Oχµ?

Picture for sl(3,C):

This doesn’t always happen, and depends on the geometry.

34.1.1 Weyl Group Geometry – Facets

Definition (Facets) Given a partition of Φ+ = Φ0
F ∪ ϕ+

F ∪ Φ−F , a facet associated to this partition
is a nonempty set consisting of solutions λ ∈ E to the following equations:
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Example: A2, where Φ+ = {α, β, α+ β}.

1. Take Φ0
F = Φ+, and by the orthogonality conditions, F = {−ρ} since it must be orthogonal

to all 3 roots. So the origin is a facet.
2. Take Φ0

F {α, β} and Φ+
F = {α+ β}, so F = ∅ can not be a facet.

3. See notes
4. see notes

Note that F ⊃ F̂ ∪ F in general.

35 Monday April 13th
Reviewing the definition of facets. We partitioned Φ into 3 sets Φ0,±

F , some of which could be empty.
We had notion of upper and lower closure given by replacing the strict inequalities with inequalities
in condition (3) and (2) respectively.

Definition (Chambers) If F is a facet with Φ0
F = ∅, then F is called a chamber.

A facet with exactly 1 root in Φ0
F , then this is called a wall.
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35.1 Key Lemma from 7.5

Observations:

1. Φ+ = Φ+
F always defines a chamber called the fundamental chamber and is denoted C0.

2. If F is any chamber, then F = w · C0 for some w ∈W .

Proposition (Relation Between Facets and Chambers)

a. Every facet F is the upper closure of some unique chamber C.
b. If F ⊂ Ĉ then F̂ ⊂ Ĉ.

Proof

a. If F is given by Φ0
F ∪Φ+

F ∪Φ−F and C pairs with Φ+
C = Φ+

F and thus Φ−C = Φ−F ∪Φ0
F . To

see that C 6= ∅, use remark (1) on page 132.
b. Obvious from above description of C.

35.1 Key Lemma from 7.5
We’re focusing only on integral weights, and we want to calculate the translation functor of a
Verma TµλM(λ). First step: project onto λ block, but M(λ) is in that block already. Then tensor
with L(ν̃), then the product has a standard filtration with certain Verma section M(λ+ wν̃), each
occurring with multiplicity one. The weight ν̃ is the unique dominant weight in the orbit of µ− λ,
one of the Verma sections is in M(µ). We plan to show that TµλM(λ) = M(µ) in “good” situations.

Lemma Let λ, µ ∈ Λ be integral weights and ν = µ − λ and ν̃ ∈ Λ+ ∩ Wν (which is unique).
Assume there is a facet F with λ ∈ F, µ ∈ F . Then for all weights ν ′ 6= ν of L(ν̃), the weight
λ+ ν ′ is not linked to λ+ ν = µ under W .

Proof

Toward a contradiction, suppose there exists ν 6= ν in Π(L(ν̃)) with λ + ν ′ ∈ W · (λ + ν).
Define the distance between two chambers C,C ′ as the number of root hyperplanes separating
them. Under the correspondence between chambers and W given by picking a fundamental
chamber, the distance corresponds to the difference in lengths between the corresponding
Weyl group elements.

So choose chambers C,C ′ with F ⊂ C, λ + ν ′ ∈ C ′, and d(C,C ′) is minimal. We now go
through 14 easy steps.

1. The case d(C,C ′) = 0 is impossible, since this would force C = C ′/ But C is a fundamen-
tal domain for the dot action, where C ′ 3 λ+ ν ′ 6= λ+ ν = µ ∈ F ⊂ C. This contradicts
C being a fundamental domain, since each ? will be conjugate to a unique element.

2. The case d(C,C ′) > 0 implies there’s a hall Hα ∩ C ′ of C ′ separating C ′ from C. Wlog
assume C ′ is on the positive side of Hα and α > 0 and C is on the negative side. Since
F ⊂ C, we have (ξ + ϕ, α∨) ≤ 0 for all ξ ∈ F .

