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1 Preface
These are notes live-tex’d from a course in Morse Theory at the University of Georgia in Spring
2020, so any errors or inaccuracies are very likely my own. The first portion of this course was
taught by Akram Alishahi, and the latter by Weiwei Wu.

D. Zack Garza, March 18, 2020

2 Thursday January
Recall: For Mn a closed smooth manifold, consider a smooth map f : Mn −→ R.

Definition 2.0.1 (Non-degenerate Critical Points).

A critical point p of f is non-degenerate iff det(H := ∂if

∂xi∂xj
(p)) 6= 0 in some coordinate system

U .

Proposition 2.1(The Morse Lemma).
For any non-degenerate critical point p there exists a coordinate system around p such that

f(x1, · · · , xn) = f(p)− x2
1 − x2

2 − · · · − x2
λ + x2

λ+1 + · · ·+ x2
n.

λ is called the index of f at p.

Lemma 2.2(Relating Index to Eigenvalues).
λ is equal to the number of negative eigenvalues of H(p).
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2.1 Proof of Morse Lemma

Proof .
A change of coordinates sends H(p) −→ AtH(p)A, which (exercise) has the same number of
positive and negative values.

Exercise: show this assuming that A is invertible and not necessarily orthogonal. Use
the fact that AtHA is diagonalizable.

This means that f can be written as the quadratic form


−2 0 0 0 0
0 −2 0 0 0

0 0 . . . 0 0
0 0 0 2 0
0 0 0 0 2

 .

�

2.1 Proof of Morse Lemma
Suppose that we have a coordinate chart U around p such that p 7→ 0 ∈ U and f(p) = 0.

2.1.1 Step 1

Claim 1.
There exists a coordinate system around p such that

f(x) =
n∑

i,j=1
xixjhij(x),

where hij(x) = hji(x).

Proof .
Pick a convex neighborhood V of 0 ∈ Rn.
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2.1 Proof of Morse Lemma

Restrict f to a path between x and 0, and by the FTC compute

I =
∫ 1

0

df(tx1, tx2, · · · , txn)
dt

dt = f(x1, · · · , xn)− f(0) = f(x1, · · · , xn).

since f(0) = 0.
We can compute this in a second way,

I =
∫ 1

0

∂f

∂x1
x1 + ∂f

∂x2
x2 + · · · ∂f

∂xn
xn dt =⇒

n∑
i=1

xi

∫ 1

0

∂f

∂xi
dt = f(x).

We thus have f(x) =
n∑
i=1

xigi(x) where ∂f

∂xi
(0) = 0, and ∂f

∂xi
= x1

∂g1
∂xi

+ · · ·+ gi +xi
∂gi
∂xi

+ · · ·+

xn
∂gn
∂xi

.
When we plug x = 0 into this expression, the only term that doesn’t vanish is gi, and thus
∂f

∂xi
(0) = gi(0) and gi(0) = 0.

Applying the same result to gi, we obtain gi(x) =
n∑
j=1

xjhij(x), and thus f(x) =
n∑

i,j=1
xixjhij(x).

We still need to show h is symmetric. For every pair i, j, there is a term of the form
xixjhij + xjxihji. So let Hij(x) = hij(x) + hji(x)

2 (i.e. symmetrize/average h), then f(x) =

2 THURSDAY JANUARY 5



2.1 Proof of Morse Lemma

n∑
i,j=1

xixjHij(x) and this shows claim 1.

�

2.1.2 Step 2: Induction

Assume that in some coordinate system U0,

f(y1, · · · , yn) = ±y2
1 ± y2

2 ± · · · ± y2
r−1 +

∑
i,j≥r

yiyjHij(y1, · · · , yn).

Note that Hrr(0) is given by the top-left block of Hij(0), which is thus looks like

Note that this block is symmetric.

2 THURSDAY JANUARY 6



2.1 Proof of Morse Lemma

Claim 2 (1).
There exists a linear change of coordinates such that Hrr(0) 6= 0.

We can use the fact that ∂2f

∂xi∂xj
(0) = Hij(0) +Hji(0) = 2Hij(0), and thus Hij(0) = 1

2

(
∂f

∂xi∂xj

)
.

Since H(0) is non-singular, we can find A such that AtH(0)A has nonzero rr entry, namely by
letting the first column of A be an eigenvector of H(0), then A = [v, · · · ] and thus H(0)A = [λv, · · · ]
and At[λv] = [λ‖v‖2, · · · ].

So

∑
i,j≥r

yiyjHij(y1, · · · , yn) = y2
rHrr(y1, · · · , yn) +

∑
i>r

2yiyrHir(y1, · · · , yn)

= Hrr(y1, · · · , yn)
(
y2
r +

∑
i>r

2yiyrHir(y1, · · · , yn)/Hrr(y1, · · · , yn)
)

= Hrr(y1, · · · , yn)(
(
yr +

n∑
i>r

yiHir(y1, · · · , yn)/Hrr(y1, · · · , yn)
)2

·
n∑
i>r

y2
i (HirY/Hrr(Y ))2

·
n∑

i,j>r

Hir(Y )Hjr(Y )/Hrr(Y ))2

by completing the square.

Note that Hrr(0) 6= 0 implies that Hrr 6= 0 in a neighborhood of zero as well.

Now define a change of coordinates φ : U −→ Rn by

zi =


yi i 6= r√
Hrr(y1, · · · , yn)

(
yr +

∑
i>r

yiHir(Y )/Hrr(Y )
)

i = r
.

This means that

f(z) = ±z2
1 ± · · · ± z2

r−1 ± z2
r +

n∑
i,j≥r+1

zizjH̃(z1, · · · , zn).

Exercise: show that d0φ is invertible, and by the inverse function theorem, conclude that there
is a neighborhood U2 ⊂ U1 of 0 on which φ is still invertible.

�

Corollary 2.3.
The nondegenerate critical points of a Morse function f are isolated.
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Proof .
In some neighborhood around p, we have

f(x) = f(p)− x2
1 − · · · − x2

λ + x2
λ+1 + · · ·+ x2

n,

Thus ∂f

∂xi
= 2xi, and so ∂f

∂xi
= 0 iff x1 = x2 = · · · = xn = 0.

�

Corollary 2.4.
On a closed (compact) manifold M , a Morse function has only finitely many critical points.

We will need these facts to discuss the h-cobordism theorem. For a closed smooth manifold, ∂M = ∅,
so M will define a cobordism ∅ −→ ∅.

Definition 2.4.1 (Morse Function).
Let W be a cobordism from M0 −→M1. A Morse function is a smooth map f : W −→ [a, b]
such that

1. f−1(a) = M0 and f−1(b) = M1,
2. All critical points of f are non-degenerate and contained in int(W ) := W \ ∂W .

So f is equal to the endpoints only on the boundary.

Next time: existence of Morse functions. This is a fairly restrictive notion, but they are dense
in the C2 topology on (?).

3 Tuesday January 14th
3.1 Existence of Morse Functions
Notation Let F (M ;R) be the space of smooth functions from M to R with the C2 topology.

Theorem 3.1(Morse Functions Are Dense).
Morse functions form an open dense subset of F (M ;R) in the C2 topology.

Recall that the C2 topology is defined by noting that F (M,R) is an abelian group under addition,
so we’ll define open sets near the zero function and define open sets around f by translation. (I.e.,
if N is an open neighborhood of 0, then N + f is an open neighborhood of f .)

So we’ll define a base of open sets around 0. Take a finite cover of M , say by coordinate systems
{Uα}. Then let hα : Uα −→ Rn. Now (exercise) we can find a compact refinement Cα ⊂ Uα with
each Cα compact and

⋃
α

Cα = M . We can now define fα := f ◦ h−1
α for any f : M −→ R

Uα Rn

Cα

hα

f |Uα fα

3 TUESDAY JANUARY 14TH 8



3.1 Existence of Morse Functions

Now for each δ > 0, define

N(δ) =


f : M −→ R

∣∣∣


|fα(p)| < δ∣∣∣∣∂fα∂xi

∣∣∣∣ < δ∣∣∣∣∣ ∂2fα
∂xi∂xj

∣∣∣∣∣ < δ

∀p ∈ hα(Cα), ∀α


.

Corollary 3.2.
f +N(δ) (for all δ) is a basis for open neighborhoods around f .

Lemma 3.3.
This topology does not depend on the choice of {Uα, hα}.

Proof .
See Milnor 2.

�

Lemma 3.4(1).
Let f : U −→ R be a C2 map for U ⊆ Rn. For “almost all” linear maps L : Rn −→ R, f + L
has only nondegenerate critical points.

Almost all: Note that hom(Rn,R) ∼= Rn, so the complement of the set of such maps has measure
zero in Rn.

Proof .
Consider X = U × hom(Rn,R), which contains a subspace M =

{
(x, L)

∣∣∣ ∂x(f + L) = 0
}
,

i.e. x is a critical point of f . If ∂xf + L = 0, then L = −∂xf . We thus obtain an identification
of M with U by sending x ∈ U to (x,−∂xf).
There is also a projection onto the second component, where (x, L) 7→ L. So let π : X −→
hom(Rn,R) be this projection; then there is a map π̃ : U −→ hom(Rn,R) given by x 7→ ∂xf .
Note that f + L has a degenerate critical point iff there is an x ∈ U such that ∂x(f + L) = 0
(or equivalently L = −∂xf), and the second derivative of f + L is zero. Since L is linear, this

says that the matrix
(

∂f2

∂xi∂xj

)
(x) is singular. But this says x is a critical point for π̃.

