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1 Chapter 1

This chapter deals with the basics of ideal theory and prime ideals. Rings,
ring homomorphisms, and quotiens of them are defined. “Must-knows”:
zero-divisor, integral domain, nilpotent, unit, principal ideal, field (in a field,
1 6= 0).

1.1 Basic ideal theory

We have the following useful result:

Proposition 1.1. Let A be a non-zero ring. TFAE:
1) A is a field.
2) the only ideals in A are 0 and (1)
3) Every homomorphism of A into a non-zero ring B is injective.
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We have alternative definitions of prime and maximal ideals:

p is prime, A/p is an integral domain

m is maximal, A/m is a field

The contraction of a prime ideal is a prime ideal. The contraction of a
maximal ideal is not necessarily a maximal ideal.

Proposition 1.2. Every non-unit in A is contained in some maximal ideal.

Definition 1.3. A ring with only one maximal ideal is a local ring. The
field A/m is called the residue field.

Proposition 1.4. 1) Let m 6= (1) such that all x 2 A � m is a unit. Then
A is a local ring and m its maximal ideal.
2) Let m be a maximal ideal of A. If every element of 1 +m is a unit, then
A is a local ring.

The nilradical is the set of all nilpotent elements in the ring, and it is
an ideal. Also:

Proposition 1.5. The nilradical is the intersection of all prime ideals in
A.

R(A) =
\

p⇢A

p

Proof. We let R denote the nilradical and R0 denote the intersection of all
prime ideals in A.

First, assume f is nilpotent and let p be a prime ideal. Then fn = 0 2 p
for some n. Since p is prime, f 2 p, so f 2 R0 (since p was arbitrary).

Now, assume f is not nilpotent and let ⌃ be the set of ideals a such that

n > 0) fn /2 a

⌃ is non-empty since 0 2 ⌃. By Zorn’s lemma, ⌃ has a maximal element
p. Let x, y /2 p. Then p is strictly contained in p + (x) and p + (y), so
by maximality they don’t belong to ⌃. By the definition of ⌃, we have
fm 2 p+(x) and fn 2 p+(y) for some m,n. It follows that fm+n 2 p+(xy),
so p + (xy) /2 ⌃, so xy /2 p. Hence p is a prime ideal not containing f , so
f /2 R0.1

1
Note that if A is Noetherian, then we need not use Zorn’s lemma. Every set of ideals

in a Noetherian ring has a maximal element.
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The Jacobson radical of A is the intersection of all the maximal ideals
of A.

Proposition 1.6. Let the Jacobson radical be denoted by J. Then

x 2 J, 1� xy is a unit in A for all y 2 A

One can form the sum of any family of ideals, the product of any finite
set of ideals. The intersection of any family of ideals is an ideal.

Definition 1.7. Two ideals a, b are coprime if a+ b = (1).

Proposition 1.8. Let A be a ring and let a1, . . . , an be ideals of A. Define

� : A!
nY

i=1

(A/a
i

)

by x 7! (x+ a1, . . . , x+ a
n

). Then
1) If the a

j

are pairwise coprime, then ⇧a
i

= \a
i

.
2) � is surjective , the a

j

are pairwise coprime.
3) � is injective , \a

i

= (0).

For prime ideals we have the following important result:

Proposition 1.9. 1) Let p1, . . . , pn be prime ideals and let a ✓ [n
i=1pi.

Then a ✓ p
i

for some i.
2) Let a1, . . . , an be ideals and let p be a prime ideal such that \n

i=1ai ✓ p.
Then a

i

✓ p for some i. If p = \a
i

, then p = a
i

.

We can “divide” ideals.

Definition 1.10. If a, b are ideals in A, their ideal quotient is

(a : b) = {x 2 A|xb ✓ a}

Example: (6 : 2) = (3). The annihilator of b is (0 : b) = Ann(b).
Thus the set of zero-divisors is

D =
[

x 6=0

Ann(x)

We have
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Proposition 1.11.

a ✓ (a : b) (a : b)b ✓ a

(\
i

a
i

: b) = \
i

(a
i

: b) (a :
P

i

b
i

) = \
i

(a : b
i

)

and ((a : b) : c) = (a : bc) = ((a : c) : b).

Definition 1.12. The radical of a is

r(a) = {x 2 A|xn 2 a for some n > 0}

Or equivalently, the contraction of the nilradical in A/a.

Example: r(x2, y3) = (x, y). We have

Proposition 1.13.

r(a) ◆ a r(r(a)) = r(a)

r(ab) = r(a \ b) = r(a) \ r(b) r(a) = (1), a = (1)

r(a+ b) = r(r(a) + r(b)) r(pn) = p for all prime p

Proof. We prove only r(a + b) = r(r(a) + r(b)). Since a + b ✓ r(a) + r(b),
the inclusion r(a + b) ✓ r(r(a) + r(b)) is obvious. Conversely, let x 2
r(r(a) + r(b)). Then x is on the form x = r + q with r 2 r(a) and q 2 r(b).
That is, rk 2 a and ql 2 b for some k, l > 0. Then xk+l+1 2 a+ b.

Proposition 1.14. The radical of a is the intersection of the prime ideals
containing a.

Example 1: We want to find the radical of the ideal I = (x2y, y2x) in
the polynomial ring k[x, y], where k is a field. We have I = (x2y)+(y2x), and
so r(x2y, y2x) = r((x2y)+ (y2x)) = r(r(x2y)+ r(y2x)) = r((x, y)+ (x, y)) =
r(x, y) = r(x, y), since (x, y) is prime.

Example 2: Continouing the previous example, we want to find the
ideal quotient (I : xy). That is, all f 2 k[x, y] such that fxy 2 I. The
natural guess is (x, y). Obviously, (x, y) ✓ (I : xy) (since every element of
(x, y) is of the form fx+ gy). But (x, y) is maximal, so (x, y) = (I : xy).

Example 3: We will find the radical of J = (x3, x2y) ✓ k[x, y]. But this
is easy, using the same technique as in Example 1: r(x3, x2y) = r((x3) +
(x2y)) = r(r(x3)+r(x2y)) = r(r(x)+r(x2)\r(y)) = r((x)+(xy)) = r(x) =
(x) since (x) is prime.

Example 4: We will find the annihilator of (xy) in k[x, y]/J . This is the
same as finding the ideal quotient (J : xy) in k[x, y]. That is, all f 2 k[x, y]
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such that fxy 2 (x3, x2y). What must such an f satisfy? First of all, it need
not divide y, because for any f , we have fxy 2 (y). But f must divide x,
so f is of the form f = gx, so fxy = fx2y 2 (x2, y) ✓ J . So (x) ✓ (J : xy).
Since (x) is maximal, we have an equality.

1.2 Various small-facts

If x is nilpotent, then 1 + x is a unit. In the ring A[x] the Jacobson radical
equals the the nilradical. The set of prime ideals in A has minimal elements
with respect to inclusion2.

2 Modules

Modules, finitely-generatedness, tensor products, exact sequences, flatness.
An A-module is an abelian group M on which A acts linearly. More

precisely, it is a pair (M,µ), with µ : A ⇥M ! M a linear mapping in
the obvious sense. It is crucial to remember that di↵erent A-modules may
consist of the same abelian group M but with di↵erent mappings µ.

2.1 Various simple facts

An A-module homomorphism must satisfy f(x + y) = f(x) + f(y) and
f(ax) = af(x). The set of A-module homomorphisms M ! N has an
obvious A-module structure. We denote it by Hom

A

(M,N).
There is a natural isomorphism Hom(A,M) ⇠= M . (by f 7! f(1))

Proposition 2.1. 1) If L ◆M ◆ N are A-modules, then

(L/N)/(M/N) ⇠= L/M

2) If M1,M2 are submodules of M , then

(M1 +M2)/M1
⇠= M2/(M1 \M2)

Definition 2.2. An A-module is faithful if Ann(M) = 0. If Ann(M) = a,
then M is faithful as an A/a-module.

Definition 2.3. If M =
P

i2J Axi, the x
i

are said to be a set of genera-

tors of M . If J is finite, then M is finitely-generated.

2
The proof of this fact requires the choice axiom, but for Artinian rings, it follows by

d.c.c.
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Definition 2.4. If (M
i

)
i2J is any family of A-modules, their direct sum

�
i2JMi

consists of families (x
i

)
i2J with almost all x

i

= 0 (thus addition is
well-defined within the direct sum). Dropping the restriction on the number
of nonzero elements, we get the direct product.

Proposition 2.5. M is a finitely-generated A-module , M is isomorphic
to a quotient of An for some integer n > 0. (or equivalently, there exists a
surjection � : An !M)

Proposition 2.6 (Nakayama’s lemma). Let M be a finitely generated A-
module and a an ideal of A contained in the Jacobson radical of A. Then
aM = M implies M = 0.

Proof. Suppose M 6= 0. And let u1, . . . , un be a set of generators of M .
We may assume it is a minimal generating set. Then u

n

2 aM , so u
n

=P
n

i=1 aiui for some a
i

2 a. Hence

(1� a
n

)u
n

=
n�1X

i=1

a
i

u
i

Since a
n

is contained in the Jacobson radical, 1�a
n

is a unit, and multiplying
by its inverse on both sides of the equation tells us that u

n

may be expressed
entirely in terms of the u

i

(1  i  n � 1), contradicting our assumption
that the u

i

(1  i  n) was a minimal generating set.

2.2 Exact sequences

Exact sequences allows to draw diagrams, assisting us in our constant strug-
gle to understand morphisms between modules. But seriously:

Definition 2.7. A sequence of A-modules and A-module homomorphisms

. . . //M
i�1

fi //M
i

fi+1 //M
i+1

// . . .

is exact if Im(f
i

) = Ker(f
i+1) for each i.

In particular

0 //M 0 f //M is exact , f is injective

M
g //M 00 // 0 is exact , f is surjective

.

7



Proposition 2.8. The sequence

M 0 u //M
v //M 00 // 0

is exact if and only if the sequence

0 // Hom(M 00, N) v̄ // Hom(M,N) ū // Hom(M 0, N)

is exact for all A-modules N .

Proposition 2.9. The sequence

0 // N 0 u // N
v // N 00

is exact if and only if the sequence

0 // Hom(M,N 0) ū // Hom(M,N) v̄ // Hom(M,N 00)

is exact for all A-modules M .

