--- title: Problem Set One --- # Humphreys 1.1 ## a If $M\in \OO$ and $[\lambda] = \lambda + \Lambda_r$ is any coset of $\lieh\dual/\Lambda_r$, let $M^{[\lambda]}$ be the sum of weight spaces $M_\mu$ for which $\mu \in [\lambda]$. **Proposition:** $M^{[\lambda]}$ is a $U(\lieg)\dash$submodule of $M$ *Proof:* It suffices to check that $\lieg\actson M^{[\lambda]} \subseteq M^[\lambda]$, i.e. this module is closed under the action of $U(\lieg)$. Let $g\in U(\lieg)$ and $m\in M^{[\lambda]}$ be arbitrary. Choose a ordered basis $\theset{e_i}$ for $\lieg$, then this can be extended to a PBW basis for $U(\lieg)$ given by $\theset{\prod_i e_i^{t_i} \suchthat t_i \in \ZZ}$. Then take a triangular decomposition $U(\lieg) = U(\lien^-) U(\lieh) U(\lien)$. We can then write $u = \prod_i a_i^{t_i} \prod_j h_j^{t_j} \prod_k b_k ^{t_k}$ and consider how each component acts. First considering how the $b_k$ act, we compute their weights; we want to show that if $\mu \in M_\mu$ for some $\mu \in [\lambda]$, then $b_k \actson \mu \in M_{u'}$ for some $m'\in [\lambda]$. We know $h\actson m = \mu(h) m$ for each $m\in M_\mu$. Noting that $b_k \in g_\alpha$ for some positive root $\alpha$, we have $[h g] = \alpha(h) g$, and so \begin{align*} h \actson (b_k \actson m) &= b_k \actson (h\actson m) + [h b_k] \actson m\\ &= b_k \actson (\mu(h) m) + [h b_k] \actson m \\ &= b_k (\mu(h) m) + \alpha(h) b_k m \\ &= (\mu(h) + \alpha(h)) b_k m \\ &\in M_{\mu + \alpha} .\end{align*} But then $\mu + \alpha - \mu = \alpha \in \ZZ \Phi = \Lambda_r$, so $\mu$ and $\mu + \alpha$ are in the same coset $[\lambda]$. The same argument shows that $h \actson (b_k^{t} \actson m))$ is in the weight space $M_{\mu + t\alpha}$, which still only differs by an integral number of roots. But this shows that $U(\lien)$ and $U(\lien^-)$ leave this space invariant, and $U(\lieh)$ acts by scaling, which preserves subspaces. So $M^{[\lambda]}$ is closed under the action of $\lieg$. $\qed$ Proposition: $M$ is the direct sum of finitely many submodules of the form $M^{[\lambda]}$. *Proof:* By axiom 1 for Category $\OO$, $M$ is finitely generated, say by $\theset{m_j}$, This category is closed under subobjects, so if we write $M = \oplus_{[\lambda]} M^{[\lambda]}$ as a union over all cosets, each $M^{[\lambda]}$ is finitely generated as well. Since $m_1$ is in this direct sum, it is in *finitely* many summands by definition of the direct sum, so for each $j$, $m_j \in \bigoplus_{k=1}^{R_{j}} M^[\lambda_{jk}]$ for some finite constant $R_{j}$ and some coset depending on $j$ and $k$. But then $M = \bigoplus_j \bigoplus_k M^{[\lambda_{jk}]}$ is still a finite direct sum, which is what we wanted to show. **Proposition:** If $M$ is indecomposable, then all weights of $M$ lie in a single coset. Proof: By (a), we can write $M = \bigoplus_{[\lambda_i]} M^[\lambda_i]$ for some finite set of $\lambda_i$s. If $M$ is indecomposable, then there can only be one summand, and so $M = M^[\lambda]$ for exactly 1 $\lambda$. We can then write $M = \sum_{\mu \in [\lambda]} M_\mu$, which decomposes $M$ as a sum of weight spaces. But then if any $\sigma \in \Pi(M)$ is a weight, it must be one of the $\mu$ occurring above. So every weight of $M$ is in the coset $[\lambda]$, and in particular they are all in the same coset. $\qed$ # Humphreys 1.3* **Proposition:** For any $M \in \OO$, $M(\lambda)$ satisfies the following property: \begin{align*} \operatorname{Hom}_{U(\lieg)}(M(\lambda), M) = \operatorname{Hom}_{U(\lieg)}\left(\operatorname{Ind}_{\lieb}^{\lieg} \CC_{\lambda}, M\right) \cong \operatorname{Hom}_{U(\lieb)}\left({\CC}_{\lambda}, \operatorname{Res}_{\lieb}^{{\lieg}} M\right) .