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1
Introduction

We give a motivation and an overview for this book. Takeaways:

· Studying diffeomorphism groups of disks is a subject of philosoph-
ical and mathematical interest.

· Dimensions ≤ 3 and ≥ 5 behave quite differently.

· In high dimensions ≥ 5, surgery theory, smoothing theory and
cobordism categories provide different approaches and perspec-
tives.

1.1 Diffeomorphisms of disks

The focal point of this book are the diffeomorphism groups of disks.
More generally, we will also look at moduli spaces of smooth disks
(which incorporates the fact that disks may have different smooth
structures), or diffeomorphism groups of other manifolds with a
relationship to disks (e.g. spheres). Let me for now only give the defi-
nition of diffeomorphism groups of disks, with these generalizations
and more details to follow in later lectures.

The n-dimensional disk Dn is the subspace of Rn given by those
x ∈ Rn such that ||x|| ≤ 1. This is a smooth manifold with boundary
∂Dn given by the (n− 1)-sphere Sn−1 := {x ∈ Rn | ||x|| = 1}.

Definition 1.1.1. We let Diff∂(Dn) be the group of C∞-diffeomorphisms
of Dn that are the identity on a neighborhood of ∂Dn, topologized
using the C∞-topology.

Example 1.1.2. For n = 2, consider the
“swirl” C2-diffeomorphism described in
polar coordinates by

f (r, θ) :=
(

r2, θ + 2πr3(1− r)
)

and drawn in Figure 1.1. We can make
it C∞ by replacing r3(1 − r) with a
C∞-function of the radius that 0 in a
neighborhood of 0.

The guiding question will be the following:

Question 1.1.3. What is the homotopy type of Diff∂(Dn)?

For example, what are its path components? What are its ho-
mology groups? What are its homotopy groups? Is it homotopy
equivalent to a Lie group? Are its homotopy groups finitely gener-
ated? Can we relate it to other objects in algebraic topology? Can we
relate it to other objects in manifold theory?
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f

Figure 1.1: The punchy swirl diffeomor-
phism of D2.

1.2 Why?

Before telling you about partial answers to this question, we shall
give some reasons why one might find it an interesting question. Not
of all these might be convincing to you, but hopefully at least one of
them is.

Intrinsic interest

The hardest way to motivate a mathematical topic is to say that it is
intrinsically interesting. The notion of a manifold is one of several
ways modern mathematicians have formalized the notion of “geom-
etry,” as a way to study the intuitive ideas of space, time, shape, and
extension. Such a link is made precise in modern theoretical physics
(though one might argue that differential geometry and higher cate-
gory theory are more relevant to physics than differential topology),
but even without this manifolds capture a part of these intuitive ideas
underlying our experience of reality. Thus results about manifolds
can serve to illuminate our intuitions (or challenge manifolds as a
good formalization of these intuitions).

Disks play a more fundamental role than the average manifold;
using Morse theory or handle theory, we shall see that any smooth
manifold can be build out of disks by gluing along their boundary;
disks are the basic building blocks of all manifolds.

More importantly, the homotopy type of the topological group
of diffeomorphism of disks make quantitative some of the intuitive
distinctions discussed above. Firstly, diffeomorphism groups of disks
capture the subtle phenomena that link the local and global geometry
of manifolds; the difference between infinitesimal/infinite and finite
extension. Locally, a manifold looks like Rn and on Rn “difficulties
can be pushed out to infinity.” However, in a compact manifold
this is not possible, and the non-triviality of diffeomorphisms of
disks is the most direct incarnation of this failure, capturing non-
local but compactly-supported phenomena. Secondly, in a similar
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way diffeomorphism groups of disks capture the subtle differences
between smooth and continuous or piecewise-linear phenomena.
When studying piecewise linear or topological manifolds, instead of
“pushing difficulties to infinity,” one can “push them into a point;”
there are no derivatives to blow up. This may be used to prove that
homeomorphisms or PL-homeomorphisms of Dn fixing the boundary
pointwise are contractible, known as the Alexander trick. Thus the
non-triviality of diffeomorphisms of disks measures the difference
between smooth and PL or topological manifolds.

Interactions with other fields

The study of manifolds was such an important motivation for the
development of topology in the 50’s, 60’s and 70’s, that I will not
attempt to give a list. One of the major achievements of that era of
topology was the theory of how to build manifolds out of disks is
called surgery theory. In a range of dimensions increasing with the
dimension, it solves the problem of classifying manifolds, diffeo-
morphisms and families of diffeomorphisms, in terms of homotopy
theory and algebraic K-theory. In the case of disks this link is most
clear. For example, when n ≥ 5 it allows the computation of the set
of smooth structures on Dn. In this direction also lie the Farell-Jones
approach of studying aspherical manifolds, which are very rigid [?].

In the last decade, the study of manifolds has shifted to a field-
theoretical perspective. On the one hand, cobordism categories
provide a manageable setting for studying all manifolds of a given
dimension simultaneously. On the other hand, field theoretic tech-
niques may be used to define invariants of manifolds, diffeomor-
phisms, or families of diffeomorphisms, which can detect some of
these non-trivial in ways not visible to surgery theory.

An exciting future

As mentioned above, the surgery-theoretic techniques to study
Diff∂(Dn) only work in a range and approaches inspired by field
theories have given rise two new approaches which are linked and
whose full potential has been not realized (in my opinion).

Let me give one example. Variations of the Madsen-Weiss theorem
allow one to compute much of the diffeomorphism groups of man-
ifolds with many handles. These may seem far from disks, but by
comparing two similar manifolds with many handles one can recover
information about disks. The resulting answers seems to indicate that
characteristic classes for disk bundles obtained from configuration
space integrals, and indexed by graphs, play a prominent role.
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1.3 An overview of this book

I will now describe the main results that we shall discuss.

Low dimensions

As mentioned above, we will start in low dimensions n = 1, 2, 3 to get
reacquainted (or acquainted) with the tools of differential topology
that we will use throughout the course. At first sight the results in
low dimensions are disappointing, but they play a large role in low-
dimensional manifold theory and in view of the systematic picture
available in high dimensions, highly surprising.

The right object to look at is not Diff∂(Dn), but the moduli space
M∂(Dn) of n-dimensional smooth manifolds that are homeomorphic
to Dn and have the standard smooth structure near the boundary.
This is weakly equivalent to a disjoint union

M∂(Dn) '
⊔
[σ]

BDiff∂(Dn
σ),

where [σ] ranges over the isotopy classes of smooth structure on Dn

that are standard near the boundary and BG denote a classifying
space of a topological group G. The following theorems thus respec-
tively compute π0(M∂(Dn)) [Moi77] and the homotopy type of the
unique connected component [Sma59b, Hat83]. We will give proofs
of these results for n = 1, 2, and outline the ideas for n = 3.

Theorem 1.3.1 (Folklore, Radó, Moise). For n = 1, 2, 3, Dn has a unique
smooth structure that is standard near the boundary up to isotopy.

Theorem 1.3.2 (Folklore, Smale, Hatcher). For n = 1, 2, 3, Diff∂(Dn) is
weakly contractible.

High dimensions: π0

In dimension 4 nothing is known (many experts won’t commit to
conjectures, nor is there an approach), so we skip directly to the high
dimensions n ≥ 5.

We shall start by discussing the s-cobordism theorem. This is
the most important of the results relating homotopy theory and
algebraic K-theory to manifolds. A cobordism between two closed n-
dimensional manifolds M0 and M1, is a compact (n + 1)-dimensional
manifold N with an identification ∂N ∼= M0 tM1. It is an h-cobordism
if both inclusions M0 ↪→ N and M1 ↪→ N weak equivalences.
An example of an h-cobordism is a product N = M0 × I, and the
s-cobordism gives a condition under which an h-cobordism is diffeo-
morphic to one of this form [Sma61, Mil65].
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Theorem 1.3.3 (Smale). Suppose n ≥ 5, then an h-cobordism N between
M0 and M1 is diffeomorphic to M0 × I rel M0 if and only if an invariant
τ(N) ∈Wh1(Z[π1(M0)]) vanishes.