We also have the famous “Snake Lemma”:

Proposition 2.10. Given the commutative diagram

0 //M 0 u //

f

0

✏✏

M
v //

f

✏✏

M 00 //

f

00

✏✏

0

0 // N 0 u

0
// N

v

0
// N 00 // 0

with the rows exact, there is an exact snake:

0 // Ker(f 0) // Ker(f) // Ker(f 00) //

Coker(f 0) // Coker(f) // Coker(f 00) // 0

2.3 Tensor product of modules

Let M,N,P be three A-modules. A mapping f : M ⇥N ! P is A-bilinear
if for each x 2 M , the mapping y 7! f(x, y) of N into P is A-linear, and
similarly for each y 2 M . The tensor product M ⌦

A

N of M and N has
the following universal property:
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Definition 2.11. Let M,N be A-modules. Let g : M ⇥ N ! M ⌦ N be
given by (m,n) 7! m ⌦ n. (it is bilinear by a construction of the tensor
product)

Given any A-module P and any A-bilinear mapping f : M ⇥ N ! P ,
there exists a unique A-bilinear mapping f 0 : M⌦N ! P such that f = f 0�g.

Moreover, for any other A-module T and homomorphism g0 : M⇥N ! T
satisfying these properties, there is a unique isomorphism j : M ⌦ N ! T
such that j � g = g0.

Graphically:

M ⇥N
f //

g

✏✏

P

M ⌦N
9!f 0

;;

The tensor product may be constructed in various ways, but all its relevant
properties follow from its universal property. For example, the bilinearity of
g follows from the construction of the tensor product in Atitah-MacDonald
- however, because of the uniqueness property, every other construction will
have this property.

We have

(x+x0)⌦y = x⌦y+x0⌦y, x⌦(y+y0) = x⌦y+x⌦y0, (ax)⌦y = x⌦(ay) = a(x⌦y)

We have canonical isomorphisms:

Proposition 2.12. Let M,N,P be A-modules. There exists unique isomor-
phisms
1) M ⌦N ! N ⌦M
2) (M ⌦N)⌦ P !M ⌦ (N ⌦ P )!M ⌦N ⌦ P
3) (M �N)⌦ P ! (M ⌦ P )� (N ⌦ P )
4) A⌦M !M

2.4 Exactness properties of the tensor product

Proposition 2.13. We have a canonical isomorphism

Hom(M ⌦N,P ) ⇠= Hom(M,Hom(N,P ))

Proof. Let f : M ⇥ N ! P be any A-bilinear mapping. For each x 2 M ,
the mapping y 7! f(x, y) is A-linear, hence we have a homomorphism M !
Hom(N,P ) (sending x to the mapping defined by y 7! f(x, y)). Conversely,
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any A-homomorphism � : M ! Hom(N,P ) defines a A-bilinear map M ⇥
N ! P , namely (x, y) 7! �(x)(y). Hence the set S of all bilinear mappings
M⇥N ! P is in one-to-one correspondence with Hom(M,Hom(N,P )). On
the other hand, S is in one-to-one correspondence with Hom(M ⌦N,P ) by
the defining property of the tensor product. Hence the result.

If we let T (M) = M ⌦ N and U(P ) = Hom(N,P ), the proposition
takes the form Hom(T (M), P ) = Hom(M,U(P )). In a language of abstract
nonsense3 this proposition tells us that the functor T is a left adjoint of the
functor U , and likewise U is a right adjoint for T . (we leave it to the reader
to check that T, U really are functors)

This gives us the important result concerning exactness and tensor prod-
ucts:

Proposition 2.14. Let

M 0 f //M
g //M 00 // 0

be an exact sequence of A-modules, and let N be any A-module. Then the
sequence

M 0 ⌦N
f⌦1 //M ⌦N

g⌦1 //M 00 ⌦N // 0

is exact.

Proof. Repeated use of (2.9) and the bijection of the previous proposition.

The functor T
N

: M 7! M ⌦
A

N on the category of A-modules and
homomorphisms is not in general exact, that is, tensoring with N does
not always take an exact sequence to an exact sequence. The previous
proposition is surely nice to have, but it restricts to the case when g is
surjective.

Definition 2.15. If T
N

is exact, then N is said to be a flat A-module.

Example: Consider the exact sequence

0 // Z ·2 // Z
3
There are of course many possible languages of abstract nonsense. We are of course

talking about the language of category theory.
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If we tensor with Z/2Z, we get the sequence

0 // Z⌦ Z/2Z ·2⌦1 // Z⌦ Z/2Z

But (f ⌦ 1)(x⌦ y) = 2x⌦ y = x⌦ 2y = 0.

Proposition 2.16. For an A-module N , TFAE:
1) N is flat
2) If E is an exact sequence of A-modules, then E ⌦N is exact.
3) If f : M !M 0 is injective, then f ⌦ 1 : M ⌦N !M 0 ⌦N is injective.

Proposition 2.17. If f : A! B is a ring homomorphism and M is a flat
A-module, then B ⌦

A

M is a flat B-module.

Proof. (B ⌦
A

M)⌦
B

N ⇠= M ⌦
A

(N ⌦
B

B) ⇠= M ⌦
A

N .

2.5 Various smallfacts

If m,n are coprime, then (Z/mZ)⌦Z (Z/nZ) = 0. If A is a ring, a an ideal
and M an A-module, then (A/a)⌦

A

M ⇠= M/aM . If (M
i

)
i2J is any family

of A-modules, then �
i2JMi

flat , each M
i

is flat. M [x] ⇠= A[x] ⌦
A

M . If
M,N are flat A-modules, then so is M ⌦

A

N . If 0!M 0 !M !M 00 ! 0
is an exact sequence of A-modules, and M 0,M 00 are finitely generated, then
so is M .

2.6 Direct limits

We will outline a construction for direct limits and state their universal
property.

Definition 2.18. A partially ordered set I is said to be a directed set if
for each pair i, j 2 I there exists a k 2 I such that i  k and j  k.

This roughly states that the partial order don’t “seriously split” (in the
graphical sense of the word). Imagine yourself walking a path with a friend,
and suddenly the path splits. You and your friend choose di↵erent branches
of the path. However, if the path is directed, this means that if you continue
forward, you will meet again after some (finite?) time.

Definition 2.19. Let A be a ring, I be a directed set, and let (M
i

)
i2I be a

family of A-modules index by I. For each pair with i  j, let µ
ij

: M
i

!M
j

be an A-module homomorphism. We demand the following:
1) µ

ii

= id
Mi for all i 2 I.
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2) µ
ik

= µ
jk

� µ
ij

whenever i  j  k. The modules M
i

and the homo-
morphisms µ

ij

are said to form a direct system M = (M
i

, µ
ij

) over the
directed set I.

Condition 2) tells us that the following diagram commutes:

M
i

µij

✏✏

µik

!!
M

j

µjk
//M

k

We shall construct an A-module M called the direct limit of the direct
system M . Let C be the direct sum of the M

i

. Its elements are formal
sums ⌃x

i

with x
i

2M
i

and x
i

= 0 for almost all i. Let D be the submodule
of C generated by all elements of the form x

i

� µ
ij

(x
i

) where i  j and
x
i

2 M
i

. Now, let M = C/D and let µ : C ! M be the projection,
and let µ

i

be the restriction of µ to M
i

. The module M and the family of
homomorphisms µ

i

: M
i

! M is the direct limit of the direct system M .
We write M = lim�!M

i

, the homomorphisms being understood. It is clear
from the construction that we have µ

i

= µ
j

� µ
ij

whenever i  j. That is,
the following diagram commutes:

M
i

µi

✏✏

µij //M
j

µj||
lim�!M

i

Proposition 2.20. Every element of lim�!M
i

can be written in the form
µ
i

(x
i

) for some i 2 I and some x
i

2M
i

.

Proof. We consider C, the direct sum of the M
i

. Let x 2 C. Now, x is
a finite sum of x

i

with x
i

2 M
i

. We have x
i

⌘ µ
ij

(x
i

) (mod D) for all
j � i. Since this a finite sum and I is a directed set, there exists a k such
that k � i for all i in the sum. Then x = ⌃x

i

⌘ ⌃µ
ik

(x
i

). Again, using
directedness, there exists an l � k, so (since all the µ

ik

(x
i

) are in M
k

),
x ⌘ µ

kl

(⌃µ
ik

(x
i

)).

The direct limit is characterized up to isomorphism by the following
universal property: Let N be an A-module and for each i 2 I let ↵

i

:
M

i

! N be an A-module homomorphism such taht ↵
i

= ↵
j

� µ
ij

whenever
i  j. Then there exists a unique homomorphism ↵ : lim�!M

i

! N such
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that ↵
i

= ↵ � µ
i

for all i 2 I. That is, for any other A-module making
the above diagram commute, it must factor through lim�!M

i

(that is, lim�!M
i

is initial among all such objects in the category of A-modules. Of course,
initial objects are unique up to isomorphism).

The previous proposition tells us that each x 2 lim�!M
i

can be written in
the form µ

i

(x
i

). Define ↵ to be x 7! ↵
i

� µ
i

(x
i

).

M
i

µij //

µi

✏✏

↵i

##

M
j

µj||
↵j

✏✏
lim�!M

i 9!↵
// N

We have various small-facts which we will leave unproven (for now):
tensor products commute with direct limits, that is lim�!(M

i

⌦N) ⇠= (lim�!M
i

)⌦
N . lim�!R

i

is the nilradical of lim�!A
i

.

3 Rings and modules of fractions

The formation of fractions let us “create units” from elements that are not
zero-divisors. In Q, we formally define p/q to be all pairs of numbers (p, q)
with q nonzero under the equivalence relation (p, q) = (n,m) if and only if
pm � qn = 0. However, that process is only of value if the underlying ring
is an integral domain. However, it can be generalized.

Definition 3.1. Let A be any ring. A subset S ✓ A is multiplicatively

closed if 1 2 S and S is closed under multiplication.

Let S be any such multiplicatively closed set. We define a relation ⇠ on
A⇥ S as follows:

(a, s) ⇠ (b, t), (at� bs)u = 0 for some u 2 S

It is readily checked that this relation defines an equivalence relation. We
now have fractions a/s with addition and multiplication (well-)defined in
the familiar way. We denote the resulting ring by S�1A.

Example: Let A = Z and S = Z� {0}. Then, of course, S�1A = Q 4.
We have a ring homomorphism (the fraction map) f : A! S�1A defined

by x! x/1. It is not in general injective. See example below.

4
We could have used an

⇠
=

-sign instead here, but that really depends on how we define

Q in the first place. If we think of Q just as some canonical set of fractions “out there”,

then of course we could only ever hope for an isomorphism, not an equality.
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Proposition 3.2. Let g : A ! B be a ring homomorphism such that g(s)
is a unit in B for all s 2 S. Then there is a unique homomorphism h :
S�1A! B such that g = h � f .

Proof. Uniqueness: Follows from

h(1/s) = h((s/1)�1) = h(s/1)�1 = h(f(s))�1 = g(s)�1

Existence: Let h(a/s) = g(a)g(s)�1. Well-definedness is easily checked.

A
g //

f

✏✏

B

S�1A
9!h

<<

The ring S�1A and the fraction map have the following properties:

1. s 2 S ) f(s) is a unit in S�1A.

2. f(a) = 0) as = 0 for some s 2 S.