This happens iff π̃(x) = −∂xf = L, so L is a critical value for π̃. Thus f + L has a degenerate
critical point ⇐⇒ L is a critical value for π̃.
Now Sard’s theorem applies: if g : Mn −→ Rn is a map from any manifold to Rn that is C1,
then the set of critical values of g in Rn has measure zero.
Thus the set of critical values of π̃ has measure zero, and thus for almost all L, f + L has no
degenerate critical points.

�

Summary: Consider the map of first derivatives. It has a critical point whenever the 2nd derivative
is singular, which is exactly the nondegeneracy condition.
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3.1 Existence of Morse Functions

Lemma 3.5(2).
Let K ⊂ U ⊂ Rn with K compact and U open, and let f : U −→ R have only nondegenerate
critical points. Then there exists a δ > 0 such that every g : U −→ R that is C2 which satisfies

1.
∣∣∣∣ ∂f∂xi (p)− ∂g

∂xi
(p)
∣∣∣∣ < δ, and

2.
∣∣∣∣∣ ∂x

∂xi∂xj
(p)− ∂g

∂xi∂xj
(p)
∣∣∣∣∣ < δ

for all i, j and p ∈ K has only nondegenerate critical points.

Proof .

Define |df | =

√∣∣∣∣ ∂f∂x1

∣∣∣∣2 + · · ·+
∣∣∣∣ ∂f∂xn

∣∣∣∣2. Now note that S(f) = |df |+
∣∣∣∣∣det

(
∂f2

∂xi∂xj

)∣∣∣∣∣ ≥ 0. This

is an equality iff both terms are zero, and the first term is zero iff x is a critical point, while
the second term is zero iff x is degenerate.
Since f has only nondegenerate critical points, this inequality is strictly positive on K,
i.e. S(f) > 0. Since K is compact, S(f) takes on a positive infimum on K, say µ. Then
S(f) ≥ µ > 0 on K.
Thinking of S as defining a norm, the reverse triangle inequality yields

||df | − |dg|| ≤ |df − dg| ≤
√
nδ2 ≤ µ

2 ,

where we can choose δ such that
√
nδ2 < µ.

We can also pick δ small enough such that

||det Jf | − |det(Jg)|| ≤
µ

2 ,

where Jf =
(

∂f

∂xi∂xj

)
is shorthand for the matrix of partial derivatives appearing previously,

and we just note that picking entries close enough makes the difference of determinant small
enough (although there’s something to prove there).
Then

|df | − |dg|+ |det(Jf )| − |det Jg| < µ

=⇒ 0 ≤ |df |+ |det(Jf )| − µ < |dg|+ |det(Jg)|,

The second inequality follows from just moving terms in the first inequality.
which makes the last term strictly positive, and thus nonzero on K. Then g has no degenerate
critical points in K.

�

Proof summary:

1. ‖f‖2(x) = 0 iff x is a degenerate critical point.
2. ‖f‖2(x) ≥ µ > 0 in K.
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3.2 Proof that Morse Functions are Open

3. We can pick δ small enough such that ‖f‖2 − ‖g‖2 < µ on K.
4. This forces ‖g‖2 > 0 on K, so g has no nondegenerate critical points on K.

3.2 Proof that Morse Functions are Open
We still want to show that Morse functions form an open dense subset.

To see that they form an open set, suppose f ∈ F (M,R) is Morse. Then take a finite cover of M ,
say {(Ui, hi)}ki=1. Pick compact Ci ⊂ Ui that still covers M .

Note that any g satisfying the 2 required conditions where |f − g| < δ (?), then g ∈ N(δ) + f .

By lemma 2, there exists a δ > 0 such that every g ∈ N1 := f + N(δ) has only nondegenerate

points in C1. We can pick a δ similarly to define an Ni for every i. Then taking N =
k⋂
i=1

Ni, this

yields an open neighborhood of f such that every g ∈ N has only nondegenerate critical points on
C1
⋃
C2 · · ·

⋃
Ck = M .

�

3.3 Proof that Morse Functions are Dense
We want to show that this set is dense, so we’ll fix some open set and show that there exists a
Morse function in it.

Let f ∈ N for N an open set; we’ll then change f gradually to make it Morse.

Convention We’ll say f is good on S ⊂M iff f has only nondegenerate critical points in S.

Pick a smooth bump function λ : Mn −→ [0, 1] such that

• λ ≡ 1 on an open neighborhood of C1, and
• λ ≡ 0 on an open neighborhood of M \ U1.

Note: we can do this because C1 ⊂ U1 is closed, and M \ U1 is closed, so we can find disjoint
open sets containing each respectively using the fact that Mn is Hausdorff (?).

Now let f1 = f + λL for some linear function L : Rn −→ R, so f1 = f +L on an open neighborhood
of C1. By Lemma 1, for almost every L, f1 is good.

Note that we need λ because L is only defined on Rn, not on M .

Now f1 − f = λL is supported in U1. If we pick the coefficients of L small enough, noting that λ is
bounded, then the first and second derivatives of f − f1 will be bounded, and we can arrange for
f1 ∈ f +N(ε) for ε > 0 as small as we’d like. For ε sufficiently small, we can arrange for N(ε) ⊂ Nδ

for the finitely many δs, and so N(ε) ⊂ N .

By Lemma 2, there exists a neighborhood N1 ⊆ N containing f1 such that every g ∈ N1 is good on
C1. Since f1 ∈ N1, we can repeat this process to obtain an f2 ∈ N2 ⊆ N1 and so on inductively.
Then since every g ∈ N2 is good on C2 and N2 ⊆ N1, every g ∈ N2 is good on C1

⋃
C2. This yields

an fk ∈ Nk ⊂ Nk−1 ⊂ · · · ⊂ N1 ⊂ N , so fk is good on
⋃
Ci = M .

�
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3.3 Proof that Morse Functions are Dense

Thursday: We’ll show that every pair of critical points can be arranged to take on different values,
and then order them. This yields f(p1) < c1 < f(p2) < c2 < · · · ck−1 < f(pk), and since the ci are
regular values, the inverse images f−1(ci) are smooth manifolds and we can cut along them.
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4 Thursday January 16th
4.1 Approximation with Morse Functions with Distinct Critical Points

Theorem 4.1(Morse Functions and Distinct Critical Points).
Let f : M −→ R be Morse with critical points p1, · · · , pk. Then f can be approximated by a
Morse function g such that

1. g has the same critical points of f
2. g(pi) 6= g(pj) for all i 6= j.

Idea: Change f gradually near critical points without actually changing the critical points themselves.

4.2 Proof of Theorem
Suppose f(p1) = f(p2).

Choose U ⊂ N open neighborhoods of p1 such that N doesn’t contain pi for any i except for 1.
Note that this is possible because the critical points are isolated.

4 THURSDAY JANUARY 16TH 13



4.2 Proof of Theorem

Choose a bump function λ ≡ 1 on U and 0 on M \N . Now let f1 = f + ελ, where we’ll see how to
choose ε small enough soon.

Let K :=
{
x
∣∣∣ 0 < λ(x) < 1

}
, which is compact.

Pick a Riemannian metric on M , then we can talk about gradients. Recall that gradf is the vector
field that satisfies 〈X, f〉 for all vector fields X on M . Because f has no critical points in K, X(f)
is nonzero for some field X, so gradf is nonzero, noting that gradf is only zero at the critical points
of f .

In particular, on K we have 0 < c ≤ |gradf | for some c, and gradλ ≤ c′ for some c′. So pick
0 < ε < c′/c such that f1(p1) 6= f1(p2), f1(p1) = f(p1) + ε, andf1(pi) = f(pi) for all i 6= 1. Note
that this is possible because there are only finitely many points, so almost every ε will work.

Claim 1 The critical points of f1 are exactly the critical points of f .
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4.2 Proof of Theorem

Proof .
In K, we have

gradf1 = gradf + εgradλ =⇒ |gradf1| ≥ |gradf | − ε|gradλ| ≥ x− εc′ > 0.

If x 6∈ K, we have
1. x ∈ U , or
2. x ∈M \N

In case 1, λ is constant and gradλ = 0, so gradf1 = gradf . In case 2, λ is again constant, so
the same conclusion holds.

�

Claim 2 f1 is Morse.

Proof .
In a neighborhood of p1, we have f1 ≡ f + ε. In a neighborhood of pi, we have f1 ≡ f .
We can then check that Jf1(pi) = Jf (pi), and since f is Morse, f1 is Morse as well.

�

Recall that this lets us put an order on f(pi). Between every critical value, pick regular values ci,
i.e. f(p1) < c1 < f(p2) < · · ·. Then f−1(ci) is a smooth submanifold of dimension n− 1, and we
have the following schematic:
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4.2 Proof of Theorem

Moreover, f−1[ci, ci+1] is a cobordism from f−1(c2) to f−1(ci+1).

Definition 4.1.1 (Morse Functions for Cobordisms).
Recall that for (W ;M0,M1) a cobordism, a Morse function f : W −→ [a, b] is Morse iff

1. f−1(a) = M0 and f−1(b) = M1.
2. f has only nondegenerate critical points and no critical points near ∂W = M1

∐
M2,

i.e. all critical points are in W ◦ (the interior).

Proof of density of Morse functions goes through in the same way, with extra care taken to choose
neighborhoods that do not intersect ∂W .
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4.3 Proof: Every Morse Function has a Gradient-Like Vector Field

Theorem 4.2(Cobordisms, Morse Functions, Distinct Critical Points). 1. For ev-
ery cobordism (W ;M1,M2) there exists a Morse function.