π1 Wh1(Z[π1])

{e} 0

Z 0

Z/2Z 0

Z/5Z Z[t]/(t5 − 1)

Table 1.1: Some examples of Whitehead
groups.

Here Wh1(Z[π1(M0)]) is a quotient of the group K1(Z[π1(M0)]),
defined as colimn→∞GLn(Z[π1(M0)])

ab, an example of an algebraic
K-theory group. We will use this theorem and ideas from its proof to
show that

π0(M∂(Dn)) ∼= Θn and π0(Diff∂(Dn)) ∼= Θn+1,

where Θn is the group of homotopy n-spheres under connected sum.
The groups Θn are related to the stable homotopy groups of spheres
by a famous result of Kervaire-Milnor [KM63].

n 5 6 7 8 9 10 11

|Θn| 1 1 28 2 8 6 992

Table 1.2: The order of Θn for 5 ≤ n ≤
11. See https://oeis.org/A001676 for
the full list for n ≤ 63.High dimensions: algebraic K-theory

The results for π0 were generalized to families of manifolds. The
parametrized h-cobordism theorem via Igusa’s pseudo-isotopy
stability theorem [Igu88] and Waldhausen’s stable parametrized
h-cobordism theorem [WJR13b]. Using this Farrell and Hsiang com-
puted πi(Diff∂(Dn))⊗Q in a range i . n/3 [FH78]. In this range, it is
given by

πi(Diff∂(Dn))⊗Q ∼=

0 if n is even

Ki(Z)⊗Q if n is odd,

the latter of which was computed by Borel [Bor74]. We shall prove
this using the Hatcher spectral sequence.

High dimensions: smoothing theory

id

f1

f2 f3

Figure 1.2: Producing a new diffeo-
morphism of D2 from three diffeo-
morphisms f1, f2, f3 of D2, and an
embedding e :

⊔
3 D2 ↪→ D2.

The space Diff∂(Dn) has additional algebraic structure: given an
embedding e :

⊔
i Dn ↪→ Dn and i elements fi of Diff∂(Dn), we may

produce a new diffeomorphism of Dn fixing the boundary pointwise
by inserting the fi into the image of the i disks of the embedding and
extend by the identity, see Figure 1.2.

This gives BDiff∂(Dn) the additional algebraic structure of an
En-algebra and since it is path-connected it is weakly equivalent to
ΩnX for some space X called an n-fold delooping. After recalling the
recognition principle for n-fold loop spaces, we will produce a ex-
plicit example of a n-fold delooping of BDiff∂(Dn) by understanding
the link between smooth and topological manifolds [BL74]:

Theorem 1.3.4 (Morlet). BDiff∂(Dn) ' Ωn
0 Top(n)/O(n), where Top(n)

is the topological group of homeomorphisms of Rn in the compact-open
topology.

https://oeis.org/A001676
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This is proven using a combination of general h-principle machin-
ery [Gro86] and the Kirby-Siebenmann bundle theorem, Essay II of
[KS77].

High dimensions: cobordism categories

After this we will describe how to use cobordism categories in combi-
nation with embedding calculus to obtain results about BDiff∂(Dn),
an idea due to Michael Weiss.

We will start with the Pontryagin-Thom theorem computing the
groups of manifolds with tangential structure ψ : B → BO(n) up to
cobordism in terms of the homotopy groups of the Thom spectrum
MTψ associated to the virtual bundle −ψ∗γ with γ the universal
n-dimensional vector bundle over BO(n). Then we shall explain the
parametrized extension of this result [GTMW09]:

Theorem 1.3.5 (Galatius-Madsen-Tillmann-Weiss). There is a weak
equivalence

BCobψ(n) ' Ω∞−1MTψ.

Results of Galatius-Randal-Williams relate this theorem to diffeo-
morphism groups of the manifolds Wg,1 := (#gSn × Sn) \ int(D2n)

[GRW14, GRW18] for the tangential structure θ : BO(2n)〈n〉 →
BO(2n),1 there is a map 1 For n = 1, Wg,1 is a genus g surface

with one boundary component. It
may thus be regarded as a higher-
dimensional analogue of a surface.

BDiff∂(Wg,1)→ Ω∞ MTθ

inducing an isomorphism on homology in the degrees ≤ g−3
2 . After

that we shall describe embedding calculus [Wei99, BdBW13],2 which 2 The “pointillistic” study of manifolds.

can be used to study spaces of embedding Emb∂(M, N) as long as
the handle dimension hdim∂(M) of M rel boundary is smaller than
dim(N). The reason this is helpful is that the Weiss fiber sequence
relates diffeomorphisms of Wg,1 and embeddings of Wg,1 \ Dn−1

(where Dn−1 ⊂ Sn−1 ∼= ∂Wg,1) into Wg,1. Taking the complement
of an embedding invertible up to isotopy produces a disk with
boundary identified with Sn−1 and this fits into a fiber sequence

Diff∂(Wg,1)→ Embinv
Dn−1(Wg,1)→M∂(D2n).

One may use this to find non-trivial rational homotopy groups of
BDiff∂(D2n) [Wei15], and to show that the homotopy groups are
degree-wise finitely generated [Kup17]. A similar story exists in odd
dimensions using [BP15, Per15].
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Comparing diffeomorphism
groups





2
Prerequisites

2.1 Manifolds and maps between them

In this section we recall some standard definitions, mostly to fix
notation.

Topological manifolds

There are two equivalent definitions, via charts and sheaves. We start
with the classical definition in terms of charts, due to Whitney.

Definition 2.1.1. A d-dimensional topological manifold X is defined to
be a second countable Hausdorff topological space1 that is locally 1 Second countable means that the

topology on X has a countable basis,
and Hausdorff means that every pair
of distinct pairs can be separated by
open subsets. These two properties
have two important consequences:
paracompactness and metrizability.

homeomorphic to an open subset of Rd.2

2 This property is called being locally
Euclidean.

Note that every point of an open subset of Rd has a subset home-
omorphic to Rd, so we could have written “locally homeomorphic to
Rd” above. That is, X should come equipped with an atlas, that is, a
collection of homeomorphisms φi : X ⊃ Vi → Wi ⊂ Rd called charts.
To make sure different atlases do not lead to different manifolds, one
demands that the atlas should be maximal under inclusion (by Zorn’s
lemma maximal atlases always exist).

An atlas determines as a topological space X by glueing, i.e. as a
coequalizer3 3 This is a notion from category theory,

see [?], and a special case of a colimit.⊔
i,j Wi,j

⊔
i Wi X,

where Wi,j = φi(Vi ∩ Vj) ⊂ Wi. Then Wi,j and Wj,i are identified by
φjφ
−1
i , called a transition function.

We may rephrase this in analogy with algebraic geometry, and
define manifolds as topological spaces with a certain conditions on
their real structure sheaf (see Section II.3 of [MLM94]). A presheaf of
sets F on a topological space X assigns to each open subset U ⊂ X a
set F (U) and to each inclusion U ⊂ V a map4 4 The notation resV

U obviously being
shorthand for “restriction from V to U.”

resV
U : F (V)→ F (U)
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such that (i) resU
U = id, (ii) for U ⊂ V ⊂ W we have resV

U ◦ resW
V =

resW
U . In other words, a functor from the opposite of the poset O(X)

of open subsets of X to Set.5 5 One may define the category of
presheaves valued in any category C as
functors O(X)op → C.

It is a sheaf if for all collections of open subsets {Ui}i∈I of X we
have that

F (∪iUi) ∏i F (Ui) ∏i,j F (Ui ∩Uj)

is an equalizer. That is, every collection of elements fi ∈ F(Ui) such
that resUi

Ui∩Uj
fi = res

Uj
Ui∩Uj

f j for all i, j, is obtained from a unique
f ∈ F(∪iUi) by restriction.

