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1 Humphreys 3.1

Let g = sl(2,C) and identify A € h" with a scalar. Let N be a 2-dimensional U (b)-module defined

by letting x act as 0 and h act as < ())\ i\ )

Show that the induced U (g)-module structure M := U(g) @) N fits into an exact sequence which
fails to split:

00— M\ — M — M) —0

1.1 Solution
Reference 1/ Reference 2
Hence M & O.

We first unpack all definitions in terms of tensor products, using the fact that M(\) = U(g) @y ) Ca:


https://math.stackexchange.com/questions/2272891/extension-of-dual-verma-module/2273008#2273008
https://aip.scitation.org/doi/full/10.1063/1.5121236

1.1 Solution

0 — M(\)

M) — 0
| | | | |

0 —— U(g) ®up) Cr —— U(g) ®uey N —— U(9) @) CA —— 0

1®1 % l1®u }% 1®0
1Qv —m — 1®1
where N = span¢ {u, v}.
We make the following claims:

1. The U(b) action defined on N lifts to a U(g)-action on M.
2. This is an exact sequence of U(g)-modules.
3. M % M(\) @ M(X), showing that this sequence can not split.

Claim 1: We choose the basis

S

and note that in the triangular decomposition g =n~ @ b & n, we have
" =C-z

f) C-

nt=C-

Since the action is defined over b = h @ n and x acts by zero, we obtain a g-action on N which thus
extends uniquely to a U(g)- action.

Claim 2: We first note that since the submodule C-u < M is closed under the action of h (since h
acts by u — Au) and is equal to the image of ¥, we can identify C-u = Cy as U(b)-modules and
identify M(A) as a submodule of N. Since submodules of N lift to submodules of Indj N, the map
1 is an injection. Moreover, the map ¢ is a surjection, since the generator 1 ® 1 of M () is precisely
the image of one of the generators of M.

To see that the sequence is exact in the middle, we note that by choosing a PBW basis of sl((2, C)
and a basis {u,v} for N, we can obtain a basis of M of the form {yj Qu,yf v ‘ j, k€ Zzo}.
This allows us to identify the lift of the submodule C - u to the span of {yk ® u} in M. Then
im ¢ C ker ¢ by construction, since

d(yF @u) =0 1ou) =ys(leu)=y"1ou) =0.

To see that ker ¢ C im v, we can use the same calculation to explicitly check the map on the
remaining basis elements:

o(yF@v)=oyF1lev) =yo(lav)=y1el)=y a1#0
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Thus ker ¢ = im v, yielding exactness in the middle.

Claim 3: This follows from the checking the A-weightspaces of both M and M (\) @ M (\). Noting
that the matrix {)\ 10 A} is in Jordan Normal Form, we can read off that the A is an eigenvalue

with multiplicity 2, and that the corresponding A eigenspace is 1 dimensional since this is a single
Jordan block. However, the A weight space of M () & M () is of dimension least 2.

2 Humphreys 3.2
Show that for M € O and dim L < oo,

(Me L)Y ~2M'®LY
Reference for Dual of Sum

2.1 Solution

We first note that M € O — M = @ M)y, where each M) is a finite-dimensional weight space.
Aepv

Moreover, M" = EB My is defined to be a direct sum of duals of weight spaces, which are still
Aepv
finite-dimensional.

So let M, N € O; we will proceed by showing that both (M ®c L) and M " ®¢ have identical direct
sum decompositions.

We first have

(M ®c L)Y = @ (M ®c L)Y, the \ weight spaces of M ®¢ L
Aepv

v
= @ @ (My ®c Lg) by an exercise on the weight spaces of a tensor product
AehY \a+p=\

= @ @ (M, ®c Lg)" | since the inner term is a finite sum
AehY \a+p=\

= @ @ (M;/ ®c LE) since the weight spaces are finite-dimensional,
AehY \a+p=\

where we’ve repeatedly used the fact that (V@ W)Y = VY@ W for finite-dimensional vector spaces,
which inductively holds for any finite direct sum of vector spaces.
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https://mathoverflow.net/questions/56255/duals-and-tensor-products

On the other hand, using the fact that

(AeB)@(CeD)=(AeB)C)®((AeB)® D)
=(AC)a(B(C)®a(A®D)® (B®D)

= (@ Ai) ® (@ Bk> = @ @ (Aj ® Bg) by induction

jeJ keK jeJ keK

we can write

aehY BepY

MY @c LY = (@ Mgf) ®c (@ Lg)

I

[ ( D (ng@ch)),
AehY \a+B=X

which equals what was obtained above.