2. The set of such Morse functions is dense in the C2 topology.
3. Any Morse function f : (W ;M1,M2) −→ [a, b] can be approximated by another Morse

function g : (W ;M1,M2) −→ [a, b] such that g has the same critical points of f and
g(pi) 6= g(pj) for i 6= j (i.e. the critical points are distinct).

Note that n-manifolds are a special cases of cobordisms, namely a manifold M is a cobordism
(W ;M, ∅). So all statements about cobordisms will hold for n-manifolds.

Definition 4.2.1 (Morse Number).
The Morse number µ of a cobordism (W ;M0,M1) is the minimum of∣∣∣{critical points of f ∣∣∣ f is Morse

}∣∣∣.
We’ll be considering cobordisms with µ = 0.

Note: if we take X = gradf , we have 〈X, gradf〉 = ‖gradf‖2 ≥ 0, which motivates our next
definition.

Definition 4.2.2 (Gradient-Like Vector Fields).
Let f : W −→ [a, b] be a Morse function. Then a gradient-like vector field for f is a vector
field ξ on W such that

1. ξ(f) > 0 on W \ crit(f).
2. For every critical point p there exist coordinates (x1, · · · , xn) on U 3 p such that

f(X) = f(p)− x2
1 − · · · − xλ2 + x2

λ+1 + · · ·+ x2
n,

as in the Morse Lemma, where λ is the index, and

ξ = (−x1,−x2, · · · ,−xλ, xλ+1, · · · , xn) in U.

Lemma 4.3(Morse Functions Have Gradient-Like Vector Fields).
Every Morse function f on (W ;M0,M1) has a gradient-like vector field.

4.3 Proof: Every Morse Function has a Gradient-Like Vector Field
For simplicity, assume f has a single critical point p. Pick coordinate (x1, · · · , xn) on an open set
U0 around p such that f has the form given in (1) above. Define ξ0 on U0 to be (2) above.

Every point q ∈ W \ U0 has a neighborhood U ′ such that df 6= 0 on U ′. By the implicit function
theorem, there is a smaller neighborhood U ′′ such that q ∈ U ′′ ⊂ U such that f = c0 + x1 on U ′′ for
some constant c0.

Exercise: check that this works!
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4.3 Proof: Every Morse Function has a Gradient-Like Vector Field

But since W \ U0 is a closed subset of a compact manifold, it is compact, so we can cover it with
finitely many Ui that satisfy

1. Ui
⋂
U = ∅ for some open U containing p such that U ⊂ U0 and U ⊂ U0.

2. Ui has a coordinate chart (x2
1, · · · , x2

n) such that f = ci + x2
1 on Ui for some constants ci.

Thus on Ui we can set ξi = (1, 0, · · · , 0) = ∂

∂x2
1
to get local vector fields. We can then take a

partition of unity ρ1, · · · , ρk and set ξ =
∑
i

ρiξi.

Now consider ξ(f). By definition, ξ(f) =
∑
i

ρiξi(f). Note that ρiξi(f) = 1 in Ui, and ρ0ξ0(f) ≥ 0,

so ξ(f) ≥ 0. If x is not a critical point, then at least 1 ξi(f)(x) is positive and thus ξ(f)(x) > 0.

This is because x is either in U , in which case the 0 term is positive, or x ∈ Ui, in which case
one of the remaining terms is positive.

�

The idea here: if we can make locally gradient-like vector fields, we can use partitions of unity
to extend them to global vector fields.

Theorem 4.4(The Morse Number Detects Product Cobordisms).
Any cobordism (W ;M0,M1) with µ = 0 is a product cobordism, i.e.

(W ;M0,M1) ∼= (M0 × I;M0 × {0} ,M0 × {1}).

Proof (of Theorem).
Let f : W −→ I be Morse with no critical points, and let ξ be a gradient-like vector field for f .
Then ξ(f) > 0 on W , so we can normalize to replace ξ with 1

ξ(f)ξ and assume ξ(f) = 1. Then

consider the integral curves of ξ, given by φ : [a, b] −→W .
i.e. dφ = ξ.

We can thus compute

∂

∂t
f ◦ φ(t) = df(∂φ

∂t
) = df(ξ) = ξ(f) = 1.

By the FTC, this implies that f ◦ φ(t) = c0 + t for some constant c0. So reparameterize by
defining ψ(s) = φ(s− c0), then f ◦ ψ(s) = s. For every x ∈W , there exists a unique maximal
integral curve ψx(s) that passes through x.

Note that this works because maximal curves must intersect the boundary at precisely
t = 0, 1 and f is an increasing function. So for any curve passing through x, we can
extend it to a maximal.
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We can then define

h : M0 × I −→W

(x, s) 7→ ψx(s)
(ψy(0), f(y))←[ y

.

�

5 January 21st
5.1 Elementary Cobordism
Recall that an elementary cobordism is a cobordism that has a Morse function with exactly one
critical point.

Definition 5.0.1 (Handles).
An n-dimensional λ-handle is a copy of Dλ×Dn−λ which is attached to ∂Mn via an embedding
φ : ∂Dλ ×Dn−λ ↪→ ∂M .
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5.1 Elementary Cobordism

Example 5.1.
Let λ = 1, n = 2, n− λ = 1 and take M2 = D2 and we attach D1 ×D1. Note that there’s not
necessarily a smooth structure on the resulting manifold, so we can “smooth corners”:

Example 5.2.

Note: the above is just a homeomorphism.

Definition 5.0.2 (Surgery).
Let M be an n − 1 dimensional smooth manifold, and ρ : Sλ−1 × Dn−λ ↪→ Mn−1 be an
embedding.
Then noting that ∂Dn−λ = Sn−λ−1, consider the space

X(M,φ) = (M \ ρ(Sλ−1 × {0}))× (Dλ × Sn−λ−1)

/
〈
ρ(u, tv) ∼ (tu, v)

∣∣∣ t ∈ (0, 1),∀u ∈ Sλ−1, ∀v ∈ Sn−λ−1
〉
,

where we note that we can parameterize Dn−λ = tv where v is a point on the boundary.
Note that this accomplishes the goal of smoothing, and is referred to as surgery (of type
λ, n− λ) on M along φ.
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5.1 Elementary Cobordism

Example 5.3.

Example 5.4.
n−1 = 3 and λ = 2 implies λ−1 = 1, and take ρ : S1×D2 −→ S3, which has image a tubular
neighborhood of a knot. Then φ(S1 × {0}) = K for some knot, and (S3 \K)

∐
(D2 × S1)/ · · ·.

Then note that ∂φ({u} × D2) = {u} × S1, which no longer bounds a disk since we have
removed the core of tube.

Theorem 5.1(Cobordism and Morse Function Induced by Surgery).
Suppose M ′ = X(M,ρ) is obtained from M by surgery of type λ. Then there exists an
elementary cobordism (W ;M,M ′) with a Morse function f : W −→ [−1, 1] with only one index
λ critical point.

Example 5.5.
Let M = S1 and λ = 1.
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5.1 Elementary Cobordism

5.1.1 Proof: Surgeries Come From Cobordisms With Special Morse Functions

Write Rn = Rλ × Rn−λ, and (x,y) ∈ Rn.

Then

Lλ = {(x,y)
∣∣∣ − 1 ≤ −‖x‖2 + ‖y‖2 ≤ 1, ‖x‖‖y‖ < sinh(1) cosh(1)}.

The left boundary is given by ∂L : ‖y‖2 − ‖x‖2 = −1, and there is a map

Sλ−1 ×Dn−λ diffeo−−−→ ∂L

(u, tv) 7→ (u cosh(t), v sinh(t)) t ∈ [0, 1),

which is clearly invertible.

The right boundary is given by ∂R : ‖y‖2 − ‖x‖2 = 1, and there is a map
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5.1 Elementary Cobordism

Sλ−1 ×Dn−λ diffeo−−−→ ∂L

(tu, v) 7→ (u sinh(t), v cosh(t)).

In the above picture, we can consider the orthogonal trajectories, which are given by y2 − x2 = c,
which has gradient (−x, y) and xy = c which has gradient (y, x), so these are orthogonal.

Recall that near a point p ∈M , the morse function has the form f(x,y) = f(p)− ‖x‖2 + ‖y‖2 with
a gradient-like vector field given by ξ = (−x,y).

The orthogonal trajectories will generally be of the form ‖x‖‖y‖ = c, which we can parameterize as
t 7→ (tx, 1

t
y).

Construction of W :

Take

W (M,φ) = ((M \ φ(Sλ−1 × {0}))×D1)
∐
Lλ

/
〈
φ(u, tv)× c ∼ (x,y)

∣∣∣ ‖x‖2 − ‖y‖2 = c, (x,y) ∈ orth. traj. starting from(u cosh(t), v sinh(t))
〉
.

This amounts to closing up in the following two ways:
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5.1 Elementary Cobordism

This has two boundaries: when c = −1, we obtain M , and c = 1 yields X(M,φ). The Morse
function is given by f : W (M,φ) −→ [−1, 1] where

{
f(z, c) = c z ∈M \ φ(Sλ−1 × {0}), c ∈ D1

f(x,y) = ‖x‖2 − ‖y‖2 (x,y) ∈ Lλ
.
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6 Thursday January 23rd
Recall from last time: M is a closed smooth n− 1 manifold and φ : Sλ−1 ×Dn−λ ↪→ M , and we
used surgery to obtain χ(M,φ) and a cobordism W (M,φ) from M to χ(M,φ).

This yields a saddle Lλ ⊆ Rn = Rλ × Rn−λ. We construct the cobordism using

Sλ−1 ×Dn−λ −→ ∂L

(u, tv) 7→ (u cosh t, v sinh t).

