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1 Humphreys 3.1
Let g = sl(2,C) and identify λ ∈ h∨ with a scalar. Let N be a 2-dimensional U(b)-module defined

by letting x act as 0 and h act as
(
λ 1
0 λ

)
.

Show that the induced U(g)-module structure M := U(g)⊗U(b) N fits into an exact sequence which
fails to split:

0 −→M(λ) −→M −→M(λ) −→ 0

1.1 Solution
Reference 1 Reference 2

Hence M 6∈ O.

We first unpack all definitions in terms of tensor products, using the fact thatM(λ) = U(g)⊗U(b)Cλ:

1

https://math.stackexchange.com/questions/2272891/extension-of-dual-verma-module/2273008#2273008
https://aip.scitation.org/doi/full/10.1063/1.5121236


1.1 Solution

0 M(λ) M M(λ) 0

0 U(g)⊗U(b) Cλ U(g)⊗U(b) N U(g)⊗U(b) Cλ 0

1⊗ 1 1⊗ u 1⊗ 0

1⊗ v 1⊗ 1

ψ φ

where N = spanC {u,v}.

We make the following claims:

1. The U(b) action defined on N lifts to a U(g)-action on M .
2. This is an exact sequence of U(g)-modules.
3. M 6∼= M(λ)⊕M(λ), showing that this sequence can not split.

Claim 1: We choose the basis

x =
[
0 1
0 0

]
, h =

[
1 0
0 −1

]
, y =

[
0 0
1 0

]

and note that in the triangular decomposition g = n− ⊕ h⊕ n, we have

n− = C · x
h = C · h

n+ = C · y
.

Since the action is defined over b = h⊕ n and x acts by zero, we obtain a g-action on N which thus
extends uniquely to a U(g)- action.

Claim 2: We first note that since the submodule C ·u < M is closed under the action of h (since h
acts by u 7→ λu) and is equal to the image of ψ, we can identify C · u ∼= Cλ as U(b)-modules and
identify M(λ) as a submodule of N . Since submodules of N lift to submodules of Indg

bN , the map
ψ is an injection. Moreover, the map φ is a surjection, since the generator 1⊗ 1 of M(λ) is precisely
the image of one of the generators of M .

To see that the sequence is exact in the middle, we note that by choosing a PBW basis of sl(2,C)
and a basis {u,v} for N , we can obtain a basis of M of the form

{
yj ⊗ u, yk ⊗ v

∣∣∣ j, k ∈ Z≥0
}
.

This allows us to identify the lift of the submodule C · u to the span of
{
yk ⊗ u

}
in M . Then

im ψ ⊆ kerφ by construction, since

φ(yk ⊗ u) = φ(yk(1⊗ u)) = ykφ(1⊗ u) = yk(1⊗ u) = 0.

To see that kerφ ⊆ im ψ, we can use the same calculation to explicitly check the map on the
remaining basis elements:

φ(yk ⊗ v) = φ(yk(1⊗ v)) = ykφ(1⊗ v) = yk(1⊗ 1) = yk ⊗ 1 6= 0.
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Thus kerφ = im ψ, yielding exactness in the middle.

Claim 3: This follows from the checking the λ-weightspaces of both M and M(λ)⊕M(λ). Noting
that the matrix

[
λ 1 0 λ

]
is in Jordan Normal Form, we can read off that the λ is an eigenvalue

with multiplicity 2, and that the corresponding λ eigenspace is 1 dimensional since this is a single
Jordan block. However, the λ weight space of M(λ)⊕M(λ) is of dimension least 2.

�

2 Humphreys 3.2
Show that for M ∈ O and dimL <∞,

(M ⊗ L)∨ ∼= M∨ ⊗ L∨

Reference for Dual of Sum

2.1 Solution
We first note that M ∈ O =⇒ M =

⊕
λ∈h∨

Mλ where each Mλ is a finite-dimensional weight space.

Moreover, M∨ :=
⊕
λ∈h∨

M∨λ is defined to be a direct sum of duals of weight spaces, which are still

finite-dimensional.

So let M,N ∈ O; we will proceed by showing that both (M ⊗C L)∨ and M∨⊗∨C have identical direct
sum decompositions.

We first have

(M ⊗C L)∨ :=
⊕
λ∈h∨

(M ⊗C L)∨λ , the λ weight spaces of M ⊗C L

∼=
⊕
λ∈h∨

 ⊕
α+β=λ

(Mα ⊗C Lβ)

∨ by an exercise on the weight spaces of a tensor product

∼=
⊕
λ∈h∨

 ⊕
α+β=λ

(Mα ⊗C Lβ)∨
 since the inner term is a finite sum

∼=
⊕
λ∈h∨

 ⊕
α+β=λ

(
M∨α ⊗C L

∨
β

) since the weight spaces are finite-dimensional,

where we’ve repeatedly used the fact that (V ⊗W )∨ ∼= V ∨⊗W∨ for finite-dimensional vector spaces,
which inductively holds for any finite direct sum of vector spaces.
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On the other hand, using the fact that

(A⊕B)⊗ (C ⊕D) = ((A⊕B)⊗ C)⊕ ((A⊕B)⊗D)
= (A⊗ C)⊕ (B ⊗ C)⊕ (A⊗D)⊕ (B ⊗D)

=⇒

⊕
j∈J

Ai

⊗
⊕
k∈K

Bk

 =
⊕
j∈J

⊕
k∈K

(Aj ⊗Bk) by induction .

we can write

M∨ ⊗C L
∨ :=

⊕
α∈h∨

M∨α

⊗C

⊕
β∈h∨

L∨β


∼=
⊕
λ∈h∨

 ⊕
α+β=λ

(
M∨α ⊗C L

∨
β

),
which equals what was obtained above.