3. Reflect and set C ′′ := sαC
′, then d(C,C ′′) < d(C,C ′) and we will be able to apply the

induction hypothesis.
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35.2 7.6: Translation Functors and Verma Modules

4. By (2), (λ+ ν ′ + ρ, α∨) ≥ 0 since λ+ ν ′ was on the positive side.
5. By (2), (λ+ ρ, α∨) ≤ 0 since λ+ ν ′ was on the negative side.
6. By (4), λ + ν ′ ≥ sα · (λ + ν ′) = sα · λ + sαν

′ = λ − (λ + ρ, α∨)α + sαν
′ := ν ′′ by just

applying the formula for the dot action.
7. By (5) and (6), sαν ′ ≤ sαν

′ − (λ + ρ, α∨)α ≤ ν ′, where the first and last terms are
weights of L(ν̃), so ν ′′ ≤ ν ′. In fact, this inequality is obtained by cancelling λ and
adding/substracting multiples of α, so these come from an α root string.

8. Rewriting (6), we have sα(λ+ ν ′) = λ+ ν ′′ ∈ sαC ′ = C ′′.
9. By 1.6 bullet (2) in Humphreys, ν ′′ ∈ Π(L(ν̃)).
10. By the minimality assumed for ν ′, along with (3), (8), (9), we have ν ′′ = ν.
11. Rewriting (7) and using the hypothesis ν 6= ν ′, we can write sαν ′ ≤ ν < ν ′ where the

inequality is strict because they are not equal. This is still an α root string of weights in
the simple module L(ν̃) with ν ∈Wν̃. The first inequality can not be strict, otherwise
v±α would both be weights of L(ν̃), contradicting Humphreys 1.6 bullet 1. So sαν ′ = ν.

12. By (10), (11), and (6), sαν ′ = ν = ν ′′ = sαν
′ − (λ+ ρ, α∨)α, so (λ+ ρ, α∨) = 0.

13. Since λ ∈ F by assumption, if α ∈ Φ0
F then (ξ + ρ, α∨) = 0 for all ξ ∈ F . In particular,

for ξ = µ = λ+ν, and combined with (12), this say (ν, α∨) = 0 since the pairing is linear
in the first slot.

14. We’re now done: combining (11), (13) yields ν ′ = sαν = ν − (ν, α∨)α = ν, which
contradicts ν 6= ν ′.

35.2 7.6: Translation Functors and Verma Modules
Theorem (Translation Functors on Vermas for Antidominant Weights) Let λ, µ ∈ Λ be antidom-

inant. Assume there is a facet F relative to the dot action of W with λ ∈ F and µ ∈ F . Then
for all w ∈W , we have

TµλM(w · λ) = M(w · µ)
TµλM(w · λ)∨ ∼= M(w · µ)∨.

Proof Apply the previous lemma to w · λ,w · µ and the facet w · F using ν = w · µ − w · λ. To
compute Tµλ , first consider L(ν̃)⊗M(w · λ). By Theorem 3.6, this has a standard filtration
with quotients M(w · λ+ ν ′) for ν ′ ∈ Π(L(ν̃)), potentially with multiplicity.

In particular, M(w · µ) = M(w · λ + ν) appears exactly once. By the lemma, none of the
other highest weights w · λ+ ν ′ are linked to µ. Thus decomposing the tensor product into
direct summands in infinitesimal blocks, the only summand in Oχµ is M(w · µ). Therefore
TµλM(w · λ) = prµ(L(ν̃) ⊗M(w · λ)) = M(w · µ). The statement about duals follows from
translation functors commuting with taking duals.

36 Wednesday April 15th
Section 7.6, proved theorem about translation functors on Verma modules. We fixed an antidominant
weight, since we can apply elements of W to obtain the rest. We proved that translation functors
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36.1 Translation Functors and Simple Modules

take Verma modules to Verma modules.

Corollary (Translations Have Standard Filtrations) If M ∈ Oχ has a standard filtration, then so
does TµλM ∈ Oµ.

Proof By induction on the length of the filtration, where the length 1 case is handled by the
theorem. In general we have 0 → N → M → M(w · λ) → 0 and since Tµλ is exact, we can
apply it to get another exact sequence. ??? See notes.

36.1 Translation Functors and Simple Modules
Proposition (Translation Functors Applied to L for Antidominant Weights) Let λ, µ ∈ Λ be an-

tidominant with a facet F such that λ ∈ F and µ ∈ F . Then for all w ∈ W , TµλL(w · λ) is
either L(w · µ) or 0.

Idea: we’re pushing λ to something more singular.

