# Wednesday March 4th ## Projective Generators and Finite Dimensional Algebras :::{.remark} Let $\OO_\chi = \OO_{\chi_\lambda}$ for $\lambda \in \lieh\dual$ antidominant. Consider $$ \bigoplus_{w\in W/W_{\lambda + \rho}} n_w P(w\cdot \lambda) $$ where each $n_w > 0$; then $\theset{P(w\cdot \lambda)}_{w}$ represents all isomorphism classes of indecomposable projectives in $\OO_\chi$. This implies that for all $M\in \OO_\chi$, there exists an $n>0$ such that $P^{\oplus n} \surjects M$. The objective $P$ is called a **projective generator** of the category $\OO_{\chi}$. Define $A \definedas \Endo_\OO(P)$, which is a finite-dimensional algebra by theorem 1.11. ::: :::{.proposition title="?"} The functor $\hom_\OO(P, \wait): \OO_\chi \mapsvia{\sim} \modsright{A}$, and this is an equivalence of categories. ::: :::{.proof title="?"} This is a standard argument in Morita theory. The right $A\dash$module structure on $\hom(P, \wait)$ is given taking fixing some module $M$, taking $\phi \in \hom(P, M)$ and $\eta \in \Endo_\OO(P)$, then $\phi \circ \eta: P \to P \to M$ yields a new map $P\to M$. ::: :::{.remark} Note that we're skipping 3.14, 3.15, which are important for non-integral theory. We'll focus on the integral case so we can get to Kazhdan-Lusztig theory in chapter 8. ::: ## Chapter 4: Highest Modules I :::{.question} \envlist - What is $\hom_\OO(M(\mu), M(\lambda))$? - When is $M(\lambda) = L(\lambda)$ - When is $[M(\lambda): L(\mu)] \neq 0$? - Really, what are these multiplicities? - To what extent do these properties only depend on $W$? ::: :::{.remark} If we know the multiplicities, we can reduce to Verma modules, which are known. This allows us to get the characters to all simple modules. ::: ### 4.1: Simples Submodules of Verma Modules :::{.remark} We know that $M(\lambda) \mapstofrom U(\lien^-)$, which is Noetherian and has no zero divisors. ::: :::{.lemma title="?"} Let $R$ be a left Noetherian ring, $x\neq 0 \in R$ not a right zero divisor, and $I$ any nonzero left ideal in $R$. Then $Rx \intersect I \neq 0$, if $R$ has no right zero divisors, then any two nonzero left ideals intersect nontrivially. ::: :::{.proof title="?"} Suppose $Rx \intersect I = \{0\}$, then there is a chain of left ideals $$ 0 \subset I \subset I + Ix \subset I+ Ix + Ix^2 \subset \cdots $$ We claim all of these sums are direct: Suppose $a_0 + a_1 x + \cdots + a_n x^n = 0$ for $a_i \in I$. We'll show that all $a_i = 0$ by induction on $n$. Write $a_0 = -(a_1 + \cdots + a_n x^{n-1})x \in I\intersect Rx = 0$, then since $a$ is not a left zero divisor, the remaining term is zero and of smaller degree. But then the chain above is *strictly* increasing, contradicting the fact that $R$ is left-Noetherian. ::: Applying the proposition to $R = U(\lien^-)$, we obtain the following: :::{.proposition title="?"} $M(\lambda)$ has a unique simple submodule, so $\text{socle}(M(\lambda)) = L(\mu)$ for some $\lambda \geq \mu \in W\cdot \lambda$. ::: :::{.proof title="?"