Example 2.1.2. For a topological space X, the assignment C0
X : U 7→

{continuous f : U → R} forms a sheaf of sets (in fact R-algebras) on
X; this is the sheaf of R-valued continuous functions.

We may then rephrase the previous definition as follows:

Definition 2.1.3. A d-dimensional topological manifold X is a second
countable Hausdorff topological space with the following property:
for all p ∈ X there exists an open neighborhood V of p and d func-
tions x1, . . . , xd in C0

X(V), such that the map φ := (x1, . . . , xd) : V →
Rd is a homeomorphism onto an open subset W ⊂ Rd and the sheaf
φ∗C0

W is isomorphic to the sheaf C0
X |V . Here φ∗C0

W is the pullback
sheaf, defined by assigning to U ⊂W the set C0

W(φ(U)).

Cr-manifolds and Cr-maps

One reason to prefer the definition by sheaves is that it is a more
global definition, which allows for a cleaner definition of Cr-map.
So we shall start with this definition and define a Cr-manifold for
r ∈ N ∪ {∞}. We know what the sheaf of Cr-functions assigns to an
open subset W of Rd: the set of functions f : W → R that are r times
continuous differentiable in the following sense (we recall this to fix
some notation): for |I| ≤ r the Ith partial derivative DI f exists and is
continuous. Here I is an s-tuple of non-negative integers (i1, . . . , is)

with ik ∈ {1, . . . , m}, we define |I| := s, and for f : Rm ⊃ W → R we
then set

DI f :=
∂|I| f

∂xi1 · · · ∂xik
.

Definition 2.1.4. A Cr-manifold of dimension d is a topological space
X with a subsheaf Cr

X ⊂ C0
X such that for all p ∈ X there exists an

open neighborhood V of p and d functions x1, . . . , xd in Cr
X(V) such

that the map φ := (x1, . . . , xd) : V → Rd is a homeomorphism onto an
open subset W ⊂ Rd and the sheaf φ∗Cr

W is isomorphic to the sheaf
Cr

X |V . The elements of Cr
X(V) are called Cr-functions.
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Definition 2.1.5. Let g : M → N be a continuous map between Cr-
manifolds. It is Cr is f ◦ g ∈ Cr

M(M) for all f ∈ Cr
N(N). Let Cr(M, N)

denote the set of Cr-maps M→ N.

Example 2.1.6. The assignment
Cr

M : M ⊃ U 7→ Cr(U, N) is a sheaf
of sets on M; this is the sheaf of Cr-
maps to N.

Like the equivalence of the definition of topological manifolds
using chart and sheaves, the above definition of a Cr-manifold is
equivalent to one using charts:

Definition 2.1.7. A Cr-manifold is a second countable Hausdorff
topological space X with a maximal atlas of charts φi : X ⊃ Vi →
Wi ⊂ Rd whose transition functions φjφ

−1
i : Wi ⊃ φi(Vi ∩ Vj) → Wj

have r times continuously differentiable components.

Topological and Cr-manifolds with boundary

We may define a topological manifold of dimension d with boundary
as a second countable Hausdorff space locally homeomorphic to c.
The subset of X consisting of points p that are mapped to Rd−1 × {0}
under these local homeomorphisms is well-defined.6 The subspace of 6 This may be proven by computing the

local homology groups Hd−1(U, U \ {x})
for a U a neighborhood of x ∈ X. This
will be Z if x is not in the boundary,
and 0 if it is.

such points is called the boundary of X and denoted ∂X.

Figure 2.1: A disk Dk is a smooth
manifold with boundary given by
∂Dk = Sk−1.

A smooth manifold with boundary may then either be directly
defined in terms of an atlas where the domains of charts are now
open subsets of Rd−1 × [0, ∞), or as a topological manifold with
boundary with a subsheaf of its sheaf of continuous functions. There
is a subtlety in the latter case; what is the subsheaf Cr

V ⊂ C0
V for

V ⊂ Rd−1 × [0, ∞)? There seem to be multiple reasonable options. On
the one hand, one might say that Cr

V(U) consists of those f : U → R

which extend to some open subset Ũ of U in Rd. On the other hand,
one may take those f that are Cr on U ∩ (Rd−1 × (0, ∞)) with DI f
for |I| ≤ r extending to continuous functions on U. The Whitney
extension theorem says that these two conditions are equivalent.

Topological and Cr-manifolds with corners

Similarly, we may consider second countable Hausdorff spaces that
are locally homeomorphic to [0, ∞)d. This is called a topological
manifold with corners. Since [0, ∞)d is homeomorphic to Rd−1 ×
[0, ∞), every such space is a manifold with corners. However, for
manifolds with corners we should remember the data of the atlas,
and then manifold with corners comes with a stratification by depth,
the numbers of coordinates that are 0. The union of subsets of depth
> 0 is the boundary. The extension to Cr-manifolds is similar as for
corners.

Figure 2.2: A cube [0, 1]d is a d-
dimensional manifold with corners.
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2.2 Submanifolds and embeddings

Recall that M ⊂ N is a Cr-submanifold of a C∞-manifold N if for each
p ∈ M there is a chart ψ : N ⊃ V → Rn such that ψ−1(Rm) = M ∩V.
Given a Cr-embedding ϕ : M → N, its image ϕ(M) is a submanifold
as a consequence of the inverse function theorem (to prove this, note
it suffices to prove this locally in the source and target, reducing to
the case of a map Rm → Rn with injective differential and sending 0
to 0, which we want to show admits the desired charts near 0, now
add (n−m) additional coordinates and use this to offset the image in
(n−m) directions complementary to the image of the differential at
the origin).



3
The Whitney topology

Takeaways:
· There is a topology on the set

of Cr maps defined in terms of
convergence of partial derivatives on
compact sets.

· This is best defined as a subspace of
the topological space of sections of
the r-jet bundle.

· In this topology the diffeomor-
phisms form a topological group.

· The topological group Diff∂(D1) is
contractible.

The goal of this lecture is to define diffeomorphism groups as topo-
logical groups. To do so we discuss the weak topology on function
spaces, which will also be used for several later results in the course,
which can be stated as continuity, density or openness results. For
background reading on this material see [Hir94, Wal16].

3.1 The Whitney topology

So far Cr(M, N) is just a set. We describe its topology in detail, be-
cause it is the topology we will use on the group of diffeomorphisms,
and because the topology will play a role in approximation argu-
ments involving “generic smooth functions.” We shall give two
definitions of the Whitney topology:

· by giving a sub-basis, which is more concrete and convenient for
understanding some examples,

· by giving it as a subspace of a section space, which is more conve-
nient for checking formal properties.

Remark 3.1.1. Another good model for spaces is given by simplicial
sets. One can always pass from topological spaces to simplicial sets
by taking the singular simplicial set. We will see a different simplicial
set weakly equivalent to Cr(M, N) in Section XXX.

The Whitney topology by sub-basis

We shall start with a definition in terms of a sub-basis. This means
a subset is open if every point has a neighborhood that is a finite
intersection of elements of the sub-basis.

Definition 3.1.2. Let r be finite. The (weak) Whitney topology on the
set of Cr-functions M→ N has a sub-basis given by sets

N r( f , φ, ϕ, K, ε)
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indexed by

· f : M→ N a Cr-function,

· φ : M ⊃ V →W ⊂ Rm a chart,

· ϕ : N ⊃ V′ →W ′ ⊂ Rn a chart,

· K ⊂ V compact such that f (K) ⊂ V′,

· ε > 0,

and consisting of all g : M → N that Cr and have that property that
g(K) ⊂ V′ and |DI(ϕ f φ−1)−1

k (x) − DI(ϕgφ−1)−1
k (x)| < ε for all

x ∈ φ(K), |I| ≤ r and 1 ≤ k ≤ n.

In this topology a sequence of Cr-maps converges if and only if on
all compact subsets in charts the first r partial derivatives converge
uniformly.