3. Every element of S�1A is of the form f(a)f(s)�1 for some a 2 A and
some s 2 S.

Conversely, for any other ring B and homomorphism satisfying the above
properties, there is a unique isomorphism S�1A! B.

Example: Let p be a prime ideal of A. Then S = A � p is multiplica-
tively closed. We write Ap for S�1A in this case. The extension f(p) of p
in Ap is an ideal m. It is easily seen that this ideal is maximal, and is the
only maximal ideal in Ap. Hence Ap is a local ring. The process of passing
from A to Ap is called localization at p.

Example: S�1A = 0 , 0 2 S. For any f 2 A, we let S = {fn}
n�0.

We write A
f

for S�1A (f nilpotent , A
f

= 0).
The construction of S�1A can be carried out with A replaced by an

A-module M with the obvious replacements in the definitions. The same
results apply. We get an S�1A-module S�1M .

Proposition 3.3. S�1 is a functor.

Proof. Let u : M ! N be an A-module homomorphism. It induces an
obvious S�1A-module homomorphism S�1u : S�1M ! S�1N defined by
m/s 7! u(m)/s. It is easily verified that S�1(v � u) = (S�1v) � (S�1u).
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M

u

✏✏

u�v

��

7! S�1M

S

�1
u

✏✏

S

�1(v�u)

$$
N

v // P S�1N
S

�1
v

// S�1P

Proposition 3.4. The functor U
S

: M 7! S�1M is exact. (that is, it takes
exact sequences to exact sequences)

Proof. Easy.

An easy consequence of this is the following results:

Proposition 3.5. Let N,P be submodules of an A-module M . Then
1) S�1(N + P ) = S�1N + S�1P
2) S�1(N \ P ) = S�1N \ S�1P
3) S�1(M/N) ⇠= (S�1M)/(S�1N).

It turns out, once we know S�1A, the ring of fractions, we also know
any “module of fractions” S�1M . Precisely,

Proposition 3.6. Let M be an A-module. There exists a unique isomor-
phism

f : S�1A⌦
A

! S�1M

Proof. Use the universal property of the tensor product.

Proposition 3.7. S�1A is a flat A-module.

Proof. Let N be any A-module. Then S�1A ⌦ N ⇠= S�1N . The result
follows from (3.4).

Proposition 3.8. Formation of fraction commutes with tensor product.
Precisely, if M,N are A-modules, then there exists a unique isomorphism

f : S�1M ⌦
S

�1
A

S�1N ! S�1(M ⌦
A

N)

such that
(m/s)⌦ (n/t) 7! (m⌦ n)/st

15



3.1 Local properties

Localization can be viewed as “focusing attention at a point” (in a variety,
points are represented by prime ideals). A property P of a ring A (or a
module M) is said to be a local property if A has P , Ap has P for each
prime ideal p of A.

We have various local properties:

Proposition 3.9. Let M be an A-module. Then the following are equiva-
lent:
1) M = 0
2) Mp = 0 for all prime ideals p of A.
3) Mm = 0 for all maximal ideals m of A.

Proof. Clearly 1) 2) 3. Assume 3) is satisfied, but M 6= 0. Let x be any
non-zero element of M . The ideal Ann(x) = a is contained in some maximal
ideal m. Consider x/1 2Mm. Since Mm = 0, x/1 = 0, so there is an element
m 2 A�m such that xm = 0, but this is impossible since Ann(x) ✓ m.

Proposition 3.10. Let � : M ! N be an A-module homomorphism.
TFAE:
1) � is injective.
2) �p : Mp ! Np is injective for each prime ideal p.
3) �m : Mm ! Nm is injective for each maximal ideal m.
(the same holds for “injective” replaced by “surjective” throughout)

Proof. Use the exactness of S�1 and the previous proposition.

Flatness is a local property:

Proposition 3.11. For any A-module M , TFAE:
1) M is a flat A-module.
2) Mp is a flat Ap-module for each prime ideal p.
3) Mm is a flat Am-module for each maximal ideal m.

Proof. Omitted.

3.2 Extended and contracted ideals

Recall the definition of extended and contracted ideals.

Definition 3.12. Let f : A! B be a ring homomorphism. If b is an ideal
in B, then the ideal f�1(b) is the contraction of b in A. If a is an ideal
in A, then the ideal generated by f(a) is the extension of a in B.

16



Proposition 3.13. 1) Every ideal in S�1A is an extended ideal.
2) If a is an ideal in A, then the contraction of the extension of a (denoted
by aec) equals [

s2S(a : s). Hence the extension of a in S�1A equals S�1A
if and only if a meets S.
3) The prime ideals of S�1A are in one-to-one correspondence p $ S�1p
with the prime ideals of A not meeting S. 4) The operation S�1 commutes
with formation of finite sums, products, intersection and radicals.

Proof. 1) Let b be an ideal in S�1A, and let x/s 2 b. Then x/1 2 b,
hence x 2 bc, thus x/s 2 bce. So b ✓ bce. The reverse inclusion is easy:
f � f�1(b) ✓ b.
2) x 2 aec = (S�1a)c , x/1 = a/s for some a 2 a, s 2 S , (xs � a)t = 0
for some t 2 S , xst 2 a, x 2 [

s2S(a : s).
3) If q is a prime ideal in S�1A, then obviousle its contraction is a prime
ideal in A. Conversely, let S�1p be the extension of a prime ideal of A in
S�1A and let (r/1)(s/1) 2 S�1p. Then rs/1 = p/q for some p 2 p and
q 2 S. We must have p \ S = ?, or else the extension is (1). We have
(rsq � p)t = 0 for some t 2 S. That is rsqt 2 p, so rs 2 p since qt /2 p. So,
say, r 2 p, so r/1 2 S�1p.
4) This is basically taken care of earlier.

Proposition 3.14. If R is the nilradical of A, the nilradical of S�1A is
S�1R.

Proposition 3.15. Let M be a finitely generated A-module, S a multiplica-
tively closed subset of A. Then S�1(Ann(M)) = Ann(S�1M). (we view
S�1M as an S�1A-module)

Proof. Assuming the conclusion is true for two A-modules M,N , it is true
for M +N :

S�1(Ann(M +N)) = S�1(Ann(M) \Ann(N))

= S�1(Ann(M)) \ S�1(Ann(N))

= Ann(S�1M) \Ann(S�1N) by hypothesis

= Ann(S�1M + S�1N) = Ann(S�1(M +N))

Hence it is enough to prove the proposition for M generated by a single
element x. Consider the sequence below:

0 // Ann(M) // A
·x //M // 0
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The sequence is obviously exact, so M ⇠= A/Ann(M). So

S�1M ⇠= (S�1A)/(S�1Ann(m)),

so Ann(S�1M) = S�1(Ann(M)).

3.3 Various small-facts

Let S be a multiplicatively closed subset of A and let M be a finitely gen-
erated A-module. Then S�1M = if and only if there exists s 2 S such that
sM = 0.

Let a be an ideal in A and let S = 1+ a. Then S�1a is contained in the
Jacobson radical of S�1A.

Let T be another multiplicatively closed subset of A. And let U be the
image of T in S�1A. Then (ST )�1A ⇠= U�1(S�1A).

If Ap has no nonzero nilpotent element for each prime p, then A has no
nonzero nilpotent elements either.

Example: If each Ap is an integral domain, then A is not necessarily
an integral domain. Let A = Z/(6) and let p1 = (2) and p2 = (3). Then
Ap1
⇠= Z/(2) and Ap2

⇠= Z/(3), and both are integral domains.

4 Primary decomposition

In some rings, it is possible to decompose an ideal into an intersection of
“primary” ideals. The process is rather technical, however.

Definition 4.1. An ideal q in a ring A is primary if q 6= A and if xy 2
q ) x 2 q or yn 2 q for some n > 0. Or equivalently, q is primary if and
only if A/q 6= 0 and every zero-divisor in A/q is nilpotent.

Every prime ideal is primary. Also, the contraction of a primary ideal is
primary.

Proposition 4.2. Let q be a primary ideal in a ring A. Then r(q) is the
smallest prime ideal containing q.

Proof. It is enough to show that r(q) is prime.

If q is a primary ideal, and r(q) = p then q is said to be p-primary.

Proposition 4.3. If r(a) is maximal, then a is primary. The powers of a
maximal ideal m are m-primary.
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Proposition 4.4. If q
i

(1  i  n) are p-primary, then their intersection
\n
i=1qi is p-primary.

Proposition 4.5. Let q be a p-primary ideal, x 2 A. Then
1) x 2 q) (q : x) = (1)
2) x /2 q) (q : x) is p-primary, and therefore r(q : x) = p.
3) x /2 p) (q : x) = q.

Definition 4.6. A primary decomposition of an ideal a in A is an ex-
pression of a as a finite intersection of primary ideals q

i

, that is, such that

a =
n\

i=1

q
i

If moreover all the r(q
i

) are distinct and we have q
j

6◆ \
j 6=i

q
i

(1  j  n),
the composition is minimal. By (4.4) the first condition is achievable, so
any primary decomposition may be reduced to a minimal one. If a has a
primary decomposition, then a is decomposable.

Proposition 4.7 (1st uniqueness theorem). Let

a =
n\

i=1

q
i

be a minimal decomposition of an ideal a ✓ A. Let p
i

= r(q
i

). Then the p
i

are precisely the set of prime ideals of the form r(a : x) (x 2 A), and hence
are independent of the decomposition.

Proof. We have (a : x) = (\q
i

: x) = \(q
i

: x), hence r(a : x) = \n
i=1r(qi :

x) = \
x/2qjpj , by the previous proposition. If r(a : x) is prime, then r(a :

x) = p
j

for some j. Hence every prime ideal of the form r(a : x) is one of
the p

j

. Conversely, since the decomposition is minimal, there is an i with
x
i

/2 q
i

and x
i

2 \
j 6=i

q
j

. And by the previous proposition, r(a : x
i

) = p
i

.

The prime ideals p
i

above are said to belong to a, or to be associated
with a. The minimal elements of the p

i

are called the minimal or isolated
prime ideals belonging to a. The others are embedded.

Proposition 4.8. Let a be decomposable. The any prime ideal p ◆ a con-
tains a minimal prime ideal belong to a.
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Proposition 4.9. If a, q
i

, p
i

are as before, then

n[

i=1

p
i

= {x 2 A|(a : x) 6= a}

In particular, if the zero ideal is decomposable, then the set of zero-divisors
of A is the union of the prime ideals belonging to 0.

Proposition 4.10. Let S ✓ A be multiplicatively closed, and let q be a p-
primary ideal.
1) S \ p 6= ?) S�1q = S�1A.
2) If S \ p = ?, then S�1q is S�1p-primary and its contraction is q.

Proof. Easy.