Proof Apply the exact functor Tµλ to the surjection M(w · λ)� L(w · λ) so obtain M(w · µ)�M
for some M . Since M is a quotient of a Verma module, it is a highest weight module of
highest weight w · µ. Suppose M 6= 0, we can apply Tµλ to L(w · λ) ↪→ M(w · λ)∨ to obtain
M(w · µ)�M ↪→M(w · µ)∨, a nonzero map. By Theorem 3.3c, the image is the socle, so we
obtain M ∼= L(w · µ).

It turns out that Tµλ ∼= L(w · µ) precisely when w · µ ∈ ŵ · F (the upper closure, see Theorem 7.9
and example 7.7 for sl(2,C)). Example: take ρ = −1.

So if we can figure out L(w · λ) for λ ρ-regular, we can determine the composition factors of all
Verma modules by “pushing to walls”. There’s also a need to “cross walls”, and there’s a nice rule
for what happens for Verma modules in this case. Going “off the wall” on the other side is more
complicated.

36.2 7.8: Category Equivalences
We saw in the case of sl(2,C) and sl(3,C) that the composition factors depended more on the Weyl
group than the highest weight. We want to show that Tµλ gives an equivalence of categories between
Oλ and Oµ. when λ, µ are antidominant and lie in the same facet. We’ll first show that it induces
an isomorphism on the Grothendieck groups.

Proposition (Isomorphism of Grothendieck Groups for Weights in a Common Facet) Suppose there
is a single facet F containing λ, µ. Then the obvious map is an isomorphism:

Tµλ : K(Oλ)
∼=−→ K(Oµ)

[M(w · λ)] 7→ [M(w · µ)]
[L(w · λ)] 7→ [L(w · µ)].

Proof Recall that
{

[M(w · λ)]
∣∣∣ w ∈W}

(and/or replacing by L) forms Z-basis for K(Oλ) and
similarly for µ. So when [M ] ∈ K(Oλ) is written was a Z-linear combination of [M(w · λ)],
it’s clear that T λµT

µ
λ [M ] = [M ]. So these functors are mutually inverse.

By the previous proposition, if we take L instead, the result is either the identity or zero. But
zero is impossible by what we just proved, so we must have Tµλ [L(w · λ)] = [L(w · µ)] forcing
TµλL(w · λ) = L(w · µ).
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Since K(O) ∼= χ0, the group of formal characters of modules in O, we in fact get

[M : L(w · λ)] = [TµλM : L(w · µ)] ∀M ∈ O.

Thus the λ, µ don’t matter as much (as long as they’re in the same facet), and the w is what’s
important. There is a theorem (2005) that for any artinian abelian category, and isomorphism of
Grothendieck groups implies an equivalence of categories.

37 Wednesday April 22nd
For p ∈ Q[x], we’ll denote p[i] the ith coefficient.

For M ∈ O or any module of finite length, we define its radical series:

rad0M = M, radi+1M = rad(radiM)

Note that the layers/subquotients are semisimple.

Dually, Soc M is the largest semisimple submodule of M , and iterating this yields the socle series.
Denote

Soc iM := Soc i+1M/Soc iM

the ith socle layer. The corresponding layers are the same as in the radical filtration, just with
reversed indexing.

For convenience, set

Qx,w = Pw0w,w0x(q)

the “inverse” KL polynomial. Recall that a consequence of the KL conjecture is that [Mw] =∑
x≤w

Qx,w(1)[Lx]

The following theorem follows from the Jantzen conjecture

Theorem (Coefficients of Inverse KL Polynomials)

a.

Qx,w[i] = [rad`(xw)−2iMw : Lx] = [Soc `(x)+2iMw : Lx]

Note that Humphreys adds +1 here due to indexing.

b. If x < w, then dim Ext1(Lx, Lw) = µ(x,w).

That concludes the KL theory.
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37.1 Tilting Modules (Ch. 11)

37.1 Tilting Modules (Ch. 11)
The Lusztig conjecture is an analog of the KL conjecture for representations of algebraic groups
in characteristic p > 0. It gives the characters of simple modules in terms of characters of known
“standard” modules. for p > h and the formulas are independent of p.

Holy grail: characters of simple modules!

? showed that that Lusztig character formula is correct for p � 0 but the bounds are very large.
In 2016, Geordie Williamson found counterexamples to this conjecture for fairly large p.

Most recent work, suggests that more uniform formulas can be obtained using another family of
indecomposable representations, the tilting modules.

Definition (Tilting Modules) M ∈ O is a tilting module if both M,M∨ have standard filtrations
(quotients are Vermas). Equivalently, adapts to settings in which there are standard and
co-standard modules: M is a tiling module iff M has a standard filtration (for O, sections are
Verma modules) and a costandard filtration (in O, sections are duals of Verma modules).

