# Monday January 27th ## Section 1.4 Fix $\Delta = \theset{\alpha_1, \cdots, \alpha_\ell}$, $x_i \in g_{\alpha_i}$ and $y_i \in g_{-\alpha_i}$ with $h_i = [x_i y_i]$. Lemma : For $k\geq 0$ and $1 \leq i, j \leq \ell$, a. $[x_j y_i^{k+1}] = 0$ if $j\neq i$ b. $[h_j y_i^{k+1}] = -(k+1) \alpha_i(h_j) y_i^{k+1}$ c. $[x_i y_i^{k+1}] = (k+1) y_i^{k} (k\cdot 1 - h_i)$. Proof (Sketch for (c)) : By induction, where $k=0$ is clear. \begin{align*} [x+i y_i^{k+1}] &= [x_i y_i] y_i^k + y_i [x_i y_i^k] \\ &=h_i y_i^k + y_i(-k y_i^{k-1} ((k-1)1 - h_i)) \quad\text{by I.H.} \\ &= (k+1)y_i^k h_i - (k^2 -k + 2k)y_i^k \\ &= -(k+1) y_i^k ( k\cdot 1 - h_i ) .\end{align*} Proposition (Existence of Morphisms of Verma Modules) : Suppose $\lambda \in \lieh\dual, \alpha \in \Delta$, and $n\definedas (\lambda, \alpha\dual) \in \ZZ^+$. Then in $M(\lambda)$, $y_\alpha^{n+1} v^+$ is a maximal weight vector of weight $\mu \definedas \lambda - (n+1)\alpha < \lambda$. > Note this is free as an $U(\lien^-)\dash$module, so $v^+ \neq 0$. > Note that $n = \lambda(h_\alpha)$. By the universal property, there is a nonzero homomorphism $M(\mu) \to M(\lambda)$ with image contained in $N(\lambda)$, the unique maximal proper submodules of $M(\lambda)$. Proof : Say $\alpha = \alpha_i$. Fix $j\neq i$. \begin{align*} x_i y_\alpha^{n+1} \tensor 1 &= [x_j y_i^{n+1}] \tensor 1 + y_i^{n+1} \tensor x_j \cdot 1 \\ &= [x_j y_i^{n+1}] \tensor 1 + y_i^{n+1} \tensor 0 \quad\text{by a} \\ &= 0 .\end{align*} \begin{align*} x_i y_i^{n+1} \tensor 1 &= [x_i y_i^{n+1} \tensor 1] \\ &= -(n+1) y_i^n (n\cdot 1 - h_i) \tensor 1 \\ &= -(n+1) (n - \lambda(h_i)) 1 \tensor 1 \\ &\definedas -(n+1) (\lambda(h_i) - \lambda(h_i)) 1 \tensor 1 \\ &= 0 .\end{align*} Since $g_{\alpha_j}$ generate $\lien$ as a Lie algebra, since $[\lieg_\alpha, \lieg_\beta] = \lieg_{\alpha + \beta}$. This shows that $\lien \cdot y_i^{n+1} v^+ = 0$, and the weight of $y_i^{n+1} v^+$ is $\lambda - (n+1)\alpha_i$. So $y_i^{n+1}$ is a maximal vector of weight $\mu$. The universal property implies there is a nonzero map $M(\mu) \to M(\lambda)$ sending highest weight vectors to highest weight vectors and preserving weights. The image is proper since all weights of $M_\mu$ are less than or equal to $\mu < \lambda$. Consider $\liesl(2)$, then $M(1) \supset M(-3)$. Note that reflecting through 0 doesn't send 1 to -3, but shifting the origin to $-1$ and reflecting about that with $s_\alpha \cdot$ fixes this problem. Note that $L(1)$ is the quotient. For $\lambda \in \lieh\dual$ and $\alpha \in \Delta$, we can compute $s_\alpha \cdot \lambda \definedas s_\alpha(\lambda + \rho) - \rho$ where $\rho = \sum_{j=1}^\ell e_i$. Then $(w_j, \alpha_i\dual) = \delta_{ij}$ and $(\rho, \alpha_i\dual) = 1$. \begin{align*} s\alpha \cdot \lambda &= s_\alpha(\lambda + \rho) - \rho \\ &= (\lambda + \rho) - (\lambda + \rho, \alpha\dual)\alpha -\rho \\ &= \lambda + \rho - ((\lambda< \alpha\dual) +1)\alpha - \rho \\ &= \lambda - (n+1)\alpha \\ &= \mu .