# Friday March 6th ## The Fourier Transform Recall $\hat f(\xi) = \int_\RR f(x) e^{2\pi i x\ cdot \xi} ~dx$. Define $\mcf_a = ??$. Definition (Decay) : $f\in \mcf_a$ iff 1. $f$ is holomorphic in the strip $S_a = \theset{z = x + iy \suchthat \abs{y} < a}$. 2. There exists an $A>0$ such that $\abs{f(x + iy)} < \frac{A}{1+x^2}$. Examples: - $e^{-z^2} \in \mcf_a$ for all $a$ - $\frac{1}{c^2 + z^2} \in \mcf_a$ for all $a > c$ - $\frac {1}{\cosh(\pi z)} \in \mcf_a$ for $a< \frac 1 2$. Lemma : If $f\in \mcf_a$, then $f^{(n)}(z) \in \mcf_b$ for all $b < a$. Theorem (Boundedness of ?? Functions) : If $f\in \mcf_a$, then $\abs{\hat f(\xi)} \leq B e^{-2\pi b \abs \xi}$ for some constants $b, B$. Proof : If $\xi = 0$, \begin{align*} \abs{ \hat f(\xi) } &= \abs{\int_\RR f(x) e^{2\pi i x \cdot \xi}} \\ &\leq \int_\RR \abs{f(x)} ~dx \\ &\leq A \int_\RR \frac 1 {1+x^2} ~dx \\ &= A\pi .\end{align*} For $\xi > 0$, integrate over the box $[-R, R]\cross i[-b, 0]$: \begin{center} \input{figures/RectangleIntegrate.tikz} \end{center} Define $g(z) = f(z) e^{-2\pi i z \cdot \xi}$. The integral over the rectangle is zero, since $g$ is holomorphic, so we can equate $$ \int_R^{R-ib} f(z) e^{-2\pi i z \cdot \xi} ~dz = \int_0^b f(R - it) e^{-2\pi i (R-it)\cdot \xi} (-i)~dt $$ We can use the estimate in $\mcf_a$ to obtain \begin{align*} \int_0^b \cdots &\leq \int_0^b \frac{A}{1+R^2} e^{-2\pi s \xi} ~ds \\ &\leq O(R^{-2}) .\end{align*} Then \begin{align*} \int_\RR f(x) e^{-2\pi i x \cdot \xi} ~d\xi &= \int_{-\infty - ib}^{\infty - ib} \cdots ~dz\\ &= \int_\RR f(x-ib) e^{2\pi i (x - ib)\cdot \xi} ~dx \\ &\leq \int_\RR \frac{A}{1+x^2} e^{-2\pi b \xi} ~dx \\ &= A\pi e^{-2\pi b \xi} ,\end{align*} so we can take $B = A\pi$. For $\xi > 0$, the same argument works with the rectangle above the axis. ## Fourier Inversion Theorem (Fourier Inversion) : If $f\in \mcf_a$, then $f(x) = \int \hat f(\xi) e^{2\pi i x\cdot \xi} ~d\xi$. Proof : Letting $L_1 = \theset{x-ib}$ and $L_2 = \theset{x+ib}$ \begin{align*} I &= \int_0^\infty \hat f \cdots + \int_{-\infty}^0 \hat f \cdots \\ &= \int_0^\infty e^{2\pi i x \cdot \xi} \qty{ \int_{L_1} f(z) + e^{-2\pi i z \cdot \xi} ~dz } ~d\xi + \int_{\infty}^0 e^{2\pi i x \cdot \xi} \qty{ \int_{L_1} f(z) + e^{-2\pi i z \cdot \xi} ~dz } ~d\xi \\ &= \int_{L_1} \int_0^\infty e^{2\pi i x \xi - 2\pi i (s-ib)\xi} ~d\xi ~ds + \int_{L_2} f(z) \int_{-\infty}^0 e^{2\pi i x \cdot \xi - 2\pi i (s + ib)\xi} ~d\xi ds\\ & \quad \quad\text{ by absolute convergence, where } z = s-ib \\ &= \int_{L_1} f(z) \int_0^\infty e^{2\pi i (x - s + ib)\xi} ~d\xi ~ds + \int_{L_2} f(z) \int_{-\infty}^0 e^{2\pi i (x - s + ib)\xi} ~d\xi ~ds \\ &= \int_{L_1} f(z) \frac{1}{2\pi i (x - i + ib)} ~ds + \int_{L_2} f(z) \frac{1}{2\pi i (x - s - ib)} \\ &= \frac{1}{2\pi i} \int \frac{f(z)} {z - x} ~dz \\ &= f(x) ,\end{align*} noting that \begin{align*} \int_0^\infty e^{as} ~ds = \frac 1 a \quad\text{for }\Re(a) > 0 .\end{align*} Note the similar trick: for $\xi < 0$, move up, and $\xi > 0$ move down to form a rectangle. Use the fact that integration along the vertical edges is zero.