Definition 3.1.3. For r ∈ N, we let Cr
W(M, N) denote the topological

space of Cr-functions M→ N with the (weak) Whitney topology, and
define C∞

W(M, N) to be the coarsest topology on C∞(M, N) making
all inclusions C∞

W(M, N) ↪→ Cr
W(M, N) continuous.

Notation 3.1.4. Unless there is a risk of confusion, we will omit the
subscript W from the notation.

A definition in terms of a sub-basis is not a helpful definition if
one wants to check this topology behaves as expected. For example,
trying to prove that composition is continuous involves covering
compact subsets by charts and quickly gets messy.

The Whitney topology as a subspace of a section space

To avoid the messiness of arguments involving the sub-basis, we
give a nicer construction of this topology; we construct Cr(M, N) as a
closed subset of a section space in the compact-open topology.

Definition 3.1.5. For s ≤ r, the set Js(Rm, Rn) of s-jets of Cr functions
f : Rm → Rn is defined to be the quotient of Cr(Rm, Rn) by the
equivalence relation that says f ∼s g if DI fk(0) = DI gk(0) for all
|I| ≤ s and 1 ≤ k ≤ n (where fk and gk denotes the kth components).

Under addition these form an R-vector space, which is isomorphic
to the finite-dimensional vector space of ordered n-tuples polynomi-
als of degree ≤ s in m variables, by the correspondence1 1 This is just Taylor approximation at

the origin.

[ f ]! ∑
|I|≤s

1
I!

DI f (0)tI ,

where I! is defined by ∏m
i=1(#i’s in I)!.2 We may use this to topolo- 2 E.g. for I = (1, 1, 2, 3, 3, 3, 3), I! =

2!1!3!.gize Js(Rm, Rn) := Cr(Rm, Rn)/∼s.
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Given a point m ∈ M, we can use charts to generalize the defini-
tion of ∼s to an equivalence relation ∼s,m on Cr(M, N) where two
Cr-functions are equivalent under ∼s,m if their partial derivatives of
degree ≤ s coincides at m. This is well-defined because equality of
partial derivatives is independent of the choice of charts

Definition 3.1.6. We define the set Js(M, N) of s-jets of Cr functions
f : M → N as the quotient of M × Cr(M, N) by the equivalence
relation generated by (m, f ) ∼ (m′, f ′) if m = m′ and f ∼s,m f ′.

There is a well-defined map π : Js(M, N)→ M induced by the pro-
jection M× Cr(M, N)→ M and a well-defined map τ : Js(M, N)→ N
induced by evaluation map M× Cr(M, N) → N. Using charts of M,
one sees that π is a locally trivial bundle over M with fiber Js(Rm, N).
Similarly using charts of N, one sees that for Js(Rm, N), τ is a lo-
cally trivial bundle over N with fiber Js

0(R
m, Rn), the subspace of

s-jets mapping 0 to 0. We may use these identifications to topologize
Js(M, N).

By construction, the combined map (π, τ) : Jr(M, N) → M × N
is locally trivial with fiber Js

0(R
m, Rn). We will usually consider it as

a bundle over M via the map π, and then call it the bundle of r-jets
M → N over M. It is isomorphic to the associated bundle over the
principal Diffr(M)-bundle over M for the action Diffr(M) y Js(M, N)

acting by precomposition.
Given a Cr-map f : M → N, we can record its s-jets, by sending it

the map js( f ) : M → Js(M, N) given by js( f )(m) = [ f ]m, the latter
denoting to the equivalence call of f under ∼s,m. The map js( f ) is
continuous because it is the composite of M → M× Cr(M, N) given
by m 7→ (m, f ) and the quotient map. It satisfies π ◦ js( f ) = idM, so is
a section of π.

So, letting Γ(M, Js(M, N)) denote the set of continuous sections,
a subset of the set Map(M, Js(M, N)) of continuous maps f : M →
Js(M, N), taking the s-jets gives a map

js : Cr(M, N)→ Γ(M, Js(M, N))

We may recover f from jrs( f ) as the composition τ ◦ js( f ), so the
map js : Cr(M, N) → Γ(M, Js(M, N)) is injective. This is called the
inclusion of holonomic sections into all sections, or the inclusion
of functions into formal functions. There is a natural topology on
Γ(M, Js(M, N)) as a subspace of the mapping space Map(M, Js(M, N))

topologized using the compact-open topology:

Definition 3.1.7. The compact-open topology on the set Map(X, Y) of
continuous functions X → Y has a sub-basis given by sets N (K, W)

indexed by
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· K ⊂ X compact,

· W ⊂ Y open,

and consisting of all f : X → Y such that f (K) ⊂W.

However, an advantage of the compact-open topology is that when
restricted to reasonable spaces (compactly-generated weakly Haus-
dorff), then Map(X,−) is right adjoint to X ×− (indeed, mapping
spaces between CGWH spaces are again CGWH). For example, the
evaluation map X×Map(X, Y)→ Y is the continuous map adjoint to
the identity Map(X, Y) → Map(X, Y). By constructing their adjoints
instead, it is possible to prove that various natural maps between
mapping spaces is continuous without doing arguments using sub-
basis elements.

For the application to the Whitney topology, let us now take s = r.

Lemma 3.1.8. The subspace topology on Cr(M, N) ⊂ Γ(M, Jr(M, N)) co-
incides with the weak Whitney topology, and Cr(M, N) ⊂ Γ(M, Jr(M, N))

is closed.

Proof. Those sub-basis elements N (K, W) for K in a chart of M and
W defined as ε-neighborhood of jr( f )|K with respect to the identi-
fication of r-jets near K with polynomials using the charts φ and ϕ,
define the same topology as the compact-open topology, because any
N (K, W) is a union of these special sub-basis neighborhoods. But
these sub-basis elements are exactly those generating the Whitney
topology.

It is closed since being holonomic means that higher jets are
determined by the partial derivatives of the 0th jet, a closed condition.

Properties of the Whitney topology

This identification of Cr(M, N) with a subspace of a section space is
a useful tool for proving properties of Cr(M, N) with the Whitney
topology. We shall prove the following properties, always using the
strategy of proving the result for sections of the r-jet bundle and restricting
to holonomic sections:

· The inclusion Cr(M, N) ↪→ Cr−1(M, N) is continuous.

· Composition Cr(M, N)× Cr(N, P)→ Cr(M, P) is continuous.

· The immersions and submersions are open in Cr(M, N).

Lemma 3.1.9. The inclusion Cr(M, N) ↪→ Cr−1(M, N) is continuous.

Proof. If E → E′ is a continuous map of locally trivial bundles over
M, then Γ(M, E) → Γ(M, E′) is continuous. To prove this, one notes
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that it is the restriction of the map Map(M, E) → Map(M, E′) ob-
tained by Yoneda from the right adjoint to the natural transformation

CGWH(M×−, E)→ CGWH(M×−, E′).

We will applying this to E = Jr(M, N) → E′ = Jr−1(M, N). This
is continuous, since local triviality we may assume M = Rm and
N = Rn and in that case it is just the claim that a projection in a finite
dimensional real vector space is continuous. The lemma follows by
restriction to holonomic sections.

Lemma 3.1.10. The composition map Cr(M, N)× Cr(N, P) → Cr(M, P)
is continuous. In particular, for U ⊂ M open the restriction map ι∗U : Cr(M, N)→
Cr(U, N) is continuous.

Proof sketch. Composition of Cr-functions induces a continuous map
Jr(M, N)×N Jr(N, P) → Jr(M, P). This in turn induces a continuous
map Γ(M, Jr(M, N))× Γ(N, Jr(N, P)) → Γ(M, Jr(M, P)). The lemma
follows by restriction to holonomic sections.

Lemma 3.1.11. The subsets of immersions and submersions are open in
Cr(M, N).

Proof sketch. If U ⊂ Js(Rm, N) is open and invariant under the
action Diffr(M), then the subspace of Γ(M, Js(M, N)) of sections with
values in U in open. Now take U to be those r-jets with injective or
surjective differential.