\end{align*} So this gives a well-defined, nonzero map $M(s_\alpha \cdot \lambda) \to M(\lambda)$ for $s_\alpha \cdot \lambda < \lambda$. ![Image](figures/2020-01-27-09:35.png)\ Corollary : Let $\lambda, \alpha, n$ be as in the above proposition. Let $\bar v^+$ now be a maximal vector of weight $\lambda$ in $L(\lambda)$. Then $y_\alpha^{n+1} \bar v^+ = 0$. Proof : If not, then this would be a maximal vector, since it's the image of the vector $y_i^{n+1}v^+ \in M(\lambda)$ under the map $M(\lambda) \to L(\lambda)$ of weight $\mu < \lambda$. Then it would generate a proper submodules of $L(\lambda)$, but this is a contradiction since $L(\lambda)$ is irreducible. ## Section 1.5 Example: $\liesl(2)$. What do Verma modules $M(\lambda)$ and their simple quotients $L(\lambda)$ look like? Fix a Chevalley basis $\theset{y,h,x}$ and let $\lambda \in \lieh\dual \cong \CC$. Fact 1 : For $v^+ = 1\tensor 1_\lambda$, we have $$M(\lambda) = U(\lien^-) v^+ = \CC \generators{y^i v^+ \suchthat i\in \ZZ^+}$$ is a basis for $M(\lambda)$ with weights $\lambda - 2i$ where $\alpha$ corresponds to 2. So the weights of $M(\lambda)$ are $\lambda, \lambda-2, \lambda-4, \cdots$ each with multiplicity 1. Letting $v_i = \frac 1 {i!} y^i v^+$ for $i\in \ZZ^+$; this is a basis for $M(\lambda)$. Using the lemma, we have \begin{align*} h\cdot v_i &= (\lambda - 2i) v_i \\ y \cdot v_i &= (i+1) v_{i+1} \\ x\cdot v_i &= (\lambda - i + 1)v_{i-1} .\end{align*} Note that these are the same for *finite-dimensional* $\liesl(2)\dash$modules, see section 0.9. Fact (2) : We know from the proposition that if $\lambda \in \ZZ^+$, i.e. $(\lambda, \alpha\dual) \in \ZZ^+$, then $M(\lambda)$ has a maximal vector of weight $$\lambda - (n+1)\alpha = \lambda - (\lambda+1)2 = -\lambda-2 = s_\alpha \cdot \lambda.$$ Exercise : Check that this maximal vector generates the maximal proper submodule $$N(\lambda) = M(-\lambda - 2).$$ So the quotient $L(\lambda) = M(\lambda) / N(\lambda) = M(\lambda) / M(-\lambda - 2)$ has weights $\lambda, \lambda-2, \cdots, -\lambda+2, -\lambda$. So when $\lambda \in \ZZ^+$, $L(\lambda)$ is the familiar simple $\liesl(2)\dash$module of highest weight $\lambda$. Fact (3) : When $\lambda \not\in\ZZ^+$, - $N(\lambda) = \theset{0}$, - $M(\lambda) = L(\lambda)$, - $M(\lambda)$ is irreducible - $L(\lambda)$ is infinite dimensional. Proof : Argue by contradiction. If not, $M(\lambda) \supset M \neq 0$ is a proper submodule. So $M\in \OO$, and thus $M$ has a maximal weight vector $w^+$, and by the restriction of weights for modules in $\OO$, we know $w^+$ has height $\lambda - 2m$ for some $m\in \ZZ^+$. Then $w^+ = c v_i$ where $0\neq c \in \CC$, and taking $v_{-1} \definedas 0$ and $x\cdot v_i = (\lambda - i + 1)v_{i-1}$ for $i\geq 1$, so $\lambda = i-1 \implies \lambda \in \ZZ^+$.