# Monday February 17th > See Hans Lewy 1957 Annals, Folland and Stein 1973. Does a linear system of PDEs with analytic functions have an analytic solution? What about just $C^\infty$? ## Getting a Holomorphic Function from a Laurent Series We can write a formal series \begin{align*} f(z) &= \sum_{n\in \ZZ}a_n (z-a)^n \\ &= \sum_{n\geq 0} a_n (z-z_0)^n + \sum{n\leq -1} a_n (z-z_0)^n \\ &\definedas A(z) + B(z) .\end{align*} Part $A$ converges for $$\abs{z-a} < R_1 = \qty{\limsup \abs{x_n}^{1/n}} \inv.$$ Part $B$ converges for $$\abs{z-a} > R_2 = \limsup \abs{c_{-n}}^{1/n}.$$ If $R_1 < R_2$, this does not converge. Note that if $R_1 > R_2$, then $f$ converges and defines a holomorphic function on the annulus $R_2 < \abs{z-a} < R_1$. Moreover, $f$ converges uniformly on any compact subset of this annulus, so it can be differentiated term-by-term, and the derivative has the same region of convergence. Note that if $f$ equals its Laurent expansion, then $$c_n = \frac{f^{(n)}(a)}{n!} = \frac 1 {2\pi i} \int_\gamma \frac{f(\xi)}{\qty{\xi - a}^{n+1}} ~dz$$ where $\gamma$ is contained in the annulus of convergence, and $c_{n\leq -1} 0$. We also have \begin{align*} \frac 1 {2\pi i} \int_\gamma \frac{f(z)}{(z-a)^m} ~dz &= \sum_{n\in \ZZ} \frac{c_n}{2\pi i} \int_\gamma \frac{1}{(z-a)^{m-n}}~dz \\ &=c_{m-1} ,\end{align*} since $$\int_\gamma \frac{1}{\qty{z-a}^k}~dz = \begin{cases} 2\pi i &k = 1 \\ 0 & \text{else}\end{cases},$$ we have the following formula for the coefficients: \begin{align} c_m &= \frac 1 {2\pi i} \int_\gamma \frac{f(z)}{\qty{z-a}^{m+1}} ~dz .\end{align} So we can start with a series and get a holomorphic function on some region. ## Obtaining a Laurent Series from a Holomorphic Function We can also start with a holomorphic function and get a Laurent series. Suppose $f$ is holomorphic on an annulus $R_2 < \abs {z} < R_1$. We can then write \begin{align*} f(z) = \frac 1 {2\pi i} \int_{\abs{w-a} = R_1} \frac{f(w)}{w-z} ~dw - \int_{\abs{w-z} = R_2} \frac{f(w)}{w-z} ~dw \end{align*} ![Image](figures/2020-02-17-14:07.png)\ Since $\abs{z-a}/\abs{w-a} < 1$, we have \begin{align*} \frac {1}{2\pi i} \int_{\abs{w-a} = R_1} \frac{f(w)}{w-z} ~dz &= \frac {1}{2\pi i} \int_{\abs{w-a} = R_1} \frac{f(w)}{(w-a) - (z-a)} ~dz \\ &= \frac {1}{2\pi i} \int_{\abs{w-a} = R_1} \frac{f(w)}{(w-a)} \sum_{n\in \NN} \frac{(z-a)^n}{(w-a)^n} ~dz \\ &= \sum_{n\in \NN} (z-a)^n \frac 1 {2\pi i} \int_{\abs{w-a} = R_1} \frac{f(w)}{(w-a)^{n+1}} ~dw \\ &= \sum_{n\in \NN} c_n (z-a)^n .\end{align*} Similarly, \begin{align*} -\frac 1 {2\pi i} \int_{\abs{w-a} = R_2} \frac{f(w)}{w-z} ~dw &= -\frac 1 {2\pi i} \int_{\abs{w-a} = R_2} \frac{f(w)}{(w-a) - (z-a)} ~dw \\ &= -\frac 1 {2\pi i} \frac {1}{z-a} \int_{\abs{w-a} = R_2} \frac {f(w)} {\frac{w-a}{z-a} - 1} ~dw \\ &= \frac 1 {2\pi i} \frac {1}{z-a} \int_{\abs{w-a} = R_2} \frac{f(w)} {1 - \frac{w-a}{z-a} } ~dw \\ &= \frac 1 {2\pi i} \frac {1}{z-a} \int_{\abs{w-a} = R_2} f(w) \sum_{n\in \NN} \frac{(w-a)^n}{(z-a)^n} ~dw \\ &= \sum_{n\in\NN} \frac 1 {2\pi i} \frac {1}{(z-a)^{n+1}} \int_{\abs{w-a} = R_2} f(w) (w-a)^n ~dw \\ &= \sum_{n=-\infty}^{-1} c_n (z-a)^n .\end{align*} This yields a formula \begin{equation} c_m = \frac {1}{2\pi i} \int_\gamma \frac{f(z)}{(z-a)^{m+1}} ~dz .\end{equation} In practice, we don't use this formula for extracting coefficients. Example : Let $f(z) = \frac{1}{z(z-1)}$. This has four Laurent series. Let $C(a, R_1, R_2)$ be the annulus centered at $a$. Then at $C(0, 0, 1) = \DD\setminus \theset{0}$, we have \begin{align*} f(z) = \frac 1 z \frac 1 {1-z} = -\frac 1 z \sum_{k\in \NN} z^k .\end{align*} In $C(1, 1, 0) = \DD(1, 1) \setminus\theset{1}$, we have \begin{align*} f(z) &= \frac 1 {z-1} \frac 1 z \\ &= \frac 1 {z-1} \frac 1 {1 + (z-1)} \\ &= \frac 1 {z-1} \sum_{k\in \NN} (-1)^k (z-1)^k .\end{align*} In $C(0, 1, \infty)$, we can write \begin{align*} f(z) &= \frac 1 {z^2} \frac 1 {1 - \frac 1 z} \\ &= \frac 1 {z^2} \sum_{k\in \NN} \frac 1 {z^k} .\end{align*} And in $C(1,1,\infty)$ we have \begin{align*} f(z) &= \frac 1 {z-1} \frac{1}{z-1+1} .\end{align*}