We denote the contraction of S�1a by S(a):

Proposition 4.11. Let S be multiplicatively closed and let a be decom-
posable. Let a = \n

i=1qi be a minimal primary decomposition of a. Let
p
i

= r(q
i

), and suppose the q
i

are numbered so that S meets p
m+1, . . . , pn,

but not the rest of the p
i

. Then

S�1a =
m\

i=1

S�1q
i

S(a) =
T

m

i=1 qi

Definition 4.12. A set ⌃ of prime ideals belonging to a is said to be iso-

lated if p0 is a prime ideal belonging to a and p0 ✓ p for some p 2 ⌃, then
p0 2 ⌃.

Proposition 4.13 (2nd uniqueness theorem). Let a be a decomposable
ideal. Let a = \i = 1nq

i

be a minimal primary decomposition of a and
let {p

i1 , . . . , pim be an isolated set of prime ideals of a. Then q
i1 \ . . . \ q

im

is independent of the decomposition.

Proof. Let S = A�
S

p2⌃ p. We have

p0 2 ⌃) p0 \ S = ?

p0 /2 ⌃) p0 6✓
[

p2⌃
p) p0 \ S 6= ?

The result follows form (4.11) and the independency of the p
i

.
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4.1 Various small-facts and examples

If a = r(a), then a has no embedded prime ideals. In Z[t], the ideal m = (2, t)
is maximal and the ideal q = 4, t) is m-primary, but is not a power of m.

Example 1: It is easily checked that (x) \ (y) \ (x2, y2) is a primary
decomposition of (x2y, y2x). Since r(x2, y2) = (x, y), and (x) ⇢ (x, y), the
isolated prime ideals are (x), (y) and (x, y) is an embedded prime ideal.

Example 2: Let J = (x3, x2y). Assuming that J is decomposable, we
want to find its minimal prime ideal. From Example 4 in Section 1 and from
Proposition (4.7), we know that (x) is one of the associated prime ideals.
From Example 3 in Section 1, we know also that r(J) = (x), so (x) must be
minimal.

Example 3: Continouing, we want to show that (x, y) is an embedded
prime ideal of J in k[x, y]. From Proposition (4.7), it is enough to find an
element f 2 k[x, y] such that (J : f) = (x, y) (certainly (x, y) is a prime
ideal). It is straightforward to verify that (J : x2) = (x, y).

5 Integral dependence

Considering R as a subring of C, we know that the element i 2 C satisfies
a polynomial equation (i)2 + 1 = 0. We say that i is integral over R. More
generally:

Definition 5.1. Let B be a ring, A a subring such that 1 2 A. An element
x 2 B is said to be integral over A if x is a root in a monic polynomial with
coe�cients in A. That is, if there exists a

i

such that

xn + a1x
n�1 + . . .+ a

n

= 0

Example: Let B = k(x) (that is, the ring of rational functions), and
A = k[x]. Clearly, A ✓ B and A may be considered a subring of B. Assume
f 2 B is integral over A. f is on the form f = g/h (we may, as usual,
assume g and h have no common factor). That is, we have an equation

(g/h)n + k1(g/h)
n�1 + . . .+ k

n

= 0

Multiplying by hn on both sides, we get

gn + k1hg
n�1 + . . .+ knhn = 0

So h divides gn, contrary to assumption, so h = ±1, so f 2 A. This shows
that no element strictly inside k(x) is integral over k[x].
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Proposition 5.2. TFAE:
1) x 2 B is integral over A
2) A[x] is a finitely generated A-module.
3) A[x] is contained in a subring C of B such that C is a finitely-generated
A-module.
4) There exists a faithful A[x]-module M which is finitely generated as an
A-module.

Proof. 1) 2) 3) 4 are easy.

Proposition 5.3. Let x
i

(1  i  n) be elements of B, each integral over
A. Then A[x1, . . . , xn] is a finitely-generated A-module.

Proof. By induction on n.

Proposition 5.4. The set C of elements of B which are integral over A is
a subring of B containing A.

The ring C is called the integral closure of A in B5. If C = A then
A is integrally closed in B. If C = B, the ring B is said to be integral
over A.

Proposition 5.5. Let A ✓ B ✓ C be rings and let B be integral over A
and C integral over B. Then C is integral over A.

Proposition 5.6. Let A ✓ B be rings and let C be the integral closure of
A in B. Then C is integrally closed in B.

Proposition 5.7. Let A ✓ B be rings. B integral over A.
1) If b is an ideal of B and a = bc = A \ b, then B/b is integral over A/a.
2) If S is a multiplicatively closed subset of A, then S�1B is integral over
S�1A.

5.1 Going-up

Proposition 5.8. Let A ✓ B be integral domains, B integral over A. Then
B is a field if and only if A is a field.

Proof. Doing tricks with the integral dependence polynomial.

5
The example in the beginning showed that the integral closure of k[x] in k(x) is k[x]

itself.
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Proposition 5.9. Let A ✓ B be rings, B integral over A. Let q be a prime
ideal of B and let p = qc = q \ A. Then q is maximal if and only if p is
maximal.

Proof. B/q is integral over A/p.

Contraction is “injective”:

Proposition 5.10. Let A ✓ B be rings, B integral over A. Let q, q0 be
prime ideals of B such that q ✓ q0 and q \A = q0A = p. Then q = q0.

Proof. Bp is integral over Ap. Let m be the extension of p in Ap, and let
n, n0 be the extensions of q, q0 respectively. Since m is maximal, it follows
from the previous proposition that both n, n0 are maximal, hence n = n0.
Hence q = q0.

Proposition 5.11. Let A ✓ B be rings. B integral over A. Let p be a
prime ideal of A. Then there exists a prime ideal q ✓ B such that q\A = p
(p is the contraction of q in A).

A �
� // B

p
?�

OO

� � 9 // q?
�

9

OO

Proof. Consider the commutaive diagram (in which the horizontal arrows
are injections):

A

↵

✏✏

// B

�

✏✏
Ap

// Bp

Now, let n be the maximal ideal of Bp. Then its contraction in Ap is maximal
since Bp is integral over Ap. The rest follows from the commutativity of the
diagram.

This gives us the “Going-up”-theorem:

Proposition 5.12. Let A ✓ B be rings. B integral over A. Let p1 ✓ . . . ✓
p
n

be a chain of prime ideals of A and q1 ✓ . . . ✓ q
m

(m < n) a chain of
prime ideals in B such that for i, p

i

is the contraction of q
i

. Then the chain
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q1 ✓ . . . ✓ q
m

may be extended to a longer chain q1 ✓ . . . ✓ q
n

such that
q
i

\A = p
i

for all i.

p1 //

✏✏

. . . //

✏✏

p
m

//

✏✏

p
m+1

✏✏

// . . . // p
n

✏✏
q1 // . . . // q

m

// q
m+1

// . . . // q
n

Proof. Go to A/p1.

5.2 Going-down

Proposition 5.13. Let A ✓ B be rings, C the integral closure of A in B.
Let S ✓ A be multiplicatively closed. Then S�1C is the integral closure of
S�1A in S�1B.

Proof. ...

An integral domain is said to be integrally closed if it is integrally
closed in its field of fractions. Our example in the beginning showed that
k[x] was integrally closed. Likewise, Z is integrally closed. By the same
method, every unique factorization domain is integrally closed.

Integral closure is a local property:

Proposition 5.14. Let A be an integral domain. TFAE:
1) A is integrally closed.
2) Ap is integrally closed for each prime ideal p.
3) Am is integrally closed for each maximal ideal m.

Proof. Let K be the field of fractions of A and C the integral closure of A
in K and let f : A! C be the inclusion mapping. Then A integrally closed
, f is surjective. By (5.13), fp surjective , Ap is integrally closed. The
claim follows from (3.10).

As usual, let A ✓ B be rings. Let a be an ideal of a. An element of B is
said to be integral over a if it satisfies an equation of integral dependence
in which all the coe�cients lie in a. The integral closure of a in B is the
set of all such elements.

Proposition 5.15. Let C be the integral closure of A in B and let ae be the
extension of a in C. The the integral closure of a in B is the radical of ae.
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Proof. If x 2 B is integral over a, we have an equation

xn + a1x
n�1 + . . .+ a

n

= 0

with a
i

2 a. Then x 2 C and xn 2 ae, or x 2 r(ae). Conversely, if
x 2 r(iae), then xn =

P
a
i

x
i

for some n where a
i

2 a and x
i

2 C. Then
M = A[x1, . . . , xn] is a finitely generated A-module with xnM ✓ aM . The
claim follows from the Cayley-Hamilton-theorem.

Proposition 5.16. A ✓ B integral domains. A integrally closed. Let x 2 B
be integral over an ideal a of A. Then x is algebraic over the field of fractions
K of A, and the coe�cients of its minimal polynomial in K all lies in r(a).

Proof. Clearly x is algebraic over K. Let L be an extension field of K
containing all the conjugates x

i

of x. Each x
i

satisfies the same equation of
integral dependence as x, so they are all integral over a. The coe�cients of
the minimal polynomial of x over K are linear combinations of the x

i

, and
since the integral closure of A is closed under multiplication and addition
(previous proposition, the radical is an ideal), the x

i

are integral over a.
Again, by the previous proposition, they must all lie in r(a).

Proposition 5.17 (“Going down”). Let A ✓ B be integral domains, A
integrally closed, B integral over A. Let p1 ◆ . . . p

n

be a chain of prime
ideals of A, and let q1 ◆ . . . ◆ q

m

(m < n) be a chain of prime ideals of B
such that q

i

\ A = p
i

(1  i  m). Then the chain q1 ◆ . . . ◆ q
m

may be
extended to a chain q1 ◆ . . . ◆ q

n

such that q
i

\A = p
i

(1  i  n).

Proof. Omitted for now. It is a conundrum of polynomial equations, con-
tractions and fraction rings.

5.3 Various

Let A be a subring of B such that B is integral over A, and let f : A ! ⌦
be a homomorphism of A into an algebraically closed field ⌦. Then f can
be extended to a homomorphism of B into ⌦.

If A is a subring of B and B �A is closed under multiplication, then A
is integrally closed in B.

Example 1: Consider A = C[x, y]/(y2 � x5). We want to find the field
of fractions K(A) of A. Since every second power of y vanishes, A has the
form A = C[x]+C[x]y under the relation y2 = x5. Now, what does a fraction
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in K(A) look like? It is enough to find all fractions of the form 1/h, where
h 2 A. h is of the form h = f + gy for some f, g 2 C[x]. So

1

h
=

1

f + gy
=

f � gh

f2 � g2y2
=

f � gy

f2 � g2x5
= H +Gy

where H,G are rational function of x. Thus the field of fractions looks like

K(A) = C(x)[y]/(y2 � x5)

Example 2: Let A,B be integral domains, A a subring of B. Assume
their field of fractions are equal to, say, K. Assume also that B is integrally
closed and that B is integral over A. We will show that B is the integral
closure of A.