Note that a self-dual modules with a standard filtration is automatically tilting.

Example If λ is antidominant, M(λ) = L(λ) = L(λ)∨ is self-dual and thus tilting.

Example If λ+ ρ ∈ Λ+ is dominant integral, so w0 · λ is antidominant and integral, then P (w0 · λ)
is self-dual and hence tilting. Its standard filtration has each M(w · λ) as a section exactly
once, see Theorem 4.10.

Proposition (Properties of Tilting Modules) Let M be a tilting module.

a. M∨ is tilting.
b. For N tilting, M ⊕N is tilting.
c. Any direct summand of M is tilting.
d. If dimL <∞, then L⊗M is tilting.
e. TµλM is tilting.
f. If N is tilting then ExtnO(M,N) for all n > 0 (take projective resolution and apply hom)

Proof

a. Obvious since (M∨)∨ ∼= M .
b. M ⊕N has a standard filtration by section 3.7, so does (M ⊕N)∨ ∼= M∨⊕N∨ (Theorem

3.2d)
c. From Proposition 3.7b direct summands also have standard filtrations, and the formula

used in the proof applies to the dual module here.
d. This follows from theorem 3.6 since L⊗M(λ) has a standard filtration and exercise 3.2

distributing duals through tensors.
e. This follows from (e) and (d).
f. In theorem 3.3d we proved Ext1

O(M(µ),M(λ)∨) = 0 for all µ, λ. In section 6.12 this is
extended to Extn and thus Extn(M,N∨) = 0 for any M,N with standard filtrations.

From now on, for simplicity we work in the full subcategory Oint of modules whose weights lie in Λ,
but the results generalize to arbitrary weights. Set K = K(Oint) which is a subgroup of K(O).

In order to classify all tilting modules, it suffices to classify indecomposable by Proposition 11.1c.
These turn out to be classified by highest weight.
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To prove existence, we’ll use translation functors to move to and from walls.

Theorem (Translation Off the Wall for Antidominant Regular Weights) Let λ, µ ∈ Λ be antidom-
inant with λ regular (so in the antidominant chamber C) and µ lies on a single simple root
wall Hα ∩ C (i.e. the stabilizers W 0

µ) of µ under the dot action is {1, s} with s = sα for some
α ∈ ∆.)
Assume that w ∈W with ws > w, then

a. There is a SES (singular to regular, translation off the wall):

0→M(ws · λ)→ T λµM(w · µ)→M(w · λ)→ 0.

b. The head is given by HeadT λµM(w · µ) = L(w · λ), and in particular the LHS is indecom-
posable and the sequence in (a) is non-split.

Also recall Proposition 3.7a: If M ∈ O has a standard filtration and λ ∈ Π(M) is maximal, then
M(λ) ↪→M and M/M(λ) has a standard filtration.

Proposition (Existence of “Highest Weight” Tilting Modules) Let λ ∈ Λ:

a. There exists an indecomposable tilting module T (λ) ∈ Oint such that dimT (λ)λ = 1 and
µ ∈ Π(T (λ)) =⇒ µ ≤ λ. In particular, (T (λ) : M(λ)) = 1 and M(λ) ↪→ T (λ).

b. Every indecomposable tilting module in Oint is isomorphic to T (λ) for some λ ∈ Λ.

38 Friday April 24th
Chapter 11: Tilting Modules.

Recall that these are defined by modules with both a standard and a costandard filtration.

Theorem (7.14, Translation Off the Walls for Antidominant Regular Weights) Let λ, µ ∈ Λ be
antidominant with λ regular (so in the antidominant chamber C) and µ lies on a single simple
root wall Hα ∩ C (i.e. the stabilizers W 0

µ) of µ under the dot action is {1, s} with s = sα for
some α ∈ ∆.)
Assume that w ∈W with ws > w, then

a. There is a SES (singular to regular, translation off the wall):

0→M(ws · λ)→ T λµM(w · µ)→M(w · λ)→ 0.

b. The head is given by HeadT λµM(w · µ) = L(w · λ), and in particular the LHS is indecom-
posable and the sequence in (a) is non-split.

The SES here represents starting at the RHS, translating to get to a wall to get the middle term,
then translating off the wall and picking up an s term.