Diffeomorphisms as a topological group

We now focus our attention on the subspace Diffr
W(M) ⊂ Cr

W(M, M)

consisting of diffeomorphisms. We have shown above that compo-
sition of diffeomorphisms is continuous. To show that taking the
inverse is continuous is a bit harder, since one not can take the in-
verse of a general section.

The r-jet of a diffeomorphism f has two special properties:

(i) its r-jets of f lie in the subspace Jr,inv(M, M) of r-jets of those
Cr-maps have bijective differential, by the inverse function
theorem,

(ii) the map τ ◦ jr( f ) : M→ M is a homeomorphism.

As for property (i), using local coordinates one sees that inver-
sion is a continuous operation on Jr,inv(M, M) switching π and
τ. We thus get an induced map inv : Map(M, Jr,inv(M, M)) →
Map(M, Jr,inv(M, M)), but it doesn’t preserve sections because
π ◦ inv(s) = τ(s).

Getting property (ii) involved, suppose we restrict to the subspace
ΓHomeo(M, Jr,inv(M, M)) of Γ(M, Jr,inv(M, M)) such that τ(s) lies in
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the homeomorphisms of M. Then we may consider the continuous
map

(τ, inv) : ΓHomeo(M, Jr,inv(M, M))→ Homeo(M)×Map(M, Jr,inv(M, M))

and compose with the continuous map given by composition of the
source

Homeo(M)×Map(M, Jr,inv(M, M)→ Map(M, Jr,inv(M, M)).

This composition is continuous and lands in the sections. By re-
stricting to holonomic sections coming from diffeomorphisms this
amounts to taking the inverse, we conclude:

Corollary 3.1.12. Diffr(M) with the Whitney topology is a topological
group.

Cr-manifolds with boundary

The above definitions can be modified to define the Whitney topology
on the Cr-maps f : M → N between manifolds with possibly non-
empty boundary. Similarly, the above arguments can be modified to
show that if M is a manifold with boundary, the group Diffr

∂(M) of
Cr-diffeomorphisms fixing the boundary pointwise is a topological
group in the Whitney topology.

3.2 The diffeomorphisms of D1

Having defined Whitney topology on Diffr(M), we will show that
the first non-trivial diffeomorphism group is in fact contractible by a
convexity argument.

Theorem 3.2.1. Diffr
∂(D1) ' ∗.

Proof. We will construct a deformation retraction onto the subspace
{id}. This is done by linear interpolation. That is, we claim that
H : Diffr

∂(D1)× [0, 1]→ Diffr
∂(D1) given by

( f , t) 7→ (1− t) · f + t · id

is a continuous and well-defined. In particular, we claim that H( f , t) ∈
Diffr

∂(D1) for all ( f , t). Continuity follows from the fact that when
the manifold is compact and has a single chart, the Whitney topol-
ogy coincides with the topology of uniform convergence of the map
and the first r derivatives. To prove that ft := (1− t) · f + t · id is a
diffeomorphism, we compute its derivative at x0 ∈ [0, 1]:

d ft

dx
(x0) = (1− t)

d f
dx

(x0) + t.
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Since f is a diffeomorphism its derivative is always non-zero, and
since f must be increasing near 0, the derivative is always positive.
This implies d ft

dx (x) is always non-zero, proving that ft is a local dif-
feomorphism using the inverse function theorem. It also implies that
ft is strictly increasing, and hence injective. Thus it is a diffeomor-
phism.

This argument proves that Diffr+1
∂ (D1) ' Diffr

∂(D1), since both are
contractible. By a similar argument, one also proves contractibility
of the topological groups of diffeomorphisms that are the identity
near ∂D1, or whose value and first r derivatives coincide with those
of the identity at ∂D1, so these are also weakly equivalent. In the
next couple of chapters, we will prove all these variations are weakly
equivalent for all M.

3.3 The strong Whitney topology

As the adjective weak in our definition of the (weak) Whitney topol-
ogy suggests, there is also a strong Whitney topology. This serves to
control the behavior at ∞ when M is not compact. It will not reap-
pear, but we shall give its definition for the edification of the reader.

The strong Whitney topology by sub-basis

Definition 3.3.1. For r finite, the strong Whitney topology on
Cr(M, N) has sub-basis given by

N r(J, f , {φj}, {ϕj}, {Kj}, {εj})

indexed by

· a set J,

· f : M→ N a Cr-function,

· {φj : M ⊃ Vj → Wj ⊂ Rm}j∈J a locally finite collection of charts
covering M,

· {ϕj : N ⊃ V′j →W ′j ⊂ Rn}j∈J a collection of charts,

· {Kj ⊂ Vj}j∈J a collection of compact subsets such that f (Kj) ⊂ V′j ,

· {εj}j∈J a collection of positive real numbers,

and consisting of all g : M → N that are Cr and have that property
that g(Kj) ⊂ V′j and |DI(ϕj f φ−1

j )k(x)− DI(ϕjgφ−1
j )k(x)|| < εi for all

j ∈ J, x ∈ φj(K), |I| ≤ r and 1 ≤ k ≤ n.

We let Cr
S(M, N) denote Cr(M, N) with the strong Whitney topol-

ogy, and C∞
S (M, N) again by letting C∞(M, N) have the coarsest

topology making the inclusion C∞(M, N) ↪→ Cr
S(M, N) continuous.
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The strong Whitney topology as a subspace of a section space

One may define this in terms of r-jets by taking the fine topology on
the mapping space Map(X, Y) instead of the compact-open topology,
with sub-basis given by

N ( f , U) = { f | id× f ∈ U ⊂ X×Y}

for U ⊂ X × Y open. The compact-open and fine topology coincide
if the domain X of the mapping space is compact, from which we
conclude:

Lemma 3.3.2. The identity is a continuous map Cr
S(M, N) → Cr

W(M, N),
which is a homeomorphism if M is compact.

Using the properties of the fine topology on mapping spaces, one
may also prove that composition is continuous, as is inversion of
diffeomorphisms, so that Diffr

S(M) is also a topological group.



4
Collars

Takeaways:
· All reasonable variations on diffeo-

morphisms are weakly equivalent.
· Collars exists by flowing along

an inwards pointing vector field
constructed using a partition of
unity.

· By “sliding along a collar” you can
make families of diffeomorphisms
be the identity on a neighborhood of
the boundary.

In the previous chapter we discussed the Whitney topology and
showed that diffeomorphism groups in this topology were topo-
logical groups. We now start a general discussion how groups of
diffeomorphisms with different boundary conditions and differentia-
bility conditions compare, which serves as an excuse to revisit some
differential topology. As before, references are [Hir94, Wal16].

4.1 Comparing diffeomorphism groups

Let M be an m-dimensional compact smooth (i.e. C∞) manifold with
boundary ∂M. Then there are several variations of its diffeomor-
phism group that one may define.

(1) Firstly, we have a choice of differentiability condition, i.e. for r ∈
N∪ {∞} we may let Diffr

∂(Dn), etc., denote Cr-diffeomorphisms
that are the identity on ∂Dn in the (weak) Whitney topology
discussed in the previous lecture.

(2) Secondly, we can change the boundary conditions:

· Diffr
∂,D(M) denotes those diffeomorphisms that are the iden-

tity pointwise on ∂M and all of whose derivatives coincides
with those of the identity on ∂M.

· Diffr
∂,U(M) denotes those diffeomorphisms that are the iden-

tity on an open neighborhood of ∂M.

If we give these the subspace topology, they are all topological
groups and we get a commutative diagram of inclusions of topologi-
cal groups:
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Diff1
∂,U(M) Diff1

∂,D(M) Diff1
∂(M)

Diff2
∂,U(M) Diff2

∂,D(M) Diff2
∂(M)

· · · · · · · · ·

Diff∞
∂,U(M) Diff∞

∂,D(M) Diff∞
∂ (M).

(4.1)

Theorem 4.1.1. All these inclusions are weak equivalences.

This will take the next few lectures to prove, and during the proof
we will also discuss:

· Partitions of unity.

· Existence and uniqueness of collars.