} If $M(\lambda)$ had distinct simple submodules $L, L'$, then $L \intersect L' = 0$. On the other hand, $M(\lambda) \cong U(\lien^-)$ as $U(\lien^-)\dash$modules, and submodule correspond to left ideals. But by the proposition, $L \intersect L' \neq 0$. ::: :::{.question} Which single $L(\mu)$ is the socle[^socle_reminder_1] for $M(\lambda)$. [^socle_reminder_1]: Recall that the socle is the direct sum of all simple submodules. ::: ### 4.2: Homomorphisms Between Verma Modules :::{.remark} Suppose $\phi: M(\mu) \to M(\lambda)$ with highest weight vectors $v_\mu, v_\lambda$ where $v_\mu \mapsto u \cdot v_{\lambda}$ with $u\in U(\lien^-)$. Similarly, an arbitrary element in the domain is of the form $u' \cdot v_\mu$, which maps to $u'u\cdot v_\lambda$. Thus $\phi$ is entirely determined by the image of the maximal vector $v_\mu$. ::: :::{.theorem title="?"} Let $\lambda, \mu \in \lieh\dual$, then a. Any nonzero morphism $\phi: M(\mu) \to M(\lambda)$ is injective. b. $\dim_\CC \hom_\OO(M(\mu), M(\lambda)) \leq 1$ c. $\soc M(\lambda)$ is a Verma module equal to $L(\mu) = M(\mu)$. ::: :::{.proof title="of a"} $\phi \neq 0 \iff u \neq 0$, but $u' u \neq 0$ for all $0\neq u'\in U(\lien^-)$ since $U(\lien^-)$ has no zero divisors. Since $M(\lambda)$ is a free $U(\lien^-)\dash$module, $u' u \cdot v_\lambda \neq 0$ for every $u' \neq 0$, and thus $\ker \phi = 0$. ::: :::{.proof title="of b"} We want to show that any two nonzero morphisms are scalar multiples. See diagram. Note that $L$ is simple, as are $L_1, L_2$, but $M(\lambda)$ has a unique simple submodule, so $L' \da L_1 = L_2$ is unique. Then $\phi_2\inv \phi_1: L\selfmap$, and by the analog of Schur's Lemma for $\OO$ (Theorem 1.3), $\Endo_\OO(L) \cong \CC$ So $\phi_1, \phi_2$ restrict to the same map on $L$. But then $\restrictionof{\phi_1 - c\phi_2}{L} = 0_L$, whereas by (a) this must be injective or 0, so $\phi_1 = c\phi_2$. ::: :::{.proof title="of c"} Say $\soc M(\lambda) = L(\mu)$. Then there is a nonzero \[ \phi: M(\mu) \surjects L(\mu) \injects M(\lambda) ,\] which by (b) is injective, which forces $N(\mu) = 0$ and thus $M(\mu) = L(\mu)$. ::: :::{.remark} Whenever $\hom_\OO(M(\mu), M(\lambda)) \neq 0$, we can unambiguously write $M(\mu) \subset M(\lambda)$ since the highest weight vector must map to a scalar multiple. ::: :::{.question} When does $M(\mu) \subset M(\lambda)$ occur? ::: :::{.remark} We already know that if $(\lambda+\rho, \alpha\dual) \in \ZZ^{> 0}$ and $\alpha \in \Delta$ then $M(s_\alpha, \lambda) \subset M(\lambda)$. ::: ### Special Case: Dominant Integral Weights :::{.remark} Assume $\lambda + \rho \in \Lambda^+$, which occurs iff $(\lambda + \rho, \alpha\dual) \in \ZZ^+$ for all $\alpha\in \Delta$. Note that $\lambda = -\rho$ is a simple example. ::: :::{.proposition title="?"} Suppose $\lambda + \rho \in \Lambda^+$. Then a. $M(w\cdot \lambda) \subset M(\lambda)$ for all $w\in W$. b. Hence $[M(\lambda): L(w\cdot \lambda)] > 0$. More precisely, if $w = \prod s_{\alpha_i}$ is reduced and $\alpha_i \in \Delta$, defining $\lambda_k \definedas \prod_{i=1}^k s_{\alpha_i} \lambda$, then there is a composition series $$ M(w\cdot \lambda) = M(\lambda_n) \subset M(\lambda_{n-1}) \subset \cdots \subset M(\lambda_0) = M(\lambda) $$ and in fact $(\lambda_k + \rho, \alpha_{k+1}\dual) \in \ZZ^{>0}$. :::