Proof. Let x 2 K with x integral over A. Then x is also integral over B
(since A is a subring of B). But B is integrally closed, so x 2 B. That is,
the integral closure of A lies inside B.
On the other hand, assume x 2 B. Then x is integral over A.

Example 3: Let A = k[x, y, z]/(xy2�z2). Assume that A is an integral
domain. We will find its field of fractions and its integral closure. To find
the field of fractions, are allowed to divide by A� {0}. However, let us first
localize in (y). That is, we are allowed to divide by y. Then our ring A

y

looks like (here S = {0, y, y2, . . .})

A
y

= k[x, y, z,
1

y
]/(xy2 � z2) = k[x, y, z,

1

y
]/(x� z2

y2
) = k[y, z,

1

y
] = k[y,

z

y
]x

Allowing ourselves to divide by everything but zero, we may change our
brackets into parantheses, so

K(A) = k(
z

y
, y)

Now, let B = A
y

= k[y, z
y

]. A is naturally a subring of B (since A,B are
integral domains and B is A

y

). Since B is a polynomial ring, it is integrally
closed. The equation ( z

y

)� x = 0 in A implies that B is integral over A. It
follows from Example 2 that B is the integral closure of A.
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6 Chain conditions

We now arrive at the socalled Noetherian and Artinian properties. They
are fundamental to the whole of algebra.

Throughout, let ⌃ denote some specified partially ordered set.

Proposition 6.1. TFAE:
1) Every increasing sequence (x

i

) in ⌃ is stationary.
2) Every non-empty subset of ⌃ has a maximal element.

If ⌃ is the set of submodules of a module M , ordered by ✓, then 1) is
called the ascending chain condition (usually a.c.c.). A module satisfying
a.c.c. is said to be Noetherian. If, however, ⌃ is ordered by ◆, then 1)
is the descending chain condition (usually d.c.c.). A module satisfying
d.c.c. is Artinian.

Examples: Anything finite satisfies both d.c.c. and a.c.c. The ring
Z satisfies a.c.c but not d.c.c. The same applies to k[x] on ideals. The
polynomial ring k[x1, x2, . . .] satisfies neither chain condition.

Noetherian modules are more important than Artian modules:

Proposition 6.2. M is a Noetherian A-module , every submodule of M
is finitely generated.

Proof. ) Let N be a submodule of M and let ⌃ be the set of all finitely gen-
erated submodules of N . Since M is Noetherian, ⌃ has a maximal element
L. Choose x 2 N , x /2 L and consider L + Ax. This is finitely generated
and strictly contains L, so N = L.
( Consider M1 ✓M2 ✓ . . ..

Proposition 6.3. Let 0! M 0 ! M ! M 00 ! 0 be a short exact sequence
of A-modules. Then
1) M is Noetherian , M 0 and M 00 are Noetherian.
2) M is Artinian , M 0 and M 00 are Artinian.

Proposition 6.4. If M
i

(1  i  n) are Noetherian/Artinian A-modules,
so is �n

i=1Mi

.

Proof. Induction on

0 //M
n

//
L

n

i=1Mi

//
L

n�1
i=1 M

i

// 0
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A ring A is said to be Noetherian/Artinian if it satisfies a.c.c/d.c.c.
on ideals. Any field is both Noetherian and Artinian. Any prinicipal ideal
domain is Noetherian.

Proposition 6.5. Let A be a Noetherian/Artinian ring, M a finitely gen-
erated A-module. Then M is Noetherian/Artinian.

Proof. Use (2.5), (6.3),(6.4).

Proposition 6.6. Let A be a Noetherian/Artinian ring, a an ideal of A.
Then A/a is Noetherian/Artinian.

A chain of submodules of a module M is a sequence (M
i

) (0  i  n) of
submodules of M such that

M = M0 �M1 � . . . �M
n

= 0 strict inclusions

The length of the chain is n, that is, the number of �-symbols. A com-
position series of M is a maximal chain, that is a chain in which no extra
submodules can be inserted. Equivalently, a chain in which each quotient
M

i�1/Mi

is simple.
The length of a composition series is an invariant:

Proposition 6.7. Suppose that M has a composition series of length n.
Then every composition series of M has length n, and every chain in M
can be extended to a composition series.

Proposition 6.8. M has a composition series , M satisfies both a.c.c and
d.c.c.

Proof. ): Obvious.
(: Let M = M0. Since M is Noetherian, it has a maximal submodule M1,
and so on. The chain stops because M is Artinian.

We call a module satisfying both a.c.c and d.c.c a module of finite
length. We denote the length of M by l(M).

Proposition 6.9. The length l(M) is an additive function on the class of
A-modules of finite length. That is, if

0 //M 0 //M //M 00 // 0

is an exact sequence, then l(M) = l(M 0) + l(M 00).

When our module is a k-vector space, we have the following proposition:
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Proposition 6.10. For k-vector spaces V , TFAE:
1) finite dimension
2) finite length
3) a.c.c
4) d.c.c.
Moreover, if any of the above conditions are satisfied, then length = dimen-
sion.

Proof. 1) 2, 2) 3, and 2) 4 are easy. We prove 3) 1. The implication
4) 1 is similar.

Assume 1) is false. That is, the dimension is infite. Then there exists an
infinite sequence (x

n

)
n>1 of linearly independent elements of V . Let U

n

be
the vector space spanned by x1, . . . , xn. Then the sequence (U

n

) is infinite
and strictly ascending.

Proposition 6.11. Let A be a ring in which the zero ideal is a product
m1 . . .mn

of maximal ideals. Then A is Noetherian if and only if A is Ar-
tinian.

7 Noetherian Rings

We restate the little we so far know about Noetherian rings:

Proposition 7.1. For a Noetherian ring A, the following are equivalent:
1) Every non-empty set of ideals in A has a maximal element.
2) Every ascending chain of ideals in A is stationary.
3) Every ideal in A is finitely generated.

Proposition 7.2. If A is Noetherian and � : A! B is a surjective homo-
morphism, then B is Noetherian.

Proof. This is just restating (6.6).

Proposition 7.3. Let A be a subring of B. Assume A is Noetherian and
B finitely-generated A-module. Then B is Noetherian as a ring.

Proposition 7.4. If A is Noetherian and S is a multiplicatively closed sub-
set of A, then S�1A is Noetherian.

Proof. The ideals in S�1A are in 1-1 correspondence with the contracted
ideals of A.
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Example: The above proposition tells us that Q and k(x) are Noethe-
rian. The next famous theorem is a generalization of the fact that any
polynomial ring over a field is Noetherian:

Proposition 7.5 (Hilbert’s basis theorem). If A is Noetherian, then the
polynomial ring A[x] is Noetherian.

Proof. Let a be an ideal in A[x]. Let I be the set of leading coe�cients
of elements of a. It is an ideal in A. Since A is Noetherian, I is finitely-
generated by, say, a

i

(1  i  n). Each a
i

has a representative f
i

of degree
r
i

in a. Let r = max{r
i

}. The f
i

generate an ideal a0 in A[x], it is clear that
a0 ✓ a.

Let f 2 a. Then f = axm + lower terms with a 2 I. If m � r, write
a =

P
a
i

u
i

, with u
i

2 A. Then f �
P

u
i

f
i

xm�ri is a polynomial in a of
degree < m. Continuing this way, we can write f as f = g + h with h 2 a0

and g of degree < r.
Let M be the A-module generated by x, x2, . . . , xr�1. What we just

showed was that a = (a\M)+ a0. But M was finitely-generated A-module,
so M is Noetherian. a \M is a submodule of a Noetherian module M , so
is finitely-generated. Since a0 is finitely-generated, so is a.

Proposition 7.6. Let B be a finitely-generated A-algebra. If A is Noethe-
rian, then so is B.

Proposition 7.7. Let A ✓ B ✓ C be rings. Let A be Noetherian. Let C
be a finitely-generated A-algebra, and let C satisfy either of the following
equivalent conditions:
1) finitely generated B-module
2) integral over B
Then B is finitely generated as an A-algebra.

Proof. ? for now.

Proposition 7.8. Let k be a field, E a finite-generated k-algebra. If E is a
field, then it is a finite algebraic extension of k.

7.1 Primary decomposition in Noetherian rings

We say that an ideal a is irreducible if

a = b \ c) (a = b or a = c)

In other words, if it cannot be written as an intersection two distinct
ideals. However:
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Proposition 7.9. In a Noetherian ring A every ideal is a finite intersection
of irreducible ideals.

Proof. Assume the claim is false. Let ⌃ be the set of ideals which are not
a finite intersection of irreducible ideals. Since A is Noetherian, ⌃ has a
maximal element a. It is reducible, so a = b \ c with b � a and c � a. But
since a was maximal, b, c are both a finite intersection of irreducible ideals,
hence so is A. Contradiction.

Proposition 7.10. In A Noetherian ring every irreducible ideal is primary.

Proof. Let a ba an irreducible ideal in A and let xy 2 a with y /2 a. Consider
the chain of ideals (a : x) ✓ (ia : x2) ✓ . . .. By a.c.c., this chain is stationary,
so we have (a : xn) = (a : xn+1) for some n.

Now, if a 2 (y), then ax 2 a. And if a 2 (xn), then a = bxn for some
b, hence bxn+1 2 a. That is b 2 (a : xn+1) = (a : xn). So bxn 2 a, that is,
a 2 a. It follows that (xn) \ (y) = a. Since a was chosen to be irreducible,
and y /2 a, it follows that xn 2 a.

Thus a is primary.

Thus every ideal in a Noetherian ring admits a primary decomposition,
which we schizophrenically repeat below:

Proposition 7.11. In a Noetherian ring every ideal has a primary decom-
position.

Proposition 7.12. In a Noetherian ring A, every ideal contains a power
of its radical.

Proof. Let x1, . . . , x
k

generate r(a) with xni
i

2 a(1  i  k). Let m =

(
P

k

i=1 ni

)� k+1. Then r(a)m is generated by the products xr11 · · ·xrk
k

withP
k

i=1 ri = m. Claim: We must have r
i

 n
i

for at least one i. Assume the

contrary, i.e. that r
i

< n
i

for all i. Then
P

k

n=1(ri�ni

)  �k, so 1�k  �k,
that is, 1  2k, which is impossible. So each such product lies in a, and
therefore r(a)m ✓ a.

Which gives us the following very important result:

Proposition 7.13. Let A be a Noetherian ring, m a maximal ideal of A, q
any ideal of A. TFAE:
1) q is m-primary.
2) r(q) = m.
3) mn ✓ q ✓ m for some n > 0.
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Proof. 1) 2 By definition.
2) 1 By (4.3).
2) 3 By (7.12).
3) 2 By taking radicals. m = r(mn) ✓ r(q) ✓ r(m) = m.

Proposition 7.14. Let a 6= (1) be an ideal in a Noetherian ring A. Then
the prime ideals belonging to a are precisely the prime ideals occuring in the
set of ideals {(a : x)}

x2A.