To see that standard and costandard filtrations exist, we can consider:
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Also recall Proposition 3.7a: If M ∈ O has a standard filtration and λ ∈ Π(M) is maximal, then
M(λ) ↪→M and M/M(λ) has a standard filtration.

Theorem (Existence of “Highest Weight” Tilting Modules) Let λ ∈ Λ:

a. There exists an indecomposable tilting module T (λ) ∈ Oint such that dimT (λ)λ = 1 and
µ ∈ Π(T (λ)) =⇒ µ ≤ λ. In particular, (T (λ) : M(λ)) = 1 and M(λ) ↪→ T (λ).

Note that this implies that T (λ) must lie in the single block Oχλ , since it has a Verma
M(λ) and is indecomposable.

b. Every indecomposable tilting module in Oint is isomorphic to T (λ) for some λ ∈ Λ.
c. T (λ) is the only tilting module up to isomorphicin Oint having the properties in (a).
d. {[T (λ)]}λ∈Λ is a basis for K = K(Oint).

Proof (of (a)) Existence is by induction on length in W along with translation to and from walls.
Fix λ ∈ Λ to be ρ-regular and antidominant. Consider the linked weights w · λ and their
translates to walls. To start, set T (λ) := M(λ) which has the properties in (a). Likewise
for µ ∈ C, for C the antidominant chamber, µ is still antidominant, TµλM(λ) = M(µ) again
irreducible and seta T (µ) := M(µ)
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For the inductive step, assume T (w · µ) has been constructed for all µ ∈ w · C to T (w · λ)
is defined. If s is a simple reflection with ws > w choose an antidominant integral weight µ
with W 0

µ = {1, s} so we have defined T (w · µ)T (ws · µ). Apply the exact functor T λµ and use
theorem 7.14: T λµT (w · µ) has a two-step filtration with sections

N : M(w · λ)
M(ws · λ) .

where the top term is a non-split extension and the bottom is indecomposable with Head =
L(w · λ).

The other sections M(x · µ) of T (w · µ) have x · µ < w · µ. Applying T λµ to these produces
2-step modules like N but with highest weights either xs · λ < ws · λ, or x · λ, whichever is
greater.

Thus ws ·λ is the unique largest weight (occurring with multiplicity one) in the titling module
T λµT (w · µ) by Prop 11.1e. Set T (ws · λ) to be the indecomposable summand of this involving
the weight ws · λ, this has the required properties in (a).

We can now translate T (ws·λ) to the walls of ws · C, which were not already walls of w · C. For
weights ν in such walls, the translated module with have a 1-dim ν-weight space M (Theorem
7.6), so we can take the indecomposable summand containing M to be M(ν), completing the
inductive step.

Proof (of (b)) Let T be any indecomposable tilting module having λ as one of its maximal weights.
By the remark concerning Prop 3.7a, there is an embedding M(λ) ↪→ T at the bottom of
a standard filtration and T/M(λ) has a standard filtration. Thus Ext1(T/M(λ, T (λ))) = 0,
using Prop 11.1f and Exercise 6.12.

Applying hom( · , T (λ)) to

0→M(λ) f−→ T → T/M(λ)→ 0

yields

hom(T, T (λ)) f∗−→ hom(M(λ), T (λ))→ Ext1(T/M(λ), T (λ)) = 0→ · · · .

Thus f∗ is surjective, and the embedding M(λ) ↪→ T (λ) lifts to a map ϕ : T → T (λ):

M(λ) T

M(λ) T (λ)

ϕψ

Similarly, reversing T, T (λ) we get the map ψ with is the identity on the specified submodules
of M(λ) in each. This we get endomorphisms ϕ ◦ ψ of T (λ), which is an isomorphism on the
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λ-weight space T (λ)λ and of ψ ◦ ϕ(T ), which is an isomorphism at least on the C- span of
v+
λ ∈M(λ) ⊂ T (although maybe not on all of Tλ as claim in Humphreys).

By Fitting’s lemma (?) an endomorphism of a finite length indecomposable module is ei-
ther nilpotent or invertible. But the two compositions can not be nilpotent since they are
isomorphisms on Cv+

λ viewed in T (λ) and in T .

Proof (of (c)) Take T to be a tilting module. . .

39 Monday April 27th
We get a non-split SES

0→M(xs · λ)→ T λµM(x · µ)→M(x · λ)→ 0.

