# Friday January 24th Corollary : If $\gamma$ is a closed curve on $\Omega$ an open set and $f$ is continuous with a primitive in $\Omega$ (i.e. an $F$ holomorphic in $\Omega$ with $F'=f$) then $\int_\gamma f ~dz = 0$. Proof (easy) : \begin{align*} \int_\gamma f ~dz = \int_\gamma F' = F'(z) z(t) ~dt = F(z(b)) - F(z(a)) = 0 .\end{align*} Corollary : If $f$ is holomorphic with $f'=0$ on $\Omega$, then $f$ is constant. Proof (easy) : Pick $w_0 \in \Omega$; we want to fix $w_0 \in \Omega$ and show $f(w) = f(w_0)$ for all $w\in \Omega$. Take any path $\gamma: w_0 \to w$, then \begin{align*} 0 = \int_\gamma f' = f(w) - f(w_0) .\end{align*} ## Integral and Fourier Transform of $e^{-x^2}$ Example : Let $f(z) = e^{-z^2}$, this is holomorphic. Write $$ f(z) = \sum \frac{(-1)^nz^{2n}}{n!} ,$$ so $$ \int f = \sum \frac{ (-1)^n z^{2n+1} }{ n! (2n+1) } .$$ Since $f$ is entire, $\int f$ is entire, and $(\int f)' = f$ so this function has a primitive. Thus $\int_\gamma f(z) = 0$ for *any* closed curve. So take $\gamma$ a rectangle with vertices $\pm a , \pm a + ib$. ![Image](figures/2020-01-24-13:36.png)\ So \begin{align*} \int_\gamma f = \int_{-a}^a e^{-x^2} ~dx + \int e^{-(a+iy)^2} i ~dy - \int_{-a}^a e^{-(x+ib)^2} ~dx - \int_0^b e^{-(a+iy)^2} i dy = 0 .\end{align*} We can do some estimates, \begin{align*} e^{-(a+iy)^2} &= e^{-(a^2 + 2iay - y^2)} \\ &= e^{-a^2 + y^2} e^{2iay} \\ &\leq e^{-a^2 + y^2} \\ &\leq e^{-a^2 + b^2}, \\ \\ \abs {\int_0^b e^{-(a+ib)^2} i ~dy} &\leq e^{-a^2 + b^2} \cdot b \\ \\ \int_{-a}^a e^{-(x^2 + 2ib x)-b^2} &= e^{b^2} \int_{-a}^a e^{-x^2} ( \cos(2bx) - i \sin(2bx) ) \\ \\ &\equalsbecause{odd fn} e^{b^2} \int_{-a}^a e^{-x^2} \cos(2bx) ~dx .\end{align*} Now take $a\to \infty$ to obtain \begin{align*} \int_\RR e^{-x^2} ~dx = e^{b^2} \int_\RR e^{-x^2} \cos(2bx) ~dx .\end{align*} We can compute \begin{align*} \int_\RR e^{-x^2} = \left[ \qty{\int_\RR e^{-x^2}}^2 \right]^{1/2} = \qty{ \int_0^{2\pi} \int_0^\infty e^{r^2} r~dr~d\theta} = \sqrt{\pi} .\end{align*} and then conclude \begin{align*} \int_\RR e^{-x^2} \cos(2bx) = \sqrt{\pi} e^{-b^2} .\end{align*} Make a change of variables $2b = 2\pi \xi$, so $b = \pi \xi$, then \begin{align*} \int_\RR e^{-x^2} \cos(2\pi \xi x) ~dx = \sqrt{\pi} e^{-\pi^2 \xi^2} .\end{align*} Thus $\mcf(e^{-x^2}) = \sqrt{\pi} e^{-\pi^2 \xi^2}$, allowing computation of the Fourier transform. Note that this can be used to prove the Fourier inversion formula. Exercise : Show that this is an approximate identity and prove the Fourier inversion formula. Exercise : Show $\mcf(e^{-ax^2}) = \sqrt{\pi/a} e^{-\pi^2/a \cdot \xi^2}$, and thus taking $a = \pi$ makes $e^{\pi x^2}$ is an eigenfunction of $\mcf$ with eigenvalue $1$. Theorem (Holomorphic Integrals Vanish) : If $f$ has a primitive on $\Omega$ then $F(z)$ is holomorphic and $\int_\gamma f = 0$. If $f$ is holomorphic, then $$\int_\gamma f = 0.$$ Theorem (Green's) : Take $\Omega \in \RR^2$ bounded with $\bd \Omega$ piecewise smooth. If $f, g\in C^1{\bar \Omega}$, then \begin{align*} \int_{\bd \Omega} f ~dx + g ~dy = \iint_{\Omega} \qty{g_x - f_y} ~dA .\end{align*} Proof : Omitted. Proof (that holomorphic integrals vanish) : Write $\gamma = \bd \Gamma$, and noting that $f_z = f_x = \frac 1 i f_y$ implies that $\dd{f}{\bar z}$, so \begin{align*} \int_\gamma f ~dz &= \int_\gamma f(z) ~(dx + i dy) \\ &= \int f(z) ~dx + i f(z) ~dy \\ &= \iint_\Gamma \qty{if_x - f_y} ~dA \\ &= i \iint_\Gamma \qty{f_x - \frac 1 i f_y} ~dA \\ &= i \iint 0 ~dA \\ &= 0 .\end{align*} Next up, we'll prove that this integral over any triangle is zero by a limiting process.