# Monday January 27th > Open question: does a PDE involving analytic functions always have solutions? > Or does this hold with analytic replaced by smooth? ## Green's Theorem Fix a connected domain $\Omega$ which is bounded with a piecewise $C^1$ boundary. Theorem (Green's) : Given $f, g \in C^1 \bar \Omega$, we can take a vector field $F = \generators{f, g}$ and have \begin{align*} \int_{\bd \Omega} f~dx + g~dy &= \iint_{\Omega} \qty{ \dd{g}{x} - \dd{f}{y} } ~dA \\ \int_{\bd \Omega} - f~dx + g~dy &= \iint_{\Omega} \qty{ \dd{g}{x} + \dd{f}{y} } ~dA \\ \int_{\bd \Omega} f~dy - g~dy &= \iint_{\Omega} \qty{ \dd{f}{x} + \dd{g}{y} } ~dA \\ \int_{\bd \Omega} F \cdot \vector n ~ds &= \iint_{\Omega} \nabla \cdot F ~dA \\ \int_{\bd \Omega} \mathrm{curl}(F) ~ds &= \iint_{\Omega} \mathrm{div}(F) ~dA ,\end{align*} where we take $\vector n$ to be orthogonal to $\bd \Omega$. The quantities appearing on the RHS are referred to as the flux. For $f(z) \in C^1(\Omega)$ holomorphic, we can then write \begin{align*} \int_{\bd \Omega} f ~dz &= \int_{\bd \Omega} f ~(dx + idy) \\ &= \int_{\bd \Omega} f ~dx + if~dy \\ &= \iint_\Omega \qty{if_x - f_y} ~dA \\ &= 0 ,\end{align*} which follows since $f$ holomorphic, we can write $$f'(z) = f_x = \frac 1 i f_y,$$ so $i f_x = f_y$ and thus $\dd{f}{\bar z} = 0$. > See Taylor's Introduction to Complex Analysis Theorem (Cauchy's Integral Formula): : If $f\in C^1(\bar \Omega)$ and $f$ is holomorphic, then for any $z\in \Omega$ \begin{align*} f(z) = \frac{1}{2\pi i} \int_{\bd \Omega} \frac{d(\xi)}{\xi - z} ~d\xi .\end{align*} Proof : Since $z\in \Omega$ an open set, we can find some $r> 0$ such that $D_r(z) \subset \Omega$. Then $\frac{f(\xi)}{\xi - z}$ is holomorphic on $\Omega\setminus D_r(z)$. Let $C_r = \bd D_r(z)$. **Claim**: $$\int_{\bd \Omega} \frac{f(\xi)}{\xi - z} ~d\xi = \int_{C_r} \frac{f(\xi)}{\xi - z} ~ d\xi.$$ If we can differentiate through the integral, we can obtain \begin{align*} \dd{}{z} f(z) = \frac 1 {2\pi i} \int_{\bd \Omega} \frac{f(\xi)}{(\xi - z)^2} ~d\xi .\end{align*} and thus inductively \begin{align*} (D_z)^n f(z) = \frac{n!}{2\pi i} \int_{\bd \Omega} \frac{ f(\xi) ~d\xi }{ (\xi - z)^{n+1} } .\end{align*} To prove rigorously, need to write \begin{align*} \Delta_h f(z) = \frac 1 h \qty{ f(z+h) - f(z) } \\ = \frac 1 {2\pi i h} \int_{\bd \Omega} f(\xi) \qty{ \frac{1}{\xi - (z+h)} - \frac{1}{\xi - z} } ~d\xi = \frac 1 {2\pi i h} \int_{\bd \Omega} f(\xi) \qty{ \frac{1}{ (\xi - z- h)(\xi - z) } } ~d\xi ,\end{align*} and show the integrand converges uniformly, where $$ \frac{1}{(\xi - z - h)(\xi - z)} \converges{u}\to \frac{1}{(\xi - z)^2} .$$ Continuing inductively yields the integral formula. Proof (of claim used in main proof) : Use the parameterization of $C_r$ given by $\xi = z + re^{i\theta}$. Then \begin{align*} \frac{1}{2\pi i} \int_{C_r} \frac{f(\xi)}{\xi - z} ~d\xi &= \frac{1}{2\pi i} \int_0^{2\pi} \frac{f(z + re^{i\theta})}{re^{i\theta}} ~ird\theta \\ &= \frac{1}{2\pi} \int_0^{2\pi} f(z + re^{i\theta}) ~d\theta \\ &\converges{r \to 0}\to \frac{1}{2\pi} \int_{\bd \Omega} \frac{f(\xi)} {\xi - z} .\end{align*} where we use the fact that $$f(z + re^{i\theta}) = f(z) + f'(z)re^{i\theta} + o(r) \converges{r\to 0}\to f(z)$$ Letting $$F(\xi) = \frac{ f(\xi)}{\xi - z},$$ this is holomorphic on $\Omega\setminus D_r(z)$. Let $\Omega_r = \bd \Omega \union (-C_r)$. Take the following path integral: ![Image](figures/2020-01-27-13:59.png)\ Then \begin{align*} 0 = \int_{\bd \Omega_r} F(\xi) ~d\xi = \int_{\bd \Omega} F(\xi) ~d\xi - \int_{C_r} F(\xi) ~d\xi ,\end{align*} which forces these integrals to be equal. Corollary ($C^1$ implies smooth) : If $f$ is holomorphic, then $f\in C^1(\Omega)$ implies that $f \in C^\infty(\Omega)$. Theorem (Holomorphic implies analytic) : If $f$ is holomorphic in $\Omega$, then $f$ is equal to its Taylor series (i.e. $f(z_0$ is analytic.) Proof : Fix $z_0 \in \Omega$ and let $r = \abs{z- z_0}$. \begin{align*} \frac{1}{\xi - z} &= \frac{1}{ \xi - z_0 - (z-z_0) } \\ &= \frac{1}{\xi - z_0} \frac{1}{1 - \qty{ \frac{z-z_0}{\xi - z_0} } } \\ &= \frac{1}{\xi - z_0} \sum_n \qty{ \frac{z - z_0}{\xi - z_0} }^n \quad\text{for } \abs{z - z_0} < \abs{\xi - z_0} .\end{align*} Note that $\sum z^n$ converges uniformly for any $\abs{z} < \delta < 1$. Thus \begin{align*} f(z) &= \frac{1}{2\pi i} \int_{\xi \in \bd\Omega} f(\xi) \sum \frac{(z-z_0)^n}{(\xi - z_0)^{n+1}} ~d\xi \\ &= \sum \qty{ \frac {1}{2\pi i} \int \frac{f(\xi) }{(\xi - z_0)^{n+1}} ~d\xi} (z-z_0)^n \\ &= \sum \frac{f^{(n)} (z_0)}{n!} (z-z_0)^n .\end{align*} Corollary : $f$ is holomorphic iff $f$ is analytic. Counterexample to keep in mind: \begin{align*} f(x) = \begin{cases} x^2 & x > 0 \\ 0 & x\leq 0 \end{cases} .\end{align*} In the case of $\RR$, smooth and analytic are very different categories of functions.