· Weak Whitney embedding theorem.

· Existence of tubular neighborhoods.

· Approximation by smooth functions.

In this chapter we will discuss the left horizontal arrows and
collars, and it will not be necessary that M is compact.

4.2 Collars

Our main tool be the existence of collars.

Definition 4.2.1. If M is a Cr-manifold with boundary ∂M, a collar
is a Cr-embedding c : ∂M × [0, 1) → M that is the identity on the
boundary.

M∂M

c

Figure 4.1: A collar of ∂M.

The existence of collars uses two important tools for studying
manifolds: patching together local data using partitions of unity, and
flowing along vector fields.

Definition 4.2.2. A partition of unity subordinate to an open cover
{Ui}i∈I of a topological space X is a collection of continuous func-
tions ηi : X → [0, 1] such that

(i) for all i ∈ I, the support supp(ηi) := cl{x ∈ X | ηi(x) 6= 0} is
contained in Ui,

(ii) only finitely many ηi are non-zero at a given point p ∈ M,

(iii) ∑i∈I ηi = 1.

Partitions of unity exist if X is paracompact, and one of the rea-
sons that topological manifolds were assumed to be second countable
Hausdorff is because this implies they are paracompact.
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Lemma 4.2.3. If {Ui}i∈I is an open cover of a Cr-manifold M, then there
exists a Cr-partition of unity subordinate to this open cover.

Proof. If the Ui are contained in charts, this may deduced by convo-
lution as explained in Chapter 6.1 The general case may be deduced 1 This is the only case that we will use

in this chapter.from this; take a second open cover {Vj}j∈J with each Vj contained in
a chart. Then we take the open cover {Ui ∩ Vj}i,j∈I×J , and construct
a Cr-partition of unity ηi,j. Now take ηi = ∑j∈J ηi,j, which is well-
defined since only finitely many ηi,j are non-zero at each point.

We will use partitions of unity to produce a vector field X on M
that points inwards at the boundary.

M∂M

Figure 4.2: An inwards pointing vector
field.

Definition 4.2.4. A vector field X on M points inwards at p ∈ ∂M if
all charts M ⊃ V → W ⊂ Rm−1 × [0, ∞) around p, we have that the
mth component X (p)m in the expression X (p) = ∑m

i=1 X (p)i∂/∂xi

is strictly positive. It is said to be inwards pointing if it is inwards
pointing at all points of ∂M.

Note that the condition for a vector field to be inwards point-
ing at p is true in all charts around p if and only if it is true in one
chart around p, and that this condition is convex, i.e. if X and Y are
inwards pointing at p, then so is t · X + (1− t) · Y for all t ∈ [0, 1].

Lemma 4.2.5. There exists an inwards-pointing vector field.

Proof. We can clearly produce such an inwards-pointing vector field
locally; just take ∂/∂xm in some chart and pull back the vector field
(which you can do along a diffeomorphism).

To produce an inwards-pointing vector field on M, take a locally
finite open cover {Vi}i∈I by charts and a Cr partition of unity {ηi}i∈I

subordinate to this open cover. For each Vi take Xi to be the pull back
of ∂/∂xm as describe above. Then ∑i ηiXi does the job, because the
space of inwards pointing vector fields is convex.

Now consider the following the ordinary differential equation on
M given by

d
dt

γ(t) = X (γ(t)), (4.2)

with initial condition γ(0) = p ∈ M. We claim that its solutions exist,
are locally unique, and depend Cr on t and the initial condition p
(note for p ∈ ∂M, we may only take t ≥ 0). To prove this, it suffices
to prove this is in a chart around the initial condition p ∈ M — a
transition function between two charts takes a solution to a solution,
so this is well-defined — and in that case we can apply the Picard-
Lindelöf theorem.

M∂M

γp
p

Figure 4.3: Flowing along an inwards
pointing vector field.
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Definition 4.2.6. There is an open neighborhood U of M × {0} in
M× [0, ∞) and a Cr-map

ΦX : U → M

(p, t) 7→ γp(t)

where γp is the solution of (4.2) with initial condition γ(0) = p ∈ M.
This is called the (non-negative time) flow of X .2 2 We have only t ≥ 0 because we have

a manifold with boundary and do not
want to flow “out of M.”We shall use ΦX to produce a collar using the inverse function

theorem. The tangent space of M at q ∈ ∂M is a direct sum of
Tq∂M and a one-dimensional normal direction Tq M/Tq∂M. With
respect to this direct sum decomposition, the derivative of ΦX at
(q, 0) ∈ U ∩ (∂M × [0, ∞)) is given by idTq∂M and the projection of
X to the normal direction. We arranged that the latter is positive
in charts, so the differential is bijective and we conclude that Ψ :=
ΦX |U∩(∂M×[0,∞) : U ∩ (∂M× [0, ∞))→ M is a local diffeomorphism.

It might be not injective yet, but may be fixed by shrinking U
using the following point-set lemma, see e.g. Corollary A.2.6 of
[Wal16]. This requires the existence of a metric on M, which exists by
Urysohn’s theorem.

Lemma 4.2.7. If Y is a metric space, f : Y → Z is a continuous map such
that f is a local embedding and for X ⊂ Y we have that f |X is injective,
then there is a neighborhood U of X in Y such that f |U is an embedding.

Proof.

Since Ψ is the identity on ∂M× {0}, we may thus shrink U so that
Ψ is an embedding. By picking a Cr-function ε : ∂M → [0, ∞) such
that (q, tε(q)) ∈ U for all t ∈ [0, 1], we may finally produce our collar
as

c : ∂M× [0, 1)→ M

(p, t) 7→ Ψ(p, tε(p))

and thus have proven the following theorem:

Theorem 4.2.8. Collars exist.

Remark 4.2.9. We did not prove the optimal result. If we already had
a collar c̃ near a closed subset C of ∂M, then we could have used the
same technique to produce a collar c that coincides with c̃ near C.
This can be used to prove that the collars are unique up to isotopy
(i.e. for every two collars c1, c2 : ∂M× [0, 1) → M there exists a map
[0, 1]→ Emb∂M(∂M× [0, 1), M) that begins at c1 and ends at c2. More
generally it may be used to prove that the space of collars is weakly
contractible.
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Gluing manifolds along their boundary

A first application of collars is to show that gluing manifolds along
a diffeomorphism identifying their boundary is well-defined; that is,
given Cr-manifolds N and M and a Cr-diffeomorphism φ : ∂N → ∂M,
there is a Cr structure on N ∪φ M agreeing with the Cr structure on N
and M. Because a Cr-structure may be defined locally, after picking
collars it suffices to give a Cr-structure on ∂N × (−1, 0] ∪φ ∂M× [0, 1)
agreeing with those on ∂N × (−1, 0] and ∂M × [0, 1). Now note
that we can use id ∪φ φ to identify ∂N × (−1, 0] ∪φ ∂M× [0, 1) with
∂N × (−1, 1) which clearly admits a Cr-structure. This Cr-structure
obviously agrees with the one on ∂N × (−1, 0], and agrees with the
one on ∂M× [0, 1) since φ was a Cr-diffeomorphism. The uniqueness
of collars up to isotopy discussed above implies the Cr-structure is
independent of the choice of collars.

4.3 The left horizontal arrows

We shall now prove that inclusion Diffr
∂,U(M) ↪→ Diffr

∂,D(M) of
(4.1) is a homotopy equivalence. This proof involves the gluing
construction described at the end of the previous section, and a
“sliding along a collar”-construction common in differential topology.

Proposition 4.3.1. For all r ≥ 1, the inclusion i : Diffr
∂,U(M) →

Diffr
∂,D(M) is a homotopy equivalence. -1 x

1

-1

y
1

1/2

η2

Figure 4.4: A Cr-embedding that is
the identity near 1 and maps [0, 1) to
[1/2, 1).