This exhibits the isomorphism as C-vector spaces, to see that this is in fact as isomorphism of
U(g)-modules we can use the fact that for M € O, a twisted g-action was defined as

veM, feM', geg = (g9-f)(v)=f(r(g)-v)

for the transpose map 7. This action can be “linearly extended” over direct products and tensor
products by taking the action component-wise, and is thus preserved by all of the isomorphisms
appearing above.

Since the final terms @ @ MY ® Lg are identical, they carry the same action, and since they
AEh a+pB=A

are preserved by the isomorphisms, working backwards shows that the actions on (M ® L)" and

MY ® LV must also agree, yielding the desired isomorphism.

3 Humphreys 3.4

Show that @y ﬂ ®* is a positive system in the root system @y, but the corresponding simple
system Ay may be unrelated to A.

For a concrete example, take ® of type Bs with a short simple root a and a long simple root
B. If A := a/2, check that @[5 contains just the four short roots in ®.

3.1 Solution
We would like to show the following two propositions:
1. (IDF;\] =Py ﬂ &7 is a positive system in IR
2. In general, the associated simple system Ay # (ID[J;\] ﬂ A.
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3.1 Solution

3.1.1 Proof of Proposition 1

We'll use the definition that for an abstract root system ®, a positive system ®7 is defined by
picking a hyperplane H not containing any roots and taking all roots on one side of this hyperplane.

However, if every element of ®* is on one side of H, then any subset satisfies this property as well,
thus @y ﬂ ®* consists only of positive roots and thus forms a positive system.

3.1.2 Proof of Proposition 2

Concretely, we can realize ® and A as subsets of R? in the following way:

¢ = PlHP2 = {[170]7 [07 1]7 [_170]7 [07 _1]} H {[17 1]7 [_17 1]7 [17 _1]7 [_17 _1}}
A= {a76} = {[170]7 [_17 1]}7
where we note that P; consists of short roots (of norm 1) and Py of long roots (of norm v/2) and

we’ve chosen a simple system consisting of one short root and one long root.

Now by definition,

Dpyy = {'y cd ‘ (A, VY e Z}, Vo= v,

2
7112
Apy = {'y €A ‘ (A, YY) e Z}.

1
Now choosing A := % = {2, 0], we now consider the inner products (\, ’yv> for v € &:
Thus
1 1
’Ylepl — 570 ) 271 =2 5 <[170]7 71>:(’Yl)1€{07i1}€Z
v 1 2 1
726P2:><)\a 72>: 5707 2[:|:1,:|:1] :iigz
(v2)

where (1)1 denotes the first component of ;.

We thus find that

Q=1 the short roots
Apy = Ppy ﬂ A ={a} the single short simple root.

Choosing the following hyperplane H not containing any root, we can choose a positive system:
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ot ={B,8+a, B+ 20,0}

where we can note that ﬂ A = A, since we’ve placed both simple roots on the positive side of
this hyperplane by construction.

But by taking roots on the positive side of this plane, we have
(b[)\] = {Oé,—Oé,Oé—FB,—O[—,B} = q)[;] = {a’a+ﬁ}

where we can now note that a simple system in this root system must still have rank 2, so we can
take Apy) = {a,a + #}. But now we can note

Apg = {o,a+ B} £ {a} = {a,a+ B}({a, B} = B A,

which is what we wanted to show.

4 Humphreys 3.7

a. If a module M has a standard filtration and there exists an epimorphism ¢ : M — M (),
prove that ker ¢ admits a standard filtration.

b. Show by example that when g = sl(2,C) that the existence of a monomorphism ¢ : M(\) —
M where M has a standard filtration fails to imply that coker ¢ has a standard filtration.
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4.1 Solution

4.1 Solution

Haven'’t had a chance to work this out yet!
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