This yields

M \
{
φ(Sλ−1)× {0}

}∐
Lλ/

〈
(u, tv)× c ∼ (x,y)

∣∣∣ ‖x‖2 + ‖y‖2 = c
〉

x, y are on a curve that starts from (u cosh t.v sinh t).
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Todo: review!

Suppose W (;M0,M1) is an elementary cobordism and f : W −→ [−1, 1] is a Morse function with
one critical point p, and ξ a gradient-like vector field for f .

The goal is to construct φL : Sλ−1 ×Dn−λ ↪→M0, the characteristic embedding.

Let ψx be the integral curve of ξ such that ψx(0) = x, and defineW s(p) =
{
x ∈W

∣∣∣ lim
t−→∞

ψx(t) = p

}
to be the stable manifold, and W u(p) =

{
x ∈W

∣∣∣ lim
t−→−∞

ψx(t) = p

}
.

Claim: W s(p),W u(p) are diffeomorphic to disks of dimension λ and n− λ respectively.
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Moreover, ∂W s(p) = W s(p)
⋂
M0 ∼= Sλ−1 (Milnor refers to this as the “left sphere” SL and

∂W u(p) = W u(p)
⋂
M1 = Sn−λ−1 (the “right sphere” SR).
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6.0.1 Proof

Choose an open U 3 p and a coordinate chart h : OD2ε −→ U . Then f ◦ h(x, y) = c− ‖x‖2 − ‖y‖2,
which takes on a minimum value of c− 4ε2 and a maximum of c+ 4ε2, and ξ ◦ h(x, y) = (−x, y).
We thus obtain the inequalities

−1 < c− 4ε2 < c+ 4ε2 < 1 if 4ε2 < c+ 1, 1− c.

Now let Wε = f−1[c − ε2, c + ε2], and we want a cobordism from M−ε = f−1(c − ε2) to M+ε =
f−1(c+ ε2). Then

M∓
⋂
U =

{
h(x, y)

∣∣∣ c− ‖x‖2 + ‖y‖2 = c∓ε
2 ⇐⇒ −‖x‖2 + ‖y‖2 = ∓ε2

}
.
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Then W 2(p)
⋂
U = {h(x, 0)} ∼= Dλ, and W s(p)

⋂
M−ε =

{
h(x, 0)

∣∣∣ ‖x‖ = ε
}
. By flowing along

the integral curves of ξ, we obtain a diffeomorphism Ψ−ε : M0 −→ M−ε. Then W s(p) =
{h(x, 0)}

⋃{
integral curves of ξ passing through points in W s(p)

⋂
M−ε

}
.

So SL = Ψ−1
−ε(W s(p)

⋂
M−ε), and we can define the embedding φL by the following composition:

Sλ−1 ×Dn−λ M0

L(u, tv)

h(εu cosh t, εv sinh t) M−ε

Ψ−1
−ε

Similarly, one can show W u(p) ∼= Dn−λ and define another embedding φRDλ × Sn−λ−1 ↪→M1.

�
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Theorem 6.1(?).
Let (W ;M0,M1) be an elementary cobordism with (f, ξ, p) a Morse function with a gradient-like
vector field and a critical point as above. Then there is a diffeomorphism of cobordisms

(W (M0, φL);M0, χ(M0, φL)) ∼= (W ;M0,M1),

where φL : Sλ−1 ×Dn−λ ↪→M0 is the characteristic embedding.

Proof .
Consider f−1[−1, c− ε2]

⋃
Wε

⋃
f−1[c+ ε2, 1], and note that f−1[−1, c− ε2], f−1[c+ ε2, 1] is

a product (?). Then (W ;M0,M1) ∼= (Wε;M−ε,Mε). We then have

(W (M,φL);M0, χ(M0, φL)) ∼= (W (M−ε, φ),M−ε, χ(M−ε, φ)).

So we’ll define a diffeomorphism from the RHS to the RHS of the former diffeomorphism. Define
f −→ [c− ε2, c+ ε2] in the former and f ′ −→ [−1, 1] in the latter. Then take f ◦ k = c+ ε2f ′

to match up the domains. Take (z, t) ∈ (M−ε \ φ(
{
Sλ−1 × {0}

}
)) ×D1. Then k(z, t) is the

point on the integral curve which passes through z with f(k(z, t)) = c+ ε2t. This map will
take flow lines to flow lines. Now define

(x, y) ∈ Lλ −→ h(εx, εy).

�

Exercise Show that this is a well-defined diffeomorphism.

Theorem 6.2(Cobordisms Retract Onto Surgery Components?).
For an elementary cobordism (W ;M0,M1) and (f, ξ, p) as above, then M0

⋃
DL (where

DL
∼= W s(p)) is a deformation retraction of W .

Corollary 6.3.

Hi(W,M0) = Hi(M0
⋃
DL,M0) excision= Hi(DL, SL) ∼=

{
Z i = λ

0 otherwise
.

Theorem 6.4(Reeb).
If a closed n-manifold M has a Morse function with exactly 2 critical points, then M is
homeomorphic to Sn.

Proof .
If m = min

x∈M
f(x) = f(A) and M = max

x∈M
f(x) = f(B) where A,B are critical points. Then
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points near A are in the unstable manifold, so Ind(A) = 0, and points near B are in the stable,
so Ind(B) = n.

The middle piece of the cobordism is a product cobordism, and M is called a twisted sphere.
�

Exercise Every twisted sphere is homeomorphic to Sn.

7 Tuesday January 28th
Setup: Fix an elementary cobordism (W ;M0,M1), a Morse function f : W −→ [−1, 1] with
exactly one critical point p with index Ind( p) = λ. This yields a gradient-like vector field ξ, and

DL = W s(p) =
{
x ∈W

∣∣∣ lim
t−→∞

ψx(t) = p

}
the stable manifold.

Theorem 7.1(Deformation Retract of Cobordism Onto ??).
W ∼= M0

⋃
DL, a λ dimensional disk, is a homotopy equivalence. More precisely, there is a

deformation retract.
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7.0.1 Proof

Take the characteristic embedding φL : Sλ−1×ODn−λ ↪→M0. We have a cobordism (W (M0, φL);M0, χ(M0, φL)) ∼=
(W ;M0,M1).

Recall that the LHS is constructed via (M0 \ φ(Sλ−1 × 0))×D1
∐
Lλ/ ∼.

Retraction 1: W (M0, φL) rt−→ M0
⋃
C. We’ll construct this retraction. This follows the green

integral curves to retract onto the red.

Identify DL = {(x,0)} ⊂ Lλ in the local picture:
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Define C =
{

(x,y)
∣∣∣ ‖y‖ ≤ 1

10

}
.

Choose (Z, c) such that z ∈M0 \φL(Sλ−1×ODn−λ) and c ∈ [−1, 1]. Let rt(z, c) = (z, c+ t(−1− c)),
note what happens at t = −1, 1, 0.

We can parameterize the integral curves in the local picture as (x/r, ry).

So for (x,y) ∈ Lλ, we can define

rt(x,y) =


(x,y) ‖y‖ ≤ 1

10 ⇐⇒ (x,y) ∈ C

? ?

(x/ρ(t), ρ(t)y) ‖y‖ ≥ 1
10

.

where ρ(t) is the solution of

ρ(t)2‖y‖2 − ‖x‖2/ρ(t)2 =
(
‖y‖2 − ‖x‖2

)
(1− t)− t

ρ(t)‖y‖2 ≥ 1
10 =⇒ ρ(t) ≥ 1

10‖y‖ .
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So we define ρ(t) = max(positive solutions for the above equation, 1
10‖y‖).

Retraction 2: M0
⋃
C

r′t−→M0
⋃
DL

We want the restriction of r′t to M0 \ C to be the identity, so for (x,y) ∈ C we define

r′t(x,y) =


(x, (1− t)y) ‖x‖ ≤ 1

(x, α(t)y) 1 ≤ ‖x‖ ≤
√

1 + 1
100

.
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7.1 Morse Inequalities

We define α(t) at t = 0 to be the identity, and at t = 1 we want ‖α(t)y‖2 − ‖x‖2 = −1, and solving
yields

α(t) = (1− t) + t

√
‖x‖2 − 1
‖y‖ .

�

Corollary 7.2.
For M a closed smooth n-manifold with a Morse function f : M −→ R, M is homotopy-
equivalent to a CW complex with one λ-cell for each critical point of index λ.

Proof: See Milnor’s book (Morse Theory).

7.1 Morse Inequalities
Let M be a closed smooth manifold and f : M −→ R Morse, and fix F a field. Let bi(M) denote
the ith Betti number, which is rankHi(M ;F ).

Weak Morse Inequalities:

1. bi(M) ≤ the number of index i critical points, denoted ci(M).
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7.1 Morse Inequalities

2. ξ(M) =
∑

(−1)ici(M).

Strong Morse Inequalities: bi(M)− bi−1(M) + · · · ± b0(M) ≤ ci − ci−1 + ci−2 · · · ± c0.

Lemma 7.3.
The weak inequalities are consequences of the strong ones.

Proof (implying (1)).
We have bi − · · · ≤ ci − · · · and separately bi−1 − · · · ≤ ci−1·, and adding these inequalities
yields bi ≤ ci.

�

Proof (implying (2)).
To obtain the equality, multiply through by a negative sign. For i > n, we have bi−1−bi−2+· · · =
ci−1 − ci−2 + · · ·, where the LHS is ±χ(M) and the RHS has matching signs.