8 Artin rings

Recall that an Artin (or Artinian if you want to use more letters) is a ring
satisfying d.c.c on ideals. Artin rings are very well-behaved - almost too
much so.

Proposition 8.1. In an Artin ring every prime ideal is maximal.

Proof. Let p be a prime ideal in an artin ring A. Then A/p is an Artinian
integral domain. Let x 2 A/p be nonzero. By d.c.c. we have (xn) = (xn+1)
for some n. Hence xn = yxn+1 for some y 2 A/p. Since we live in an integral
domain, we may cancel xn on both sides, giving us 1 = xy, hence x has an
inverse, hence A/p is a field, hence p is maximal.

Thus the nilradical is equal the Jacobson radical in an Artin ring.

Proposition 8.2. An Artin ring has only a finite number of maximal ideals.

Proof. Let ⌃ be the set of finite intersections m1 \ . . .\mr

where the m
i

are
maximal ideals. By d.c.c., ⌃ has a minimal element m1 \ . . . \m

n

, say. Let
m be any maximal ideal. We have m ◆ m1 \ . . . \ m

n

from the minimality
of m1 \ . . .\mn

. Thus m ◆ m
i

for some i, thus m = m
i

. That is, m was one
of the finitely many m

i

(1  i  n).

Proposition 8.3. In an Artin ring the nilradical is nilpotent.

Proof. Exercise for now!

Definition 8.4. A chain of prime ideals is a strictly increasing sequence

p0 ⇢ p1 ⇢ . . . ⇢ p
n

The length of the chain is n. The dimension of A is to be the supremum
of all lengths of all chains of prime ideals in A. It is an integer  0 or +1.
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A field has dimension 0 ((0) is the only prime ideal). Z has dimension 1.

Proposition 8.5. A ring A is Artin , A is Noetherian and dimA = 0.

Proof. ): By (8.1), dimA = 0. Let m
i

be the distinc maximal ideals of
A. Then ⇧n

i=1m
k

i

✓ (\n
i=1mi

)k = Rk = 0 for some k (where R denotes the
nilradical). Hence by (6.11), A is Noetherian.
(: The zero ideal is decomposable, so A has only a finite number of minimal
prime ideals, and they are all maximal since dimA = 0. In a Noetherian
ring, the nilradical is nilpotent, so we have Rk = 0 for some k. Also,
R = \n

i=1mi

where m
i

are the maximal ideals in A. Hence ⇧n

i=1m
k

i

= 0.
Hence A is Artin.

Proposition 8.6. If A is an Artin local ring with maximal ideal m, then m
is the nilradical of A. Hence every element of m is nilpotent and m itself is
nilpotent. Hence every element of A is either a unit or nilpotent.

Example: Z/(pn).

Proposition 8.7. Let A be a Noetherian local ring, m its maximal ideal.
Then exactly one of the following statements are true:
1) mn 6= mn+1

2) mn = 0 for some n, in which case A is an Artin local ring.

Proof. Use Nakayama’s lemma and take radicals.

Proposition 8.8 (Structure theorem for Artin rings). An Artin ring A is
uniquely – up to isomorphism – a finite direct product of Artin local rings.

Proof. Omitted.

Proposition 8.9. Let A be an Artin local ring. TFAE:
1) Every ideal in A is principal.
2) The maximal ideal m is principal.
3) dim

k

(m/m2)  1

Proof. 1) 2) 3 should be clear.
3 ) 1: If dim

k

(m/m2) = 0, then m = m2, hence m = 0 by Nakayamas’
lemma, and therefore A is a field, and thus the only proper ideal in A is the
zero ideal which certainly is principal.

Now, assume dim
k

(m/m2) = 1. Then m is principalm, say m = (x). Ket
a be any nontrivial ideal of A. Since m is nilpotent, there exist an integer r
such that a ✓ mr and a 6✓ mr+1. There exists an y 2 a such that y = axr

but y /2 (xr+1). Consequently, a /2 (x), so a is a unit in A. Hence xr 2 a,
therefore mr = (xr) ✓ a, hence a = mr = (xr). So a is principal.
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9 Discrete Valuation Rings

More later?
For now we state only the definition of a discrete valuation ring:

Definition 9.1. Let K be a field. A discrete valuation on K is a surjec-
tive mapping v : K? ! Z such that
1) v(xy) = v(x) + v(y)
2) v(x+ y) � min(v(x), v(y))
The set consisting of 0 and all x 2 K? such that v(x) � 0 is a ring, called
the valuation ring of v. It is a valuation ring of the field K.

Definition 9.2. An integral domain A is a discrete valuation ring if there is
a discrete valuation v of its field of fractions K such that A is the valuation
ring of v.

Example: Let K = Q. Let p be a fixed prime. Then any nonzero
x 2 Q may be written uniquely as pay where a 2 Z and both numerator
and denumerator of y are prime to p. Define v

p

(x) = a. The valuation ring
of v

p

is the local ring Z(p).

10 Completions

Given a ring it is possible to define a topology on it. This in turn let us talk
about convergence in rings, which leads us to consider “completing” the ring
such that every sequence converges. Many of the concepts developed in this
chapter will only be tools in the next chapter about dimension theory.

10.1 Topologies and completions

Let G be a topological abelian group. If {0} is closed in G, then G is
Hausdor↵. If a 2 G, then T

a

(x) = x + a is a homeomorphism of G onto
itself, thus the topology of G is uniquely determined by the neighbourhoods
of 0 in G.

Proposition 10.1. Let H be the intersection of all neighborhoods of 0 in
G. Then
1) H is a subgroup.
2) H is the closure of {0}.
3) G/H is Hausdor↵.
4) G is Hausdor↵ ) H = 0.
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For simplicity, let us assume that G is first-countable - that is, 0 has a
countable neighbourhood basis. Simplifying even further, we assume G has
a countable neighbourhood basis consisting of subgroups. That is, we have
a sequence

G = G0 ◆ G1 ◆ G2 ◆ . . . ◆ G
n

◆ . . .

and U ✓ G is a neighborhood of 0 if and only if it contains some G
n

.
Example: The p-adic topology on Z, in which G

n

= pnZ. (this will
make sense later on)

Proposition 10.2. In our situation, the subgroups G
n

are both open and
closed.

Proof. For any g 2 G
n

, g+G
n

is a neighborhood of g, since g+G
n

✓ G
n

, this
shows thatG

n

is open. Therefore, for any h, h+G
n

is open, so [
h/2Gn

(h+G
n

)
is open. This is the complement of G

n

in G, so G
n

is closed.

Hence we will do well not comparing this topology to the topology of
the real numbers.

Definition 10.3. A Cauchy sequence in G is defined to be a sequence
(x

n

) such that for any neighborhood U of 0, there exists an integer N such
that x

n

� x�m 2 U for all n,m � N .
Two Cauchy sequences (x

n

) and (y
n

) are equivalent if x
n

� y
n

! 0 in
G.

We now construct the completion of G with respect to a topology given
by subgroups G

n

. Suppose (x
n

) is a Cauchy sequence in G. Then the image
of x

n

in G/G
n

is ultimately a constant, say ⇠
n

. Considering

G/G
n+1

✓n+1 // G/G
n

it is clear that ⇠
n+1 7! ⇠

n

under the projection ✓
n+1. Thus a Cauchy sequence

(x
n

) defines a coherent sequence (⇠
n

) such that

✓
n+1(⇠n+1) = ⇠

n

for all n

It should be clear that equivalent Cauchy sequences defines the same coher-
ent sequence (⇠

n

). Also, given any coherent sequence, we can construct a
Cauchy sequence definining it. The resulting abelian group of all coherent
sequences is denoted by Ĝ and is called the completion of G with respect
to G

n

.
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Slightly more generally, let {A
n

} be any sequence of groups and homo-
morphisms

✓
n+1 : An+1 ! A

n

We call this an inverse system, and the group of all coherent sequences
(a

n

) (a
n

2 A
n

and ✓
n+1(an+1) = a

n

) is called the inverse limit of the
system. We write lim �A

n

, the homomorphisms being understood.

With this notation, Ĝ ⇠= lim �G/G
n

.

There is an obvious homomorphism � : G! Ĝ, namely, x 7! (x), where
(x) is the constant sequence. � is not in general injective, in fact Ker� = \U ,
where U runs through all neighborhoods of 0.

If H is another topological group and f : G ! H is a continous ho-
momorphism, then f sends Cauchy sequences to Cauchy sequences, and
therefore f induces a continous homomorphism f̂ : Ĝ ! Ĥ. The following
diagram commutes:

Ĝ
f̂ //

[
g�f ��

Ĥ

ĝ

✏✏
K

Notice that in the inverse system {G/G
n

}, ✓
n+1 is always surjective.

Such an inverse system is called a surjective system, or a flasque sys-
tem. Suppose now we have inverse systems {A

n

}, {B
n

}, {C
n

} and homo-
morphisms such that the following diagram commutes for all n:

0 // A
n+1

✏✏

// B
n+1

✏✏

// C
n+1

//

✏✏

0

0 // A
n

// B
n

// C
n

// 0

The diagram induces homomorphisms 0! lim �A
n

! lim �B
n

! lim �C
n

! 0,
but this sequence is not always right-exact. However:

Proposition 10.4. If 0! {A
n

}! {B
n

}! {C
n

}! 0 is an exact sequence
of inverse system, then

0 // lim �A
n

// lim �B
n

// lim �C
n

is exact. If {A
n

} is a surjective system, then the sequence is also right-exact.

Proof. Let A = ⇧1
n=1An

and define dA : A ! A by dA(a
n

) = a
n

�
✓
n+1(an+1). Then KerdA ⇠= lim �A

n

. Now, use the snake lemma.
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Proposition 10.5. Let 0! G0 ! G00 ! 0 be an exact sequence of groups.
Let G have the topology defined by a sequence (G

n

) of subgroups, and give
G0 and G00 the induced topologies. Then

0!cG0 ! bG! cG00 ! 0

is exact.

If � : G ! Ĝ is an isomorphism, then G is complete. Note that the
completion is complete.

Likewise, for an A-module M , let G = M and G
n

= anM for an ideal
a ✓ A. This defines the a-topology on M , and the completion M̂ is a
topological Â-module.

Example: A = k[x]. Let a = (x). Then Â = k[[x]], the ring of formal
power series.

10.2 Filtrations

An infinite chain M = M0 ◆ M1 ◆ . . . where the M
i

are submodules of M
is called a filtration of M and denoted by (M

n

). It is an a-filtration if
aM

n

✓ M
n+1, and a stable a-filtration if aM

n

= M
n+1 for all su�ciently

large n.

Proposition 10.6. If (M
n

), (M 0
n

) are stable a-filtrations of M , then there
is an integer n0 such that M

n+n0 ✓ M 0
n

and M 0
n+n0

✓ M
n

for alle n  0.
Hence all stable a-filtrations determine the same topology on M .