Proof. Let c : ∂M× [0, 1) → M be a collar and η : (−1, 1) → (−1, 1) a
Cr-embedding that is the identity near 1 and maps [0, 1) to [1/2, 1),
e.g. Figure 4.4. Consider the manifold

M̃ := (∂M× (−1, 0]) ∪∂M M,

which has an extended collar c̃ : ∂M× (−1, 1)→ M.
Recall that the boundary condition imposed on elements f of

Diffr
∂,D(M) is that at ∂M, f and its first r derivatives coincide with

the id and its first r derivatives. Thus Diffr
∂,D(M) is homeomorphic to

the subspace of Diffr(M̃) of diffeomorphisms that are the identity on
∂M× (−1, 0]. Similarly Diffr

∂,U(M) is homeomorphic to the subspace
of Diffr(M̃) of diffeomorphisms that are the identity on a neigh-
borhood of ∂M× (−1, 0]. It hence suffices to construct a homotopy
equivalence between these two subspaces of Diffr(M̃).3 3 By convention, we use the (weak)

Whitney topology, not the strong one.
Since M̃ is not compact, these do not
coincide. However, they do coincide
when restricted to the subspaces of
Diffr(M̃) that play a role in our proof.

The homotopy inverse r to i is given by “sliding along the collar.”
That is, we define an embedding sη : M̃→ M̃ by

sη(p) :=

c̃(q, η(t)) if p = c̃(q, t) ∈ c̃(∂M× (−1, 1))

p otherwise
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and map a diffeomorphism f of M̃ coming form Diffr
∂,D(M) to the

following diffeomorphism:

r( f )(p) :=

sη ◦ f ◦ s−1
η (p) if p ∈ sη(M̃)

p otherwise.

This may be described by saying we insert f in the image of sη and
extend by the identity. By construction it is the identity on the neigh-
borhood c̃(∂M× (−1, 1/2)) of ∂M.

To obtain homotopies i ◦ r ∼ idDiffr
∂,D(M) and r ◦ i ∼ idDiffr

∂,U(M), we
isotope η to the identity through embeddings that are the identity
near 1 and map [0, 1) into [0, 1) by linear interpolation. We shall
only do the case i ◦ r. Let us denote for s ∈ [0, 1] an embedding
sη,s : M̃→ M̃ by

sη,s(p) :=

c̃(q, (1− s)η(t) + st) if p = c̃(q, t) ∈ c̃(∂M× (−1, 1))

p otherwise.

Then the homotopy Diffr
∂,D(M)× [0, 1]→ Diffr

∂,D(M) from i ◦ r to id is
given by sending

( f , s) 7→

p 7→

sη,s ◦ f ◦ s−1
η,s (p) if p ∈ sη(M̃)

p otherwise.

 .



5
The exponential map

Takeaways:
· Exponential maps exist by moving

along geodesics with given initial
position and velocity.

· Exponential maps are used to
produce tubular neighborhoods.

· They may be also used together
with collars to do a linear inter-
polation using geodesic segments
or “bend straight” derivatives of a
diffeomorphism at the boundary.

In Proposition 4.3.1 we showed that in the commutative diagram
below, the left horizontal maps are weak equivalences, and in this
chapter we show that the right horizontal arrows are weak equiva-
lences too. References for this chapter are again [Hir94, Wal16], but
also [Mil63].

Diff1
∂,U(M) Diff1

∂,D(M) Diff1
∂(M)

Diff2
∂,U(M) Diff2

∂,D(M) Diff2
∂(M)

· · · · · · · · ·

Diff∞
∂,U(M) Diff∞

∂,D(M) Diff∞
∂ (M)

'

'

'

'

5.1 The exponential map

In this section, we still allow non-compact M. For convenience, we
shall start with the assumption that M has empty boundary and
explain how to weaken this later.

The definition of the exponential map requires a Riemannian
metric, which exists by an argument analogous to that proving the
existence of an inwards-pointing vector field in Lemma 4.2.5:

Lemma 5.1.1. M admits a C∞-Riemannian metric,1 unique up to homotopy. 1 A Riemannian metric may be given
in a chart by a symmetric matrix gij
of functions. It is C∞ if each of these
functions is C∞. If M was only Cr , it
would only admit a Cr-Riemannian
metric.

Proof. We use that the space of Riemannian metrics is convex. This
means that is contractible as soon as it is non-empty. A Riemannian
metric exists because Riemannian metrics exist locally, i.e. on open
subsets of Rm, and using a smooth partition of unity we can combine
these local Riemannian metrics to a Riemannian metric on M.



40 alexander kupers

Let us fix a smooth Riemannian metric g on M. For a C1-path
γ : R ⊃ [a, b] → M, the derivative γ′(t) is an element of TM and we
can evaluate g : TM ⊗ TM → R on γ′(t)⊗ γ′(t) to get its squared
length ||γ′(t)||2 ∈ R≥0, and its (non-negative) square root ||γ′(t)||.
We can then define the length and energy of γ as

`(γ) :=
∫ b

a
||γ′(t)||dt, E(γ) := (b− a)

∫ b

a
||γ′(t)||2dt.

By Cauchy-Schwarz we have that

`(γ)2 =

(∫ b

a
||γ′(t)||dt

)2

≤
(∫ b

a
dt
)(∫ b

a
||γ′(t)||2dt

)
= E(γ)

with equality if and only if ||γ′(t)|| is constant, i.e. γ is parametrized
by arc-length up to rescaling.

Example 5.1.2. The geodesics on the
2-sphere with standard spherical metric
are thus paths that locally coincide with
great circles.

Definition 5.1.3. A C1-path γ : R ⊃ [a, b]→ M is said to be a geodesic2

2 A notion which of course depends on
the choice of Riemannian metric g.

if for all a′ < b′ in [a, b], the restricted path γ|[a′ ,b′ ] is a local minimum
for the energy function3 among C1-paths with the end points γ(a′)

3 Equivalently of the length function if γ
is parametrized by arc-length.

and γ(b′).

Variational calculus tells us that γ is a geodesic if and only if it
satisfies the Euler-Lagrange equations for this variational problem. In
this case, the Lagrangian is given by L := || − ||2 : TM → R and the
Euler-Lagrange equations with respect to coordinates (xi, vi) on TM are
given by

d
dt

∂L
∂vr
− ∂L

∂xr
= 0 (5.1)

for all r. To deduce this, one may work in charts and evaluate L on a
small perturbation γ + εη for ε > 0. The derivative with respect to ε

must be zero at ε = 0, and this gives (5.1).
Writing gij(x) for the Riemannian metric in local coordinates, we

may write out these differential equations as

0 = 2
d
dt

(
∑

i
griγ

′
i

)
−∑

i,j

∂gij

∂xr
γ′iγ
′
j = ∑

i
2griγ

′′
i + ∑

i,j
2

∂gri
∂xj

γ′iγ
′
j −∑

i,j

∂gij

∂xr
γ′iγ
′
j, (5.2)

which is an equation expressing the second derivative of γ in terms
of a quadratic function of the first derivatives.4 We can rewrite this as 4 Ideally we would have written γ′i with

γ′′i with superscripts, in accordance to
the convention that subscripts refer to
sections of the cotangent bundle and
superscripts to sections of the tangent
bundle.

a system of ordinary differential equations

dxi
dt

= vi and
dvi
dt

= −Γi
jk(x)vjvk, (5.3)

where the Christoffel symbols Γi
jk, which are smooth maps T∗M ⊗

Remark 5.1.4. This is the same differ-
ential equation as the one that arises
when defines a geodesic as a parallel
path, in the sense that parallel transport
along γ′ preserves γ′. This shows that
the length of γ′ is constant, so that
a geodesic can also be defined as a
local minimum for ` instead. Since the
energy has a quadratic term, however,
finding minimizers for the energy
functional is a more robust problem
than finding minimizers for the length
functional, see Chapters 10–12 of
[Mil63].