�

7.1.1 Proof of Strong Morse Inequalities

Suppose f(p1) < · · · < f(pk). We can select points ai such that a0 < f(p1) < a1 < · · ·. Let
Mi = f−1[a0, ai]; we then have ∅ := M0 ⊂M1 ⊂ · · ·Mk = M .

Using excision, we have

Hj(Mi,Mi−1) = Hj(f−1[ai−1, ai], f−1(ai−1))

=
{
F j = Ind(pi) = λi

0 otherwise
.

So bj(Mi,Mi−1) = 1 iff j = λi, and 0 otherwise.

Lemma 7.4(Sublemma).
Define Si := bi(X,Y )− bi−1(X,Y ) + · · ·, i.e. the LHS of the strong Morse inequality. Then Si
is subadditive, i.e. if X ⊃ Y ⊃ Z then Si(X,Z) ≤ Si(X,Y ) + Si(Y,Z).

This implies the strong inequality, since

Si(M, ∅) ≤ Si(Mk,Mk−1) + Si(Mk−1,Mk−2) + · · ·+ Si(M1,M0).

The RHS here equals
k∑
j=1

Ti(Mj ,Mj−1) = Ti(M), where Ti(M) = ci − ci−1 + · · ·.

Write down the relative homology exact sequence:
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Hi+1(X,Y ) Hi(Y, Z) Hi(X,Z) Hi(X,Y )

Hi−1(Y,Z)

∂i fi gi

∂i−1

then

rank(∂i) = dim ker(fi) = bi(Y, Z)− rank(fi) = bi(Y, Z)− bi(X,Z) + rank(gi) = · · · = Si(Y, Z)− Si(X,Z) + Si(X,Y ) > 0.

since ranks are positive.

8 Thursday January 30th
8.1 Morse Inequality Example
Example: Consider f : CPn −→ R where (recall) CPn = S2n+1 ⊂ Cn+1/ ∼ where z ∼ λz for all
|λ| = 1 in C×, where f is given by [z0 : · · · : zn] 7→

∑
i|zi|2.

Note that we can take the coefficients to be any n+ 1 distinct real numbers, here we just take
1, 2, · · · , n+ 1 for simplicity.

Cover CPn with n+ 1 coordinate charts (Uj , hj) where Uj =
{

z
∣∣∣ zj 6= 0

}
and hj : Uj −→ R2n is

given by first defining [z0 : · · · : zn] 7→ (ẑjz0, ẑjz1, · · · , ẑjzn) where ẑj = zj/|zj |.

Denote the image coordinates by zk = xk+iyk. Then define hj by [z0 : · · · : zn] hj−→ (x0, y0, · · · , xj−1, yj−1, xj+1, yj+1, · · · , xn, yn).

Note that |zj | = 1−
∑
i 6=j
|zi|2, so this is a one-to-one correspondence (i.e. we can recover the magnitude

of zj from the image point).

So what is f in these coordinates? We can write

f ◦ h−1
j (x0, y0, · · · , x̂j , ŷj , · · ·xn, yn) =

∑
i 6= ji(x2

i + y2
i ) + j|zj |2

=
∑
i 6=j

i(x2
i + y2

i ) + j −
∑
i 6=j

j(x2
i + y2

i )

= j +
∑
i 6=j

(i− j)(x2
i + y2

i )

= j + (−j)(x2
0 + y2

0) + (−j + 1)(x2
1 + y2

1) + · · ·+ (n− j)(x2
n + y2

n).

)

So what are the critical points? The derivative is zero iff xi = yi = 0 for some i 6= j. So there is
only one critical point, pj = [0 : 0 : · · · : · · · 1j : · · · : 0]. Thus there are n+ 1 critical points given by
crit(f) = {p0, · · · , pn}. Using the above equations, we can find that Indf (pj) = 2j (count positive
and negative terms).

Note that we had the inequality bi(M) ≤ |{critical points with index i}|. Noting that H i(CPn;F) =
F for i = 0, 2, 4, · · · , 2n and 0 otherwise, so we have exact equality here.
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8.2 Rearrangement

Note that there are QHS where the inequality has to be strict, but equality can be obtained
with CPn, Sn, etc.

8.2 Rearrangement
Fix a Morse function f : W −→ [0, 1], with p, q ∈ crit(f) and f(p) < f(q). Can we change f to
a new Morse function g such that crit(g) = crit(f) and g(p) > g(q), where g = f + const. in a
neighborhood of p and a neighborhood of q?

Note that we obtain elementary cobordisms in each case:

Pick ξ a gradient-like vector field for f , which decomposes W ∗(p) = W s(p)
⋃
W u(p).

Lemma 8.1.
Let f : W −→ I be a Morse function with 2 critical points p, q and ξ a gradient-like vector field
for f such that W ∗(p)

⋂
W ∗(q) = ∅. Then for any two points a, b ∈ I, there exists a Morse

function g such that:
1. ξ is gradient-like for g,
2. crit(g) = crit(f), with g(p) = a and g(q) = b.
3. g = f near M0 and M1, and g = f + const. in some neighborhood of p, and some

neighborhood of q.

So this is stronger: we can modify our Morse function to take on any two real numbers.

Idea of proof: We want the two purple sections here, since we want to modify p and q separately:
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8.2 Rearrangement

Figure 1: Image
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8.2 Rearrangement

Figure 2: Image
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8.2 Rearrangement

8.2.1 Proof of Lemma

We can find a µ : M0 −→ I such that µ ≡ 0 near SPL and µ ≡ 1 near SqL. So extend µ to µ : W −→ I
such that µ is constant over the integral curves of ξ and µ ≡ 0 near W ∗(p) and µ ≡ 1 near W ∗(q).

Here the integral curves are green:
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8.2 Rearrangement

Let g(z) = G(f(z), µ(z)) where G : I × I −→ I will be defined as follows:

1. Fix a y ∈W to µ is constant, then G( · , y) : I −→ I is increasing (since f is increasing) and
surjective, i.e. ∂G

∂x
> 0 everywhere.

2. G(x, y) = x whenever x is near 0 or 1.
3. ∂G

∂x
(x, 0) = 1 for x near f(p) and ∂g

∂x
(x, 1) = 1 for x near f(q).

Note that a = g(p)G(f(p), 0) and b = g(q) = G(f(q), 1), and the slope should be constant near
a, b.

We get something like the following graphs:
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8.2 Rearrangement

�

When can such a function exist? I.e. is this a relatively strong condition? If f(p) < f(q), it is
possible that W u(p)

⋂
W s(q) 6= ∅:

8 THURSDAY JANUARY 30TH 43



8.2 Rearrangement

Theorem 8.2(Modifying a Vector Field to Separate W’s).
If f(p) < f(q) and Ind(p) ≥ Ind(q), then it is possible to change ξ in a neighborhood of f−1(x)
for some f(p) < c < f(q) such that W u

p

⋂
W s
q = ∅.

Main Idea:
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8.2 Rearrangement

Note that W u
p

⋂
W s
q = ∅ iff ScR(p)

⋂
ScL(q) = ∅, where SCR (p) = W u

p

⋂
f−1(c) and ScL(q) =

W s
q

⋂
f−1(c).

We have the implication
dimW = n

Ind(p) = λ

Ind(q) = λ′
=⇒


dim f−1(c) = n− 1
dimScR(p) = n− λ− 1
dimScL(q) = λ′ − 1

.

and thus

dimScR(p) + dimScL(q) = n− λ− λ′2 < n− 1 = dim f−1(c).

Lemma 8.3(1).
If Mm, Nn ⊂ V v are smooth submanifolds and m+ n < v then there exists a diffeomorphism
h : V −→ V which is isotopic to the identity such that h(M)

⋂
N = ∅.

Idea: We’ll use this new diffeomorphism to modify the vector field ξ to make things disjoint.
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9 Tuesday February 4th
9.1 Modifying Vector Fields
Recall: Let f : W −→ I be Morse, crit(F ) = {p, q} where f(p) < f(q), and ξ a gradient-like vector
field for f .

Theorem 9.1(When Critical Points of Morse Functions Can Take On Any Value).
If W ∗(p)

⋂
W ∗(q) = ∅ then for any a, b ∈ (0, 1) we can change f “nicely” to a new Morse

function g such that g(p) = a and g(q) = b.

Note that these are disjoint iff W u(p)
⋂
W s(q) = ∅ iff ScR(p)

⋂
ScL(q) = ∅. If ∈ (p) ≥∈ (q) then

dimScR(p) = dimScL(q) < n− 1 = dim f−1(c).
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9.1 Modifying Vector Fields

Lemma 9.2(1, Small Submanifolds Are Disjoint Up to Isotopy).
For Mm, Nn ⊂ V v submanifolds with m+ n < v, there exists a diffeomorphism h : V −→ V
smoothly isotopic to idV such that h(M)

⋂
N = ∅.

I.e. low enough dimension submanifolds can smoothly be made disjoint.

Lemma 9.3(2, ??).
Let f : W −→ I be Morse with gradient-like vector field ξ and regular value x ∈ (0, 1). Let
h : f−1(c) −→ f−1(c) be smoothly isotopic to the identity, and define M := f−1(c). Then we
can change ξ over f−1[c− ε, c]λ to a new gradient-like vector field ξ such that if we let

Φ : f−1(c− ε) −→M

be the flow induced by ξ and

Φ : f−1(c− ε) −→M

be induced by ξ.
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9.1 Modifying Vector Fields

Note that the left/right spheres are defined in terms of gradient-like vector fields, so “bar”
here refers to a new gradient-like vector field.