This exhibits the isomorphism as C-vector spaces, to see that this is in fact as isomorphism of
U(g)-modules we can use the fact that for M ∈ O, a twisted g-action was defined as

v ∈M, f ∈M∨, g ∈ g =⇒ (g · f)(v) = f(τ(g) · v)

for the transpose map τ . This action can be “linearly extended” over direct products and tensor
products by taking the action component-wise, and is thus preserved by all of the isomorphisms
appearing above.

Since the final terms
⊕
λ∈h

⊕
α+β=λ

M∨α ⊗ L∨β are identical, they carry the same action, and since they

are preserved by the isomorphisms, working backwards shows that the actions on (M ⊗ L)∨ and
M∨ ⊗ L∨ must also agree, yielding the desired isomorphism.

�

3 Humphreys 3.4
Show that Φ[λ]

⋂
Φ+ is a positive system in the root system Φ[λ], but the corresponding simple

system ∆[λ] may be unrelated to ∆.

For a concrete example, take Φ of type B2 with a short simple root α and a long simple root
β. If λ := α/2, check that Φ[λ] contains just the four short roots in Φ.

3.1 Solution
We would like to show the following two propositions:

1. Φ+
[λ] := Φ[λ]

⋂
Φ+ is a positive system in Φ[λ],

2. In general, the associated simple system ∆[λ] 6= Φ+
[λ]
⋂

∆.
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3.1 Solution

3.1.1 Proof of Proposition 1

We’ll use the definition that for an abstract root system Φ, a positive system Φ+ is defined by
picking a hyperplane H not containing any roots and taking all roots on one side of this hyperplane.

However, if every element of Φ+ is on one side of H, then any subset satisfies this property as well,
thus Φ[λ]

⋂
Φ+ consists only of positive roots and thus forms a positive system.

3.1.2 Proof of Proposition 2

Concretely, we can realize Φ and ∆ as subsets of R2 in the following way:

Φ = P1
∐
P2 := {[1, 0], [0, 1], [−1, 0], [0,−1]}

∐
{[1, 1], [−1, 1], [1,−1], [−1,−1]}

∆ := {α, β} := {[1, 0], [−1, 1]} ,

where we note that P1 consists of short roots (of norm 1) and P2 of long roots (of norm
√

2) and
we’ve chosen a simple system consisting of one short root and one long root.

Now by definition,

Φ[λ] :=
{
γ ∈ Φ

∣∣∣ 〈λ, γ∨〉 ∈ Z
}
, γ∨ := 2

‖γ‖2
γ,

∆[λ] :=
{
γ ∈ ∆

∣∣∣ 〈λ, γ∨〉 ∈ Z
}
.

Now choosing λ := α

2 =
[1

2 , 0
]
, we now consider the inner products

〈
λ, γ∨

〉
for γ ∈ Φ:

Thus

γ1 ∈ P1 =⇒
〈[1

2 , 0
]
, 2γ1

〉
= 2

(1
2

)
〈[1, 0], γ1〉 = (γ1)1 ∈ {0,±1} ∈ Z

γ2 ∈ P2 =⇒
〈
λ, γ∨2

〉
=
〈[1

2 , 0
]
,

2(√
2
)2 [±1,±1]

〉
= ±1

2 6∈ Z

where (γ1)1 denotes the first component of γ1.

We thus find that

Φ[λ] = P1 the short roots

∆[λ] = Φ[λ]
⋂

∆ = {α} the single short simple root.

Choosing the following hyperplane H not containing any root, we can choose a positive system:
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Φ+ = {β, β + α, β + 2α, α}

where we can note that Φ+⋂∆ = ∆, since we’ve placed both simple roots on the positive side of
this hyperplane by construction.

But by taking roots on the positive side of this plane, we have

Φ[λ] = {α,−α, α+ β,−α− β} =⇒ Φ+
[λ] = {α, α+ β}

where we can now note that a simple system in this root system must still have rank 2, so we can
take ∆[λ] = {α, α+ β}. But now we can note

∆[λ] = {α, α+ β} 6= {α} = {α, α+ β}
⋂
{α, β} = Φ+

[λ]
⋂

∆,

which is what we wanted to show.

�

4 Humphreys 3.7
a. If a module M has a standard filtration and there exists an epimorphism φ : M −→ M(λ),

prove that kerφ admits a standard filtration.

b. Show by example that when g = sl(2,C) that the existence of a monomorphism φ : M(λ) −→
M where M has a standard filtration fails to imply that cokerφ has a standard filtration.
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4.1 Solution

4.1 Solution
Haven’t had a chance to work this out yet!
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