--- title: Problem Sets --- # 1.1 ## a If $M\in \OO$ and $[\lambda] = \lambda + \Lambda_r$ is any coset of $\lieh\dual/\Lambda_r$, let $M^{[\lambda]}$ be the sum of weight spaces $M_\mu$ for which $\mu \in [\lambda]$. Prove that $M^{[\lambda]}$ is a $U(\lieg)\dash$submodule of $M$ and that $M$ is the direct sum of finitely many such submodules. ## b Deduce that the weights of an indecomposable module $M\in\OO$ lie in a single coset of $\lieh\dual/\Lambda_r$. # 1.3* Show that $M(\lambda)$ has the following property: for any $M \in \OO$, \begin{align*} \operatorname{Hom}_{U(\lieg)}(M(\lambda), M) = \operatorname{Hom}_{U(\lieg)}\left(\operatorname{Ind}_{\lieb}^{\lieg} \CC_{\lambda}, M\right) \cong \operatorname{Hom}_{U(\lieb)}\left({\CC}_{\lambda}, \operatorname{Res}_{\lieb}^{{\lieg}} M\right) ,\end{align*} where $\Res_\lieb^\lieg$ is the restriction functor. > Hint: use the universal mapping property of tensor products. # Relevant information (?): ## 1 - $\lieh \leq \lieg$ is the Cartan subalgebra. - In finite-dimensional setting: maximal toral - Nilpotent subalgebra, i.e. LCS terminates, i.e. $\ad_h = [h, \wait]$ is a nilpotent operator so $\ad_h^n = 0$ for some $n$. - Self-normalizing, so for a fixed $y$, $[h, y]\in \lieh ~\forall h\in \lieh \implies y\in\lieh$. - $\lambda \in \lieh\dual$ is a linear functional $\lambda: \lieh \to \CC$ - $\lambda$ is a root relative to $\lieh$ if $\lambda \neq 0$ and there is some $g\in \lieg$ such that $[hg] = \lambda(h)g$ for all $h\in \lieh$. - $\Phi \subset \lieh\dual$ is the root system of $\lieg$ relative to $\lieh$. - Each $\lambda \in \Phi$ is a root - Each root $\lambda$ has a corresponding root space $\lieg_\alpha \definedas \theset{x\in \lieg \suchthat [hx] = \lambda(h) x ~\forall h\in\lieh}$. - $\Lambda_r \definedas \spanof_\ZZ\theset{\lambda \in \Phi} \subset \CC^n$ is the root lattice. - $M_\mu \definedas \theset{v\in M \suchthat h\cdot v = \mu(h) v ~\forall h\in\lieh}$ is the weight space for $\mu$. - $M^{[\lambda]} = \displaystyle\sum_{\mu \in [\lambda]} M_\mu$ $M \in \OO \implies$ - $M$ is finitely generated as a $U(\lieg)\dash$module. - $M$ is a weight module, so $M = \bigoplus_{\lambda \in \lieh\dual} M_\lambda$ - For every $v\in M$, $U(\lien) \cdot v$ is finite-dimensional ## 2 $M(\lambda) = U(\lieg) \tensor_{U (\lieb)} \CC_\lambda$ where $\lieb \leq \lieg$ is a fixed Borel subalgebra corresponding to a choice of positive roots, and $C_\lambda$ is the 1-dimensional $\lieb\dash$module defined for any $\lambda \in \lieh\dual$ by the fact that $\lieb/\lien \cong \lieh$ and thus $\lien \actson \lieh$ can be taken to be a trivial action. The induction functor is given by $\ind_\lieb^\lieg(\wait) = U(\lieg) \tensor_{U(\lieb)} (\wait)$. The restriction functor is given by $\res_\lieb^\lieg(\wait) = ?$ Frobenius Reciprocity for groups looks like \begin{align*} \hom_{k[G]}(k[G] \tensor_{k[H]} V, W ) &\to \hom_{k[H]}(V, W) \\ \lambda &\mapsto 1\tensor(\wait) = (v \mapsto \lambda(1\tensor v))\\ (g\tensor v \mapsto g\cdot f(v)) &\mapsfrom f .\end{align*}