Then picking h from lemma 1, we can arrange so that ScL(q)
⋂
S
c
R(p) = ∅.

Then ξ = h ◦ Φ.

9.1.1 Proof of Lemma 2

We have

[c− ε, c]×M φ−→ f−1[c− ε, c] f−→ [c− ε, c],

which we can factor by projection onto the first component. This satisfies the following properties:

1. φ∗(
∂

∂t
) = ξ̂ := 1

ξ(f)ξ

2. φ|{x}×M = id

Note: the product cobordism [c− ε, c]×M is easier to work with here, we can then push it to
f−1[c− ε, c] via φ.

We now define ht by the properties

• For t near c− ε, ht = id, and
• For t near x, ht = h.
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9.2 Cancellation

We use this to construct a diffeomorphism

H : [c− ε, c]×M −→ [c− ε, c]×M
(t, x) 7→ (t, ht(x)).

Both the domain and codomain map via φ to f−1[c− ε, c], so we can consider

H∗

(
∂

∂t

)
= ∂H

∂t
(t, x) =

(
1, ∂ht

∂t
(x)
)

for t near c− ε and c.

We then have ξ′ = (φ ◦ H ◦ φ−1)∗ξ̂ = (φ ◦ H)∗
(
∂

∂t

)
. Thus for t near c − ε and c, we have

ξ′ = φ∗

(
∂

∂t

)
= ξ̂. So define

ξ =
{
ξ(f) · ξ′ on f−1[c− ε, c]
ξ everywhere else

.

On [c − ε, c] × M , what are the integral curves of H∗(
∂

∂t
)? Picking a t ∈ [c − ε, c], we have

H(t, x) = (t, ht(x)) by definition, and thus the integral curves of ξ̂ are given by φ(t, ht(x)) for all
x ∈M . Then φ(c− ε, x) = φ(c− ε, hc−ε(x)) for t = c− ε, which is just Φ−1(x). Then for t = c we
get φ(c, h(x)) = h(x). Thus Φ ◦ Φ−1(x) = h(x), yielding Φ = h ◦ Φ.

Corollary 9.4.
Given any Morse function f on an n-dimensional cobordism (Wn;M0,M1) we can get a new
Morse function g such that
• crit(g) = crit(f),
• g(p) = Ind(p) (since we can make the critical points take on any values)
• g−1(−1/2) = M0 and g−1(n+ 1/2) = M1

Such a Morse function is called self-indexing.

9.2 Cancellation
Note that we may have “extraneous” critical points:
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9.2 Cancellation

Here note that W is diffeomorphic to a product cobordism.

Let f : W −→ [0, 1] be Morse, crit(f) = {p, q}, Ind(p) = λ and ∈ (q) = λ+ 1 with f(p) < f(q).

Pick c ∈ [f(p), f(q)], then consider ScR(p)
⋂
ScL(q). We have dimScR(p) = n−λ−1 and dimScL(q) =

λ+ 1− 1, and so the dimension of their intersection is n− 1, i.e. dim f−1(c).

Definition 9.4.1 (Transverse Submanifolds).
Submanifolds Mm, Nn ⊂ V v are called transverse if for any p ∈ M

⋂
N , TpV ⊂

span {TpM,TpN} and we write M t N .

Example 9.1. • If m+ n < v, then M t N iff M
⋂
N = ∅.

• If m+ n = v, then M t N iff dimM
⋂
N = 0.

• In general, if M t N then M
⋂
N is a smooth submanifold of dimension m+ n− v.

Theorem 9.5(Submanifolds are Transverse up to Isotopy).
For submanifolds Mm, N

n ⊂ V , then there exist h : V diff−−→ V smoothly isotopic to idV such
that h(M) t N .

Corollary 9.6.
We can change ξ in f−1[c − ε, c] such that ScR(p) t ScL(q), so their intersection consists of
finitely many points.
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Proposition 9.7(First Cancellation).
If ScR(p)intersects ScL(q) in exactly one point, then W is a product cobordism.

Idea of proof:

1. Change ξ in a neighborhood of the integral curve from p to q such that the new vector field is
nonvanishing.

2. Change f to g with no critical point such that the new vector field is gradient-like for ξ.

10 Thursday February 6th
Cancellation: Let f : W −→ I be Morse, crit(f) = {p, q} with f(p) < f(q) and Ind(p) = λ, Ind(q) =
λ+ 1. Let ξ be its gradient-like vector field, then ScR(p)

⋂
ScL(q) = {pt}, so there exists a unique

integral curve T from p to q.

In this situation W is diffeomorphic to the product cobordism.

We will show

Theorem 10.1(1, Modifying Vector Fields).
We can change ξ in a compact neighborhood of T to get a nonvanishing vector field ξ′ for which
the integral curves originate at M0 and end at M1.

Example 10.1.
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Moreover, it takes a particularly nice standard form, described in the following way:
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Proposition 10.2.
There exists a neighborhood UT and a coordinate chart h : UT −→ Rn such that

1. h(p) = (0, · · · , 0) and h(q) = (1, 0, · · · , 0).
2. h∗ξ = (V (x1),−x2,−x3, · · · ,−xλ+1, xλ+2, · · · , xn).
3. V (x) is smooth and positive over (0, 1)with V (0) = V (1) = 0, and V (x) < 0 everywhere

else.
4. (Minor)

∣∣V ′(0)
∣∣ =

∣∣V ′(1)
∣∣ = 1.

Thus we have

(x1,−x2, · · · ,−xλ+1, xλ+2, · · · , xn) near p
(−x1,−x2, · · · ,−xλ+1, xλ+2, xn) near q.

10.0.1 Proof of Theorem

Step 1:

Consider (U(x1, ρ),−x2,−x3, · · · ,−xλ+1, xλ+2, · · · , xn) where ρ(x) = (x2
2 + x2

3 + · · ·x2
n)1/2, which

measures the distance between the two curves above. Some facts:
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1. U(x1, φ) is equal to V (x1) outside of a compact neighborhood of h(T ) in h(UT ).

2. U(x1, 0) < 0 for all x1.

Then ξ′ = h∗(u,−x2, · · · , xn) in UT and ξ′ = ξ everywhere else. Thus ξ′ is nowhere vanishing.

Step 2:

We want to pick U ′ such that T ⊂ U ′ ⊂ U ⊂ UT where U is a compact set such that any trajectory
of ξ that exits U never re-enters U ′.

Suppose such a U ′ does not exist. Then there exist sequences of points {sk} , {rk} ⊂ U and
{tk} ⊂W \U all on the same integral curves γk such that {sk} −→ T and {rk} −→ T . Since W \U
is compact, {tk} has a limit point A. Then consider ψA(t), which are integral curves that originate
from M0 and end on M1.

10 THURSDAY FEBRUARY 6TH 54



Then there exists a neighborhood A such that for each a ∈ A, the integral curves (half trajectories)
containing a originate on M0. Moreover, for k large enough, all tk are in A. The union of all of
these half trajectories has a positive distance from T , so there is a small enough U disjoint from
these trajectories, so {sk} 6−→ T , a contradiction.

�

We now consider the flow lines of ξ′ in h(UT ). We have

∂x1
∂t

= u(x1, φ), ∂x2
∂t

= −x2, · · · ,
∂xn
∂t

= xn.

Thus x2 = x0
2e
−t, · · · , xn = x0

ne
t.

So if xi 6= 0 for some λ+ 2 ≤ i ≤ n, the |xi| is increasing exponential and thus it will escape h(U).
The corresponding trajectory will then escape U , and so it will follow the integral curves of the
original ξ and ends at M1. If x0

λ+2 = · · · = x0
n = 0, then

φ(x) = (x2
2 + · · ·+ x2

λ+1)1/2 = e−t
(∑

(x0
i )2
)1/2

.

Thus φ(x) will decrease exponentially.

If it leaves U , we are in the previous case. Otherwise, if it doesn’t leave U , then there exists an
ε > 0 such that u(x1, φ) < 0 for all

Nε =
{

(x, p) ∈ h(U)
∣∣∣ φ < ε

}
.
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Thus there exists a −α < 0 such that u < −α on Nε.

For t large enough,

φ(x(t)) ∈ Nε =⇒ ∂x1
∂t

= u(x1, φ) < −α.

Thus x1(t) < −αt + const. for large enough t, and as t increases x(t) will go out of U . By the
previous argument, it must end at M1.

Thus every integral curve of ξ starts at M0 and ends at M1.

�

Lemma 10.3.
ξ′ gives a diffeomorphism from

W ′ = (M0 × I;M0 × 0,M1 × 1) −→W = (W ;M0,M1).

Proof .
Take π : W −→M0 and follow the integral curves backward. Then for all x ∈M0, there is a
τ(x) ∈ R≥0 such that ψX(τ(x)) ∈M1.
So we get a

ξ̂ = τ(π(q))−1ξ′q

and we can define φ(x, t) = φ̂X(t).
�

Theorem 10.4(2, Modifying a Vector Field Away From Critical Points).
ξ′ is a gradient-like vector field for some Morse function g : W −→ I such that g has no critical
points (since ξ′ has no zeros) and g = f near M0 and M1.

10.0.2 Proof of Theorem

We want to build a k : M0 × I −→ I such that the following diagram commutes:

M0 × I I

W

k

φ
g

This needs to satisfy

1. k is equal to f1 := f ◦ φ near M0 × 0 and M0 × 1.

2. ∂k
∂t

< 0.