Proof. Because they are stable, it is enough to take M 0
n

= anM . Since
aM

n

✓ M
n+1 for all n, we have anM ✓ M

n

. Also aM
n

= M
n+1 for all

n � n0 say, implies M
n+n0 = anM

n0 ✓ anM = M 0
n

. Now use symmetry.

10.3 Graded rings and modules

The prototype of graded rings are polynomial rings.

Definition 10.7. A graded ring is a ring A together with countable family
(A

n

)
n�0 of subgroups of the additive group A such that A = �1

n=0An

and
A

m

A
n

✓ A
m+n

for all m,n � 0. A0 is a subring of A and each A
n

is a
A0-module.

Definition 10.8. A graded A-module is a A-module M together with
a graded ring A and a countable family of submodules (M

n

)
n�0 such that

M = �1
n=0Mn

and A
m

M
n

✓M
n+m

. Each M
n

is an A0-module. An element
x 2M is homogeneous if x 2M

n

for some n (we call n the degree of x).
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Any element y 2M can be written as a finite sum of y
n

with y
n

2M
n

.
Each y

n

are called the homogeneous components of y.
A homomorphism of graded A-modules is an A-module homomor-

phism f : M ! N such that f(M
n

) ✓ N
n

for all n.
If A is a graded ring, we let A+ = �

n>0An

. A
n

is an ideal of A.

Proposition 10.9. Let A be a graded ring. TFAE:
1) A is Noetherian
2) A0 is Noetherian and A is finitely generated as an A0-algebra.

Proof. 2) 1 is just Hilbert’s basis theorem. A0
⇠= A/A+, so A0 is Noethe-

rian. [...]

If A is a non-graded ring and a is an ideal in A, then we can form the
graded ring A? = �1

n=0a
n. Similarly, if M is an A-module and M

n

is an
a-filtration of M , then M? = �

n

M
n

is a graded A?-module.
IfA is Noetherian, a is finitely generated by x1, . . . , xr, soA? = A[x1, . . . , xr],

and is also Noetherian again by Hilbert’s basis theorem.

Proposition 10.10. Let A be a Noetherian ring, M a finitely-generated
A-module, (M

n

) an a-filtration of M . TFAE:
1) M? is a finitely-generated A?-module.
2) The filtration (M

n

) is stable.

Proposition 10.11 (Artin-Rees lemma). Let A be a Noetherian ring, a an
ideal of A, M a finitely-generated A-module, (M

n

) a stable a-filtration of
M . If M 0 is a submodule of M , then (M 0 \M

n

) is a stable a-filtration of
M 0.

Proof. We have a(M 0\M
n

) ✓ aM 0\aM
n

✓M 0\M
n+1, hence (M 0\M

n

) is
an a-filtration. It defines a graded A?-module which is a submodule of M?,
and is therefore finitely generated. Now use the previous proposition.

Proposition 10.12. There exists an integer k such that

(anM) \M 0 = an�k((akM) \M 0)

Proposition 10.13. Let A be a Noetherian ring, a an ideal, M a finitely-
generated A-module and M 0 a submodule of M . Then the filtrations anM 0

and (anM) \M 0 have bounded di↵erence. In particular, the a-topology on
M 0 coincides with the topology induced by the a-topology of M .

It follows immediately by (10.5) that
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Proposition 10.14. Let

0 //M 0 //M //M 00 // 0

be an exact sequence of finitely-generated modules over a Noetherian ring A.
Let a be an ideal of A. Then the sequence of a-adic completions

0 // cM 0 // cM //dM 00 // 0

is exact.

We need a little observation:

Proposition 10.15. a-adic completion commutes with finite direct sums.

Proof. It is enough to consider the case n = 2. x
n

�y
n

give rise to a Cauchy
sequence in G1 � G2 if and only if x

n

, y
n

give rise to Cauchy sequences in
G1, G2 respectively.

Proposition 10.16. Let A be any ring. M a finitely-generated A-module.
Then Â⌦

A

M ! M̂ is surjective. If moreover A is Noetherian, then Â⌦
A

M ! M̂ is an isomorphism.

Proof. If F = An, then Â⌦
A

F ⇠= F̂ . If M is finitely generated, we have an
exact sequence

0 // L // F //M // 0

And we have the following commutative diagram:

Â⌦
A

N

�

✏✏

// Â⌦
A

F

�

✏✏

// Â⌦
A

M

↵

✏✏

// 0

0 // N̂ // F̂
� // M̂ // 0

The top line is exact by exactness properties tensor products. By (10.5), �
is surjective. � is an isomorphism, so ↵ is surjective, proving the first claim.

Assume now that A is Noetherian. Then � is also surjective by what we
just have proved. So the bottom line is exact. Chase the diagram a little,
and the result pops out.

Thus, in the language of abstract nonsense:

Proposition 10.17. Let A be Noetherian. The functor M 7! Â ⌦
A

M is
exact on the category of finitely-generated A-modules.
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Proposition 10.18. If A is Noetherian, Â its a-adic completion, then
1) â := Âa ⇠= Â⌦

A

a

2) d(an) = (â)n

3) an/an+1 ⇠= ân/ân+1

4) â is contained in the Jacobson radical of Â.

Proposition 10.19. Let A be a Noetherian local ring, m its maximal ideal.
Then the m-adic completion Â of A is a local ring with maximal ideal m̂.

Proof. By (10.18), we have Â/m̂ ⇠= A/m, so Â/m̂ is a field and m̂ is a
maximal ideal. From (10.18) no. 4, it follows that m is the only maximal
ideal of Â.

Proposition 10.20 (Krulls’ theorem). Let A be a Noetherian ring, a an
ideal, M a finitely-generated A-module and M̂ the a-completion of M . Then
the kernel E = \1

n=1a
nM of M ! M̂ consists of those x 2 M annihilated

by some element of 1 + a.

In particular, if M = A and A is an integral domain, the kernel is trivial.

Proposition 10.21. If A is Noetherian, a an ideal of A contained in the
Jacobson radical of A and M a finitely-generated A-module, then the a-
topology on M is Hausdor↵.

A trivial corollary of the previous proposition is the following important
observation:

Proposition 10.22. Let Abe a Noetherian local ring, m its maximal ideal,
M a finitely-generated A-module. Then the m-topology of M is Hausdor↵.
In particular, the m-topology of A is Hausdor↵.

10.4 The associated graded ring

Let A be a ring and a an ideal of A. Define

Ga(A) =
1M

n=0

an/an+1

where we define a0 = A.
Example: Let A = k[x] and a = (x). Then

G(x)(A) = A/(x)� (x)/(x2)� (x2/x3)� . . .
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The first factor contains no elements of degree � 1. The second factor
contains only elements of degree 1, and so on. Thus the associated graded
ring can be seen as a way of “sorting” a ring into its “degrees” (whatever
that’s supposed to mean!). Multiplying xn with xm gives us a monomial
xn+m, which should lie in (xn+m)/(xn+m+1). This rule of multiplication
makes G(A) a graded ring. We call G(A) the associated graded ring.

Similarly, if M is an A-module and (M
n

) is an a-filtration of M , we
define

G(M) =
1M

n=0

M
n

/M
n+1

which is a graded G(A)-module. Let G
n

(M) denote M
n

/M
n+1.

Proposition 10.23. Let A be a Noetherian ring, a an ideal of A. Then
1) Ga(A) is Noetherian.
2) Ga(A) and Gâ(Â) are isomorphic as graded rings.
3) If M is a finitely-generated A-module and (M

n

) is a stable a-filtration of
M , then G(M) is a finitely-generated graded Ga-module.

Proof. 1) Since A is Noetherian, a is finitely generated by, say, x1, . . . , xn.
Let x̄1, . . . , x̄n be the images in a/a2. Then G(A) = (A/a)[x̄1, . . . , x̄n]. Since
A/a is Noetherian, G(A) is Noetherian by Hilbert’s basis theorem.

2) From (10.18).
3) Since (M

n

) is a stable a-filtration of M it must exists an n0 such that
M

n0+r

= arM
n0 for all r � 0, hence G(M) is generated by �

n 6=n0Gn

(M).
Each G

n

(M) is Noetherian and annihilated by a, so they are finitely gener-
ated A/a-modules. Therefore �

nn0Gn

(M) is generated by a finite number
of elements, hence G(M) is finitely generated.

Proposition 10.24. Let � : A ! B be a homomorphism of filtered groups
(�(A

n

) ✓ B
n

), and let G(�) : G(A) ! G(B), �̂ : Â ! B̂ be the induced
homomorphisms of the associated graded and completed groups. Then
1) G(�) injective ) �̂ injective.
2) G(�) surjective ) �̂ surjective.

...

Proposition 10.25. If A is a Noetherian ring, a an ideal of A, then the
a-completion Â of A is Noetherian.
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11 Dimension theory

The goal of this chapter is to establish the Dimension Theorem, which tells
us that three seemingly di↵erent notions of dimension actually are equal.

11.1 The Poincaré series

Let A = �1
n=0An

be a Noetherian graded ring. By (10.9) A0 is a Noetherian
ring and A is generated as an A0-algebra by some finite set x1, . . . , xs, which
we assume are homogenous of degrees k1, . . . , ks, all positive, of course.

Let M be a finitely-generated graded A-module. Then M is generated
by a finite number of homogeneous elements, say m1, . . . ,mt

, of degrees
r
j

= degm
j

. Every element of M
n

is of the form
P

f
j

m
j

with f
j

2 A
homogeneous of degree n � r

j

. Thus each M
n

is finitely generated as an
A0-module.

Let � be an additive function with values in Z on the class of all finitely-
generated A0-modules. The Poincaré series of M with respect to � is

P (M, t) =
1X

n=0

�(M
n

)tn 2 Z[[t]]

We have a famous theorem:

Proposition 11.1 (Hilbert, Serre). P (M, t) is a rational function in t of
the form

f(t)Q
s

i=1(1� tki)

where f(t) 2 Z[t].

Proof. We prove the theorem by induction on s, the number of generators
of A over A0 (i.e. the number of generators of A as an A0-algebra, or as
A = A0[x1, . . . , xs]).

Let s = 0. That means A
n

= 0 for all n > 0. Since M is finitely-
generated, there is a generator of M of largest degree v. Since every element
of A has degree 0, no element of M can have degree greater than v. So
M

n

= 0 for all su�ciently large n. Hence P (M, t) is a polynomial, and
we’re okay.