Since w ·µ is the highest weight of T (w ·µ) and occurs with multiplicity one, apply this to all Verma
section M(x · µ), including x = w in a standard filtration of T (w · µ), thus T λµT (w · µ) has highest
weight ws · λ with multiplicity one.

By Prop 11.1e and Theorem 11.2, T λµT (w · µ) ∼= T (ws · λ)⊕ T where T is a tilting module in Oχλ
having all weights less than ws · λ. It suffices to show T = 0, or equivalently Tµλ T = 0.

Lemma (Translating and Inverting Doubles the Character) For λ, µ as above and any M ∈ Oχµ ,
chTµλ T

λ
µM = 2 chM .

Proof: By writing chM in a basis of M(x · µ) with x ∈W and xs > x, since M(xs · µ) = M(x · µ),
it suffices to show this for M = M(x ·µ). But Tµλ T

λ
µM(x ·µ) is given by applying Tµλ to the original

SES and we know

TµλM(xs · λ) = M(xs · µ) = M(x · µ) = TµλM(x · λ)

Thus chTµλ T
λ
µM(x · µ) = 2 chM(x · µ).

�

Now by the lemma, Tµλ T (ws · λ)⊕ Tµλ T = Tµλ T
λ
µT (w · µ) has formal character 2 chT (w · µ). Since

it’s a tilting module,we must have Tµλ T
λ
µT (w · µ) = T (w · µ)⊕ T (w · µ). In particular, it has highest

weight w · µ with multiplicity 2.

If we can show that Tµλ T (ws · λ) already has w ·µ as a weight with multiplicity 2, it will follow that
the remaining term must be zero as desired.

Start with an embedding ϕ : M(ws · λ) ↪→ T (ws · λ). Using Theorem 6.13c, our Ext1 vanishes
between Vermas and dual Vermas, and so we have Ext1(T (ws · λ),M(w · λA)∨) = 0.

Dualizing, Ext1(M(w · λ), T (ws · λ)) = 0 and this sequence must split. Applying hom( · , T (ws · λ)),
we get a LES

hom(T λµM(w · λ), T (ws · λ))→ hom(M(ws · λ), T (ws · λ))→ Ext1(M(w · λ), T (ws · λ))→ · · · .

Since the last term vanishes, a ϕ in the middle term lifts to the first term.
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Proposition (Injective Embedding of Vermas into Tilting Modules) (kerϕ)w·λ = 0.

Proof If not, since ϕ restricted to M(ws · λ) is injective, and using the origin SES we must have a
preimage v ∈ (kerϕ)w·λ of the highest weight vector in M(w · λ).

But every z ∈ T λµM(w · µ) can be written uniquely (since the SES splits as vector spaces) as
z = uv+m where u ∈ U(n−) and m ∈M(ws ·λ). Then ϕ(z) = 0 +ϕ(m) = m ∈M(ws ·λ) ⊂
T (ws · λ), since ϕ is the identity on this submodule. But then ϕ provides a splitting of the
non-split SES, a contradiction.

Thus ϕ induces a nonzero homomorphism

ϕ : M(w · λ) ∼= T λµM(w · µ)/M(ws · λ)→ T (ws · λ)/M(ws · λ).

In particular, w · λ is a weight of the quotient module, and is a maximal weight – keeping in mind
that T (ws · λ) has a standard filtration with sections M(x · λ) for x ≤ ws with M(ws · λ) occurring
just once. The quotient module also has a standard filtration, so M(w · λ) must occur in the
standard filtration of T (ws · λ) along with M(ws · λ).

Since w < ws, theorem 1.4 provides an injection M(w · λ) ↪→M(ws · λ). Applying Tµλ to these two
copies of M(w · λ), we get w · µ a weight with multiplicity at least 2.

�

Corollary (Standard Multiplicities of Vermas in Tilting Modules) Under the hypotheses of the
theorem, (T (ws · λ) : M(xs · λ)) = (T (ws · λ) : M(x · λ)).

Proof T (ws ·λ) = T λµT (w ·µ), and wlog x < xs since the claimed formula is symmetric in x and xs
and xs ·µ = x ·µ. Now tilting modules (and thus their filtration multiplicities) are determined
by their formal characters. Using 1’, we see that each occurrence of M(x · µ) as a section of
T (w ·µ) leads to exactly one occurence of M(xs ·λ) and M(x ·λ) in the character of T (ws ·λ).

Remark: Both the theorem and corollary can fail when ws < w.
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