Since ∂f1
∂t

> 0 nearM0×0 andM0×1, take δ > 0 such that ∂f1
∂t

> 0 onM0×[0, δ) andM1×(1−δ, 1].
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So pick λ : I −→ I such that λ ≡ 1 near t = 0, 1 and λ ≡ 0 on [δ, 1− δ].

Then pick any positive K : M0 −→ R, and then take

K(x, u) :=
∫ u

0
λ(t)∂f1

∂t
+ (1− λ(t)) K(x) dt.

Then
∂K

∂u
= λ(u)∂f1

∂u
+ (1− λ(u)) K(x) > 0

since the first term is positive near M0 × 1 or 0, and K is positive everywhere.

To see that it satisfies the first property, note that
∫ s

0

∂f1
∂t

dt = f1 for s near 0.

To see that property 2, note

∫ 1

0
λ(t)∂f1

∂t
dt+K

∫ 1

0
(1− λ(t)) dt = g(x, 1) = f1(x)

=⇒ K(x) =
f1(x)−

∫ 1

0
λ(t)∂f1

∂t
dt∫ 1

0
(1− λ(t)) dt

.
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11 Tuesday February 11th
11.1 Cancellation
The setup: f : W −→ [0, 1] a morse function with crit(f) = {p, q} with Ind(p) = λ and Ind(q) = λ+1,
with a gradient-like vector field ξ such that there exists a single flow line T from p to q.

Lemma 11.1(Modifying Gradient-Like Vector Fields).
There exists a gradient-like vector field ξ′ for f such that

1. T is still the single flow line from p to q.
2. ξ′ is standard in a neighborhood UT of T , i.e. there exists h : UT −→ Rn such that

h(p) = (0, 0, · · · , 0)
h(q) = (1, 0, · · · , 0).

h(T ) is contained in the x-axis, and

h∗ξ
′ = (V (x1),−x2, · · · ,−xλ+1, xλ+2, · · · , xn),

where V satisfies the property that near 0 and 1,
∣∣V ′∣∣ = 1:
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11.1 Cancellation

11.1.1 Proof

Let η = V (x1) from above. Define the following vector field:

F (x) = f(p) + 2
∫ x1

0
v(t) dt− x2

2 − x2
3 − · · ·x2

λ+1 · · ·+ x2
n.

Then η is gradient-like for F , and we can pick v(t) such that

F (1, 0, · · · , 0) = f(p) + 2
∫ 1

0
v(t) dt = f(q)

=⇒
∫ 1

0
v(t) = 1

2(f(q)− f(p)).

We know that v(t) = t near (0, 0, · · · , 0), and since
∫ 1

0
t dt = 2

(
x2

1
2

)
, we have

F (x) = f(p) + 2
∫ x1

0
t dt+ · · ·+ x2

n = f(p) + x2
1 − x2

2 − · · · − x2
λ+1 + · · ·+ x2

n

=⇒ η(x) = (x1,−x2, · · · ,−xλ+1, xλ+2, · · ·xn).

Then there exists a neighborhood Ũ1 of p and h1 : Ũ1 −→ Rn such that h̃1(p) = (0, 0, · · · , 0) with
F ◦ h̃1 = f and h̃1∗ = η.

Similarly, near (1, 0, · · · , 0) we have v(t) = 1− t and since
∫ 1

0
v(t) dt = f(q)− f(p), we have

F (x) = f(p) + 2
∫ 1

0
v(t) dt+ 2

∫ x1

1
(1− t) dt− · · ·+ x2

n

= f(q)− (x1 − 1)2 − x2
2 − · · ·+ x2

n,
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11.1 Cancellation

and there exists a neighborhood Ũ2 of q and h̃2 : Ũ2 −→ Rn such that h̃2(q) = (1, 0, · · · , 0),
F ◦ h̃2 = f , and h̃2∗ξ = η.

So pick (Ũ1, h̃1) and (Ũ2, h̃2) such that Ũ1
⋂
Ũ2 = ∅ and h̃1(Ũ1)

⋂
h̃2(Ũ2) = ∅.

Pick

a1 < f(p) < b1 < b2 < f(q) < a2

such that

f−1[a1, b1]
⋂
T ⊂ Ũ1 and f−1[b2, a2]

⋂
T ⊂ Ũ2

and set pi = f−1(bi)
⋂
T .

Let U1 and U2 be closed neighborhood of the arc p −→ p1 in Ũ1
⋂
f−1[a1, b1] and q −→ p2 in

Ũ2
⋂
f−1[b2, a2].

Let hi = h̃i
∣∣∣
Ui
. Then ξ yields a diffeomorphism ψ : f−1(b1) −→ f−1(b2).

Fix a small neighborhood λ of h1(p1) in h1(f−1(b1)
⋂
U1), following the flow lines of η yields a diffeo-

morphism φ : V1 −→ V2 where V2 is a sufficiently small neighborhood of h2(p2) in h2(f−1(b2)
⋂
U2),

the following diagram commutes:

f−1(b1) f−1(b2)

V1 V2

ψ

φ

h−1
1 h−1

2

If for V1 small enough we have h−1
2 ◦ φ ◦ h1 restricted to h−1

1 (V1) is equal to ψ, then we can extend
(h1, h2) to a diffeomorphism h from U1

⋂
U0
⋂
U2, where U0 is a small neighborhood of p1p2 such
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11.1 Cancellation

that it preserves the trajectories and level sets. We then obtain h∗η = Kη, where K is some positive
function.

We can extend K to a positive smooth function over W , which yields ξ′ := 1
K
ξ and thus h∗ξ′ = η.

So ξ′ is a gradient-like vector field for f .

In case the above inequality does not hold, we can use an isotopy to change ψ −→ ψ′ and change
ξ −→ ξ′ in f−1[a, b] such that the integral curves of ξ′ induce ψ′. So find an isotopy such that ψ′ is
equal to h−1

2 φh1 near p1, and furthermore ψ′(Sb1
R (p)) intersects Sb2

L (q) transversely in p2, i.e. p2 is
the only intersection point.

We can do this last step locally. Let φ′ = h−1
2 φh1, then (φ′)−1ψ : Ṽ1 ↪→ Ṽ1 for some small

neighborhood Ṽ1 ⊂ V1 containing p1. Note that if Sb1
R (p) t Sb1

L (q) at p1, then (φ′)−1ψSb1
R (p) t

(φ′)−1ψSb1
L (q) at p1, and so Sb1

R (p) t (φ′)−1ψSb1
L (q).

Theorem 11.2(?).
Identify Rn = Ra⊕Rb where a+ b = n. Suppose that h : Rn ↪→ Rn is an orientation-preserving
embedding such that h(0) = 0 with h(Ra) t Rb with intersection number +1 at {0}.
Then there exists a smooth isotopy ht : Rn −→ Rn such that

1. h0 = h,
2. ht(0) = 0, ht(x) = x for x outside of a neighborhood N of zero,
3. h1 = id in a smaller neighborhood of zero in N
4. h1(Ra)

⋂
Rb = {0}.

Rough idea: modify h(R1) in a neighborhood of 0:
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Next time: a second cancellation theorem. Suppose W,M0,M1 are simply connected and 2 ≤ λ <
λ+ 1 ≤ n− 3. If

ScR(p) · ScL(q) = ±1,

then W ∼= M0 × [0, 1] are diffeomorphic.

We’ll briefly review the intersection number later. Also: homological intersection number.

12 Tuesday February 18th
12.1 Cancellation Theorems

Theorem 12.1(Rearrangement).
If a Morse function f has 2 critical points with f(p) < c < f(q) and Ind(p) ≥ Ind(q), then ξ
can be perturbed in a neighborhood of f−1(c) such that W s

p

⋂
W u
q = ∅.

Theorem 12.2(First Cancellation).
If SR t S′L = {{pt}}, then the cobordism is diffeomorphic to a product.

Theorem 12.3(Second Cancellation).
Suppose (W,V0, V1) is a cobordism and f : W −→ R has two critical points. If SR · S′L = ±1,
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12.2 Facts From Differential Geometry

then Wn ∼= V0 × [0, 1].

Theorem 12.4(Whitney’s Trick).
If M,M ′ = Mm,Mn ⊂ V m+n are closed submanifolds with M tM ′ such that M,ν(M ′) (the
normal bundle) are oriented. Assume m + n ≥ 5 and n ≥ 3, and if m = 1, 2 then assume
π1(V \ M ′) ↪→ π1(V ). Let p, q be in the intersection, ε(p) · ε(q) = −1 (local intersection
numbers), and there exists a contractible loop L ⊂ V such that
• L = L0

⋃
L1

• L0 is smooth in M , L1 is smooth in M ′.
• L0, L1 go from p to q.

And suppose each Li
⋂

(M
⋂
M ′ \ p, q) = ∅.

Then
1. h0 = id,
2. h+ = id near M

⋂
M ′ \ {p, q}

3. h1(M)
⋂
M ′ = M

⋂
M ′ \ {p, q}.

Definition 12.4.1 (Homological Intersection Number).
If M,N ⊂ V are closed smooth submanifolds, then for [M ], [N ] ⊂ H∗(V ), then [M ] · [N ] =∑
p∈MtN

ε(p) is the homological intersection number.

Sketch of proof:

1. Given L, find a D2 ↪→ V that it bounds. Note that D2 may have self-intersections.

2. Continuous maps can be approximated by smooth maps, and smooth intersections can be
perturbed to be transverse. This lets the disc be perturbed, and since 2 + 2 ≤ 5, the
self-intersection can be made zero.

3. Something else.

12.2 Facts From Differential Geometry
Let M be smooth, then there exists a Riemannian metric 〈 · , · 〉 on TpM which is symmetric and
positive definite.