\end{align*} *Proof:* Noting that - $\Ind_\lieb^\lieg \CC_\lambda = U(\lieg) \tensor_{U(\lieb)} \CC_\lambda$, - $\Res_\lieb^\lieg M$ is an identification of the $\lieg\dash$module $M$ has a $\lieb\dash$ module by restricting the action of $\lieg$, consider the following two maps: \begin{align*} F: \hom_{U(\lieg)} (U(\lieg) \tensor_{U(\lieb)} \CC_\lambda, M ) &\to \hom_{U(\lieb)} (\CC_\lambda, M) \\ \phi &\mapsto (F\phi: z \mapsto \phi(1 \tensor z)) ,\end{align*} and using the action of $\lieg$ on $M$, \begin{align*} G: \hom_{U(\lieb)} (\CC_\lambda, M) &\to \hom_{U(\lieg)} (U(\lieg) \tensor_{U(\lieb)} \CC_\lambda, M ) \\ \psi &\mapsto (G\psi: g\tensor v \mapsto g \actson \psi(v)) .\end{align*} Note that the maps $G\psi$ are defined on ordered pairs, but are clearly bilinear and thus uniquely extend to maps on the tensor product. It suffices to show that these maps are well-defined and mutually inverse. To see that $F$ is well-defined, let $\phi: U(\lieg)\tensor C_\lambda \to M$ be fixed; we will show that the set map $F\phi: \CC_\lambda \to M$ is $U(\lieb)\dash$linear. Let $b\in U(\lieb)$, then \begin{align*} b\actson F\phi(v) &\definedas b\actson (z \mapsto \phi(1\tensor z))(v) \\ &\definedas b\actson \phi(1\tensor v) \\ &= \phi(b\actson (1\tensor v)) \quad\text{since $\phi$ is $U(\lieg)\dash$linear and $b\in U(\lieg)$} \\ &= \phi((b\actson 1)\tensor v ) \quad\text{by the definition/construction of $M(\lambda)$ as a $U(\lieg)\dash$module.} \\ &= \phi(1 \tensor (b\actson v)) \quad\text{since $\CC_\lambda$ is a $\lieb\dash$module and the tensor is over $U(\lieb)$}\\ &\definedas (z \mapsto \phi(1\tensor z))(b\actson v) \\ &\definedas F\phi(b\actson v) .\end{align*} To see that $G$ is well-defined, let $\psi: C_\lambda \to M$ be fixed; we will show that the set map $G\psi: U(\lieg)\tensor C_\lambda \to M$ is $U(\lieg)\dash$linear. Let $u\in U(\lieg)$, then \begin{align*} u\actson G\psi(g\tensor v) &\definedas u \actson (g\tensor v \mapsto g\actson \psi(v))(g\tensor v) \\ &\definedas u \actson (g\actson \psi(v)) \\ &= (ug) \actson \psi(v) \quad\text{since $M$ is a $\lieg\dash$module with a well-defined action.} \\ &\definedas (g\tensor v \mapsto g\actson \psi(v))(ug \tensor v) \\ &\definedas G\psi(ug \tensor v) .\end{align*} To see that $FG$ is the identity, let $\phi$ be defined as above and fix $g_0 \tensor v_0 \in U(\lieg) \tensor \CC_\lambda$. Then \begin{align*} GF\phi(g_0\tensor v_0) &= G(v \mapsto \phi(1\tensor v)) (g_0 \tensor v_0) \\ &\definedas G(f) \quad\text{for notational convenience} \\ &\definedas G(g\tensor v \mapsto g\actson f(v)) (g_0 \tensor v_0) \\ &= g_0 \actson f(v_0) \\ &= g_0 \actson \phi(1\tensor v_0)\\ &= \phi(g\actson (1\tensor v_0)) \quad\text{since $g_0 \in \lieg$ and $\phi$ thus commutes with the $\lieg\dash$action by definition} \\ &= \phi(g_0 \actson 1\tensor v_0) \quad\text{by definition of the action on $U(\lieg)\tensor C_\lambda$ as a $U(\lieg)$ module} \\ &\definedas \phi(g_0 \tensor v_0)\\ .\end{align*} To see that $GF \definedas G\circ F$ is the identity, let $\psi$ be defined as above and fix $z_0 \in \CC_\lambda$. Then \begin{align*} FG\psi(z_0) &= F(g\tensor v \to g\actson \psi(v) )(z_0) \\ &\definedas F(\lambda)(z_0) \quad\text{for notational convenience} \\ &= (v \mapsto \lambda(1\tensor v))(z_0) \\ &= \lambda(1\tensor z_0) \\ &\definedas 1 \actson \psi(z_0) \\ &= \psi(z_0) .\end{align*} $\qed$