T∗M→ T∗M obtained from (5.2) as

Γs
ij := ∑

r
gsr 1

2

(
−

∂gij

∂xr
+

∂gri
∂xj

+
∂gjr

∂xi

)
,
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where gri denotes the inverse of the metric (that is, the dual metric
T∗M⊗ T∗M→ R). Note that Γs

ij depends smoothly on x, as g does.
Applying existence and uniqueness of solutions to (5.3), we obtain

the following:
Remark 5.1.5. In fact, a stronger claim
is true by our assumption that M is
compact; geodesics are in fact defined
for all of R instead of just (−2, 2).

Lemma 5.1.6. For all p ∈ M there exists a neighborhood U ⊂ M of p, and
an ε > 0, such that for each q ∈ U and v ∈ Tq M with ||v|| < ε there is a
unique geodesic γ : (−2, 2)→ M satisfying γ(0) = q and γ′(0) = v.5 The

5 The choice of the number 2 here is of
course arbitrary.geodesic depends in a C∞-manner on q and v.

Definition 5.1.7. There is an open neighborhood V of the 0-section in
TM, such that there is a Cr-map

Γ : V × (−2, 2)→ M

with the property that Γ|(q,v)×(−2,2) : (−2, 2) → M is the geodesic
through q with tangent vector v.

Remark 5.1.8. The exponential map
should remind the reader of the ex-
ponential map for Lie groups. This is
a map exp : g → G, in general only
defined on a neighborhood of 0 in g.
In this analogy, the space of C∞ vector
fields ΓC∞

(M, TM) is the “Lie algebra”
for the group Diff∞(M). This is a useful
point of view, but suffers from the
unfortunate defect that in contrast with
the case of Lie group, the exponential
map for diffeomorphisms is not locally
surjective, see [Mil84].

The exponential map exp : V → M is obtained from Γ by evaluating
at time 1 ∈ (−2, 2). It is a C∞-map, and it is useful to know its
derivative at a point (p, 0) in the 0-section. The tangent space T(q,0)V
canonically is a direct sum Tq M⊕ Tq(M) and by construction in local
coordinates for small times (equivalently near the 0-section) we have
that γi(t) = xi + tvi + higher order terms, so that the derivative is
given by the addition map + : T(q,0)V ∼= Tq M⊕ Tq M→ Tq M.

Non-empty boundary

If M has non-empty boundary, we construct an exponential map by
picking a collar for ∂M and a Riemannian metric that is of the form
g = g∂ + dt2 on the collar with g∂ a Riemmannian metric on ∂M. The
only difference is that Γ will not be defined for negative time at the
boundary, unless v lies in T∂M.

5.2 Tubular neighborhoods

We start by giving a classical application of the exponential map; the
existence of tubular neighborhoods. This will be used in the next
chapter. For convenience we shall again assume at first that M has
empty boundary. We may identify the tangent bundle TM to a Cr-
submanifold M ⊂ N with a sub-vector bundle of the tangent bundle
TN restricted to M.

Definition 5.2.1. The normal bundle νM is the quotient vector bundle
TN|M/TM. We let πν : TN|M → νM denote the projection.

This vector bundle has the property that its transition functions
are Cr, which means its total space also has the structure of a Cr-
manifold.
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Definition 5.2.2. A tubular neighborhood is an Cr-embedding
Φ : νM → N such that Φ is the identity on the 0-section and the
composition π ◦ DΦ : TνM ∼= TM⊕ νM → TN → νM is the identity on
νM.

R2

Figure 5.1: A tubular neighborhood for
S1 ⊂ R2.

Theorem 5.2.3. Every compact Cr-submanifold M ⊂ N with empty
boundary has a Cr tubular neighborhood.

Proof. Given a Riemannian metric, we may identify νM with the
orthogonal complement to TM in TN|M. We may then apply exp to
an ε-disk bundle DενM ⊂ νM for ε > 0 small enough such that exp
is defined on Dε (this exists since M was assumed compact). By the
above computation its derivative is

TM⊕ νM → TN

(v, w) 7→ v + w,

and hence is bijective of the desired form. By the inverse function
theorem this is a local Cr-diffeomorphism, and since exp is the iden-
tity on the 0-section, a point-set lemma implies that by decreasing ε

the map exp : DενM → N is an embedding (this also uses that M is
compact).

We may then identify DενM with νM by a fiberwise applying the
map

v 7→

η(||v||)v/||v|| if v 6= 0,

0 if v = 0,

where η(−) is a strictly-increasing function that is the identity near 0
and has image [0, ε).

x
1

ε

y
1

η

Figure 5.2: The function η.

Remark 5.2.4. This proof does not give a relative version of existence,
but one can again prove uniqueness up to isotopy and in fact that the
space of tubular neighborhoods is contractible.

Non-empty boundary

If M has non-empty boundary, we should consider only embeddings
ϕ : M ↪→ N that are neat (see Figure 5.3).

Definition 5.2.5. An embedding ϕ : M ↪→ N is neat if it satisfies the
following two properties:

· ϕ−1(∂N) = ∂M,

· for each p ∈ ∂M there is a chart ψ : N ⊃ V → W ⊂ Rn−1 × [0, ∞)

such that ψ−1(Rm−1 × [0, ∞)) = M ∩V.
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Then we may pick a collar for N and Riemannian metric such that
g = g|∂N + dt2 on the collar and TM|∂M = T∂M⊕ ∂

∂t , i.e. M leaves the
boundary orthogonally. This is proven in Section 2.3 of [Wal16]. Then
the argument above also gives a tubular neighborhood of M.

M∂M M∂M

Figure 5.3: A neat submanifold (left)
and a non-neat submanifold (right).

5.3 The right horizontal maps

We shall now show that the inclusion

Diffr
∂,D(M) ↪→ Diffr

∂(M) (5.4)

is a weak equivalence.
The main idea is to use geodesics to interpolate between f ∈

Diff∂(M) and id near ∂M. We shall restrict to compact M and shall
show that

Diffr
∂,U(M) ↪→ Diffr

∂(M)

is a weak equivalence.
We begin by noting that for each diffeomorphism f ∈ Diff∂(M),

there exists a ε > 0 such that f (∂M× [0, ε]) ⊂ ∂M× [0, 1]. By further
decreasing ε, we may arrange that for all q ∈ ∂M and t ∈ [0, ε],
there is a unique geodesic segment from q to π∂M( f (q, t)) ∈ ∂M.
This depends in C∞-manner on q and π∂M( f (q, t)), though of course
π∂M( f (q, t)) only depends in a Cr-manner on (q, t).

x
1

y
1

v

Figure 5.4: The function v.

Let v : [0, 1) → [0, 1] be a smooth function that is 0 near 0, and 1
near 1. Letting γ( f , q, t) : [0, 1]→ ∂M denote the unique geodesic seg-
ment from q to π∂M( f (q, t)) in ∂M (if it exists, which by assumption
it does if t ≤ ε). Then we may write down the following smooth map
M→ M:

f̃v(p) :=


(

γ( f , q, t)(v( t
ε )), (1−v( t

ε ))t + v( t
ε )π[0,1]( f (q, t))

)
if p = (q, t) ∈ ∂M× [0, ε),

f (p) otherwise,
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where the first expression gives a point in ∂M× [0, ε).
If ε is small enough, this is a diffeomorphism. By construction,

it is the identity on a neighborhood of ∂M. If ε is small enough, by
interpolating between v and the smooth function [0, 1) → [0, 1] that
is constant equal to 1, we obtain an isotopy f̃(1−τ)+τ·v between f̃v

and f . To justify these arguments about small enough ε, one can may
the result that embeddings are open when the domain is compact,
Theorem 2.1.4 of [Hir94].

Theorem 5.3.1. The map Diffr
∂,U(M) ↪→ Diffr

∂(M) is a weak equivalence.

Proof. Suppose we are given a commutative diagram

Si Diffr
∂,U(M)

Di+1 Diffr
∂(M)

h

H

then we need to provide a homotopy through commutative diagrams
to one where there is a lift.

Let ε( f ) > 0 satisfy all the conditions used above; (i) f (∂M ×
[0, ε]) ⊂ ∂M × [0, 1], (ii) there