Assume the theorem is true for s � 1. Multiplication my x
s

is an A-
module homomorphism of M

n

into M
n+ks , hence gives rise to an exact

sequence:

0 // K
n

//M
n

xs //M
n+ks

// L
n+ks

// 0 (1)
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Let K = �
n

K
n

and L = �
n

L
n

. These are both finitely generated (because
we have an exact sequence withM in the middle andM is finitely generated)
and both are annihilated by x

s

, hence they are A0[x1, . . . , xs�1] modules
(which will allow us to use the inductive hypothesis). We apply � to the
above exact sequence:

�(K
n

)� �(M
n

) + �(M
n+ks)� �(L

n+ks) = 0

We multiply by tn+ks and sum with respect to n:

tksP (K, t)� tksP (M, t) + P (M, t)� g1(t)� P (L, t) + g2(t) = 0

where g1(t) and g2(t) are the “beginnings” of P (M, t), P (L, t) respectively.
Isolating P (M, t) and applying the inductive hypothesis, we get

(1� tks)P (M, t) = P (L, t)� tksP (K, t) + g(t) (2)

=
f1(t)� tksf2(t) + g(t)

Q
s�1
i=1 (1� tki)

Q
s�1
i=1 (1� tki)

(3)

which is just what we want.

We shall denote the order of the pole at t = 1 by d(M). We consider the
case when all the generators of A are of degree 1.

Proposition 11.2. Let each k
i

= 1. Then for all su�ciently large n, �(M
n

)
is a polynomial in n of degree d(M)� 1.

Proof. Let d = d(M). By (11.1), we infer that �(M
n

) equals the coe�cient
of tn in f(t)(1 � t)�s. Cancelling powers of (1 � t), we may assume s = d
and f(1) 6= 0. Suppose f(t) =

P
N

n=1 akt
k. Since

(1� t)�d =
1X

k=0

✓
d+ k � 1

d� 1

◆
tk

(which can easily be proven by induction on d), we have

�(M
n

) =
NX

k=0

a
k

✓
d+ n� k � 1

d� 1

◆

for all n � N . This is a polynomial of degree d�1 (this can easily by shown
by induction on d).
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The polynomial �(M
n

) is called the Hilbert polynomial of M with
respect to �.

Proposition 11.3. If x 2 A
k

is not a zero-divisor in M (that is xm = 0)
m = 0), then d(M/xM) = d(M)� 1.

Proof. If x is not a zero-divisor, then K
n

= 0 in (1). Thus P (K, t) = 0. So
from (2), we see that P (L, t)’s pole is of degree one less than the pole of
P (M, t). Since L ⇠= M/xM , the result follows.

11.2 The characteristic polynomial

The previus subsection dealt with the general situation in which �(M) was
any additive function on finitely-generated A-modules. From now on, we
will let �(M) = l(M) where l(M) denotes the length of a finitely-generated
A0-module M . A0 will also be Artinian.

Example: Let A = k[x1, . . . , xs]. The x
i

are independent indetermi-
nates. Any field k is Artinian. Then A

n

is an A0-module generated by the
monomials xm1

1 · · ·xms
s

with
P

m
i

= n. There are
�
s+n�1
s�1

�
of these6, hence

�(A
n

) =
�
s+n�1
s�1

�
, hence P (A, t) = (1� t)�s.

Proposition 11.4. Let A be a Noetherian local ring, m its maximal ideal,
q an m-primary ideals, M a finitely-generated A-module, (M

n

) a stable q-
filtration of M . Then
1) M/M

n

is of finite length for all n � 0.
2) For all su�ciently large n, the length of M/M

n

is a polynomial g(n) of
degree  s, the least numbers of generators of q.
3) The degree and leading coe�cient of g(n) depend only on M and q, not
on the filtration.

Proof. 1) Let G(A) = �
n

qn/qn+1, G(M) = �
n

M
n

/M
n+1. Since every el-

ement of G0(A) = A/q is either nilpotent or a unit, the image of m is
the only ideal in A/q, so dimA/q = 0, hence G0(A) is Artin. G(A) is
Noetherian and G(M) is a finitely-generated G(A)-module by (10.23). Each
G

n

(M) = M
n

/M
n+1 is a Noetherian A/q-module, and since A/q is Artin,

they are of finite length. In fact, since l(M) is an additive function, we have

l(M/M
n

) =
nX

r=1

l(M
r�1/Mr

)

6
An induction argument should help you count this.
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2) Since A is Noetherian, q is finitely-generated by, say, x
i

(1  i  s).
The images x̄

i

in q/q2 generate G(A) as an A/q-algebra. Each x̄
i

has degree
1. By (11.2) we have l(M

n

/M
n+1) = f(n) where f(n) is a polynomial in

n of degree  s � 1 for su�ciently large n. From our summation formula
above, we have l(M/M

n+1)� l(M/M
n

) = f(n), hence l
n

is a polynomial of
degree  s for large enough values of n.

3) Let (M 0
n

) be another stable q-filtration ofM and let g0(n) = l(M/M 0
n

).
The two filtrations have bounded di↵erence,, that is, there exists some n0

such that M
n+n0 ✓ M 0

n

and M 0
n+n0

✓ M
n

for all n � 0. Consequently,
g(n+n0) � g0(n) and g0(n+n0) � g(n). Letting n!1, we see that g and
g0 must have the same degree and leading coe�cient.

The polynomial g(n) corresponding to the filtration (qnM) is denoted
by �M

q (n). We have �M

q (n) = l(M/qnM) for large enough n. If M = A, we
write �q(n). We call �q the characteristic polynomial of the m-primary
ideal q. Thus

Proposition 11.5. For large n, the length l(A/qn) is a polynomial �q(n)
of degree  s where s is the least number of generators of q.

Proposition 11.6. Let A,m, q be as above. Then

deg�q(n) = deg�m(n)

Proof. Since A is Noetherian and q is m-primary, we have - for some natural
number r - that m ◆ q ◆ mr, hence mn ◆ qn ◆ mrn. And therefore

�m(n)  �q(n)  �m(rn)

Now, let n!1.

Thus we have found an invariant, namely the common degree of the �q.
We denote this degree by d(A). This choice of notation is not arbitrary.
We have d(A) = d(Gm(A)) where d(Gm(A)) is the order of the pole of the
Poincaré series of A.

11.3 Dimension theory of Noetherian local rings

Let A be a Noetherian local ring, m its maximal ideal. Define �(A) to be
the least numbers of generators of an m-primary ideal of A. We can restate
(11.6):
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Proposition 11.7. �(A) � d(A)

Proposition 11.8. Let A,m, q as before. Let M be a finitely-generated
A-module, x 2 A a nonzerodivisor in M and M 0 = M/xM . Then

deg�M

0
q  degMq �1

Proof. Let N = xM . Then N ⇠= M as A-modules. Let N
n

= N \ qnM . We
have exact sequences

0 // N/N
n

//M/qnM //M 0/qnM 0 // 0

Let g(n) = l(N/N
n

). Then

g(n)� �M

q (n) + �M

0
q (n) = 0

for large n. The Artin-Rees lemma implies that (N
n

) is a stable q-filtration,
so by (11.4), g(n) and �M

q (n) have the same leading term. The result follows.

Proposition 11.9. If A is a Noetherian local ring, x a non-zero-divisor in
A, then d(A/(x)) < d(A) (strictly less!).

Proof. Let M = A.

Proposition 11.10. d(A) � dimA

Proof. If d = d(A) = 0, then l(M/M
n

) is constant for some large n. Thus
there exists n such that mn = mn+1. Hence by Nakayama (since A is local),
we have mn = 0. Thus, by (8.7), A is Artin and dimA = 0.

Assume d > 0 and assume the statement holds for all rings of dimension
< d. Let p0 ⇢ p1 ⇢ . . . p

r

be a chain of prime ideals in A (strict inclusions).
Let x 2 p1 with x /2 p0 and let A0 = A/p0 and let x0 be the image of x in
A0. Then x0 6= 0 and A0 is an integral domain, hence by (11.9), we have

d(A0/(x0)) < d(A0)

If m0 is the maximal ideal of A0, then l(A/mn) � l(A0/mm0n), and therefore
d(A) � d(A0). Therefore

d(A0/(x0))  d(A)� 1 = d� 1

By the inductive hypothesis, the length of any chain of prime ideals in
A0/(x0) is  d � 1. But the images of p1, . . . , pr in A0/(x0) form a chain
of length r � 1, hence r � 1  d � 1, and consequently r  d. Hence
dimA  d = d(A).
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Proposition 11.11. If A is a Noetherian local ring, dimA is finite.

Definition 11.12. If A is any ring, p a prime ideal in A, then the height

of p is the supremum of lengths of chains of prime ideals p0 ⇢ . . . ⇢ p
r

= p
ending at p.

Thus heightp = dimAp.

Proposition 11.13. Let A be a Noetherian local ring of dimension d. Then
there exists and m-primary ideal in A generated by d elements x1, . . . , x

d

,
and therefore dimA � �(A).

Proof. We will construct generators x
j

such that every prime ideal contain-
ing (x1, . . . , xi) have height � i for each i. Suppose i > 0 and that we
already have constructed x1, . . . , xi�1. Now, let

P = {p
j

| minimal prime ideals of (x1, . . . , xs�1) with height = i� 1}

This collection is finite but could be empty (note that since A is Noetherian,
every ideal has a decomposition). Since i � 1 < d = dimA = heightm, we
have m 6= p

j

for each j and therefore m 6= [
j=1pj . Choose x

i

2 m, x
i

/2 [p
j

.
Let q be any prime containing (x1, . . . , xi). Then q contains some minimal
prime ideal p of (x1, . . . , xi�1). If p = p

j

for some j, we have x
i

2 q, x
i

/2 p,
hence q � p, and therefore height q � i. If p 6= p

j

for all j, then height p is
strictly greater than i� 1 (since p /2 P ), so height p � i, hence height q � i.
Thus every prime ideal containing (x1, . . . , xi) has height � i.

Now consider (x1, . . . , x
d

). If p is a prime ideal belonging to this ideal,
then p has height � d, and so p = m. Hence (x1, . . . , x

d

) must be m-
primary.

Proposition 11.14 (Dimension theorem). For any Noetherian ring A the
following three integers are equal:
1) the maximum length of chains of prime ideals in A, i.e. dimA
2) the degree of the characteristic polynomial, �m(n) = l(A/mn), i.e. �(A)
3) the least number of generators of an m-primary ideal of A, i.e. d(A).

Proof. �(A) � d(A) � dim(A) � �(A)

Example: Let R = C[x, y](x,y) and A = R/(x2, xy) and let m be the
maximal ideal in A. We want to find �m(n). This is really an exercise in
counting. We grade A by the filtration A

n

= mnA. How many monomials
are there of degree 1? Two, of course - namely x, y,. Thus 2 is the length of
m/m2. How many are there of degree 2? Only one! Poor x2, xy are killed.
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Of degree 3 there is also only one, namely y3. Generally, for n > 1, we have
l(A

n

/A
n+1) = 1. Thus l(A/A

n

) = 2 + 1 + 1 + . . .+ 1 = 2 + (n� 1) = n+ 1
which is of degree 1, so dimA = 1.
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