Given p, q ∈M and a curve c(t) from p to q, we want a parallel transport map fc : TpM −→ TqM .

The exponential map: something that maps a neighborhood in TpM to a neighborhood of p in M .
Take geodesics starting at p and evaluate at t = 1.

Definition 12.4.2 (Geodesics).
Geodesics are curves of global shortest length.

Definition 12.4.3 (Normal Bundle).
For M ⊂ V , then TM ⊂ TV |M is a subbundle with a metric induced from the metric on V .
The normal bundle is TM ⊥.
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12.3 Proving Whitney’s Trick

Definition 12.4.4 (Totally geodesic submanifold).
If M ⊂ V is a submanifold with p ∈ M and v ∈ TpM , then M is totally geodesic iff the
entire geodesic starting at p with initial velocity v is entirely contained in M .

Fact (Existence of the Levi-Cevita Connection) Any Riemannian metric comes with a canonical
connection: the Levi-Cevita connection.

Parallel transport along a curve in a totally geodesic submanifold (?).

12.3 Proving Whitney’s Trick

Lemma 12.5.
Let L0, L1 be the image of C0, C

′
0 ⊂ R2. Let U be a neighborhood of C0

⋃
C ′0 in R2, including

the region they bound:

We can extend the maps embedding U
⋂(

C0
⋂
C ′0

)
to φ1 : U −→ V be the embedding, so

φ1|∂D2 = L. We then get a map
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φ : U × Rm−1 × Rn−1 −→ V

φ−1(M) =
(
U
⋂
C0
)
× Rm−1 × {0}

φ−1(M ′) =
(
U
⋂
C ′0

)
× {0} × Rm−1

.

13 Thursday February 27th
Setup: Mm, Nn ⊂ V m+n closed submanifolds, M t N , M oriented (i.e. an orientation of TM) and
N co-oriented (i.e. an orientation νN = TM/TV ).

Each p ∈ M
⋂
N has a sign ε(p) ∈ {−1, 1}. If p, q ∈ M

⋂
N with ε(p) = 1, ε(1) = −1, we would

like an isotopy (ht)0≤t≤1 of V such that h0 = id and h(M)
⋂
N = (M

⋂
N) \ {p, q}.

Idea: we want to push M off of N :

From last week, assume dimV ≥ 5 and dimN ≥ 3 and π1(V \N) = π(V ) = 0.

Why? In the 2-dimensional model above, we want the disc in the middle to be contractible.
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Then there is a smooth embedding φ3 : U −→ V , 2-dimensional to n + 1 dimensional, sending
U
⋂
Ci to Ci and U(C0

⋃
C ′0) to V \ (M

⋃
N).

Goal for today: under the same hypotheses, φ3 extends to an embedding φ : U×Rm−1×Rn−1 −→ V
such that φ−1(M) = (U

⋂
C0)× Rm−1 × {0} and φ−1(N) = (U

⋂
C ′0)× {0} × Rn−1.

Let U ′ = φ3(U) ⊂ V :

Lemma 13.1.
There exist vector fields along U ′, ξ1, · · · , ξm−1, η1, · · · , ηn−1, such that

1. These are orthonormal to each other and orthogonal to U ′.
Note that we’ll need a Riemannian metric to make sense of this, and particularly
one such that M,N are totally geodesic, and TpM ⊥ TpN and TqM ⊥ TqN .

2. ξ1, · · · , ξm−1 are tangent to M along C
3. η1, · · · , ηn−1 are tangent to N along C ′1.

Given this, we have φ(u,x,y) = expψ3(u)

(∑
xiξi(φ3(u)) +

∑
yjηj(φr(u))

)
, where the exponential

maps is evaluating a geodesic path at time 1.

13.0.1 Proof of Lemma

Let τ be the unit tangent vector field along C, oriented from p to q:
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Let ν ′ be the unit vector field along C ′ normal to C ′1 pointing toward the interior of U ′. Thus
ν ′(p) = τ(p) and ν ′(q) = −τ(q).

First, complete tangents to an orthonomal basis: choose ξi(p) such that {τ(p), ξ1(p), · · ·} is an
oriented orthonormal basis for TpM . Riemannian metrics induce a unique notion of parallel transport,
extend ξi to all of C by parallel transport. This preserves inner products, and in particular we
obtain an orthonormal basis for TqM .

We can use this to obtain bases for the orthogonal complements, and thus for the normal bundles.
Since ε(p) = 1, an orientation of TpM yields an orientation of (νN )p. Thus

{
ν ′(p), ξi(p)

}
is an

oreinted basis, and similarly by flipping the sign of the first term, since ν ′(q) = −τ(q),
{
ν ′(q), ξi(q)

}
is an oriented basis for (νN )q.

Consider the bundle over C ′ with fibers equal to orthonormal bases {w1, · · · , wn−1} ∈ (TxV )n−1

with each wi orthonormal and orthogonal to ν ′(x). This has fiber O(n− 1), and since the base C ′ is
contractible, this is a trivial bundle.

We have elements in the fiber over p and q inducing the same orientation, so are related by an
element of SO(n− 1), which is connected and thus path-connected. This gives a path in the frame
bundle connecting {ξ1(p), ξm−1(p)} to {ξ1(q), · · · , ξm−1(q)}.

So we extend the ξ′ over all of C ′, remaining orthogonal to N and U ′. So we have vector fields
ξ1, · · · , xm along C

⋃
C ′. We want to show that these can be extended over all of U ′1 remaining

orthogonal to U ′.

Consider the bundle over U ′ whose fibers are (m− 1)-tuples of vectors in TxV that are orthonormal
to TxU ′. Since U ′ is contractible, this bundle is trivial, and the fiber is orthonormal (m− 1)-frames
in an (m+ n− 2)-dimensional vector space, the orthogonal complement of TxU ′.

Since any orthonormal basis of size m + n − 2 will send m − 1 frames to other m − 1 frames,
with some redundancy if the upper-left block is the identity. Thus the fibers are isomorphic to
O(m+ n− 2)/O(n− 1).
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The construction of ξ1, · · · , ξn over all of U ′ is now reduced to extending the loop on O(m+ n−
2)/O(n− 1) determined by ξi on C

⋃
C ′ to a disk, i.e. U ′.

In fact, π1 of this space is 0, so this can be done. Once we have ξi, just take νi to be any orthonormal
over U ′ such that ξ is orthogonal to TN along C ′.

To see why this is, consider the fibrations O(n − 1) −→ O(n −m − 2) −→ Q the quotient above
and take the LES in homotopy, also consider O(n) −→ O(n+ 1) −→ Sk.

14 Thursday March 5th

Theorem 14.1(When Cobordisms Are Trivial).
Let (W,V, V ′) be a cobordism of dimension n ≥ 6, f Morse with all critical points of indices in
[2, · · · , n− 2]. Suppose π1 = 0 for W,V, and V ′, and H∗(W,V ) = 0; then this is homotopic (?)
to the product cobordism.

14.0.1 Proof of Theorem

Factor c = c2c3 · · · cn−2; then from H∗(W,V ) = 0 we have

0 −→ Cn−2
∂−→ Cn−3 −→ · · · −→ C2 −→ 0,

which has zero homology.

Thus for all λ, choose
{
zλ+1

1 , · · · , zλ+1
kλ+1

}
as basis of kerCλ+1 −→ Cλ. Then choose

{
bλ+2
1 , · · · , bλ+2

λ+1

}
such that ∂bλ+2

i = zλ+1
i . Then

{
bλi , z

λ
j

}
forms an integral basis of Cλ.

From the basis theorem, we can choose a pair (f ′, ξ′) such that this basis is represented by DL.
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Claim 3.
∂bλ+1 = ±zλ, so SR(q)

⋂
SL(p) = ±1. Using the 2nd Cancellation Theorem, the smaller

cobordism is thus a product cobordism.

Proof .
Recall the following:
• If X = ∂W with W oriented, then X is oriented by {ν, τ1, · · · , τn−1}.
• There is a map

Hn(W,X) −→ Hn−1(X)
[0W ] 7→ [0X ].

So choose an orientation of W (which we’ll notate ◦W ) and all DL, and orient the normal
bundle of DR such that
• (◦(DR), ◦(DL)) = ◦W
• DR(qi)

⋂
DL(qi) = ±1.

Then ◦V DR = ◦V SR and ◦DR = ◦SR. The case for SL and V SL are similar.
�

Lemma 14.2.
Given (W,V, V ′), let M ⊂ V ′ be a smooth submanifold and [M ] ∈ Hk(M) the fundamental
class. Considering h : Hk(M) −→ Hk(W,V ), the image

h([M ]) =
∑̀
i=1

(SR(qi) ·V [M ]) ·DL(qi).

Corollary 14.3.
If ∂λ+1 : Cλ+1 −→ Cλ, then

∂(q′j) =
∑

(SR(qj) · SL(qj)) · qi.

This implies the claim.

�

Proof (of Lemma):).
Assume ` = 1, then we have a diagram of the form
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Hλ(M)

Hλ(V ′, V ′ \ SR)

Hλ(V ′)

Hλ(V
⋃
DL, V

⋃
(DL \ {q}))

Hλ(W )

Hλ(V
⋃
DL, V )

Hλ(W,V )

h1

h0

i∗

h2

We have Hλ(V ′) 3 h0([M ]) = (SR ·M) · Φ(α) where α ∈ H0(SR) is the canonical generators
and

Φ : H0(SR) −→ Hλ(V, V ′ \ SR)

is the Thom isomorphism.
Thus h3h2h1(Φ(α)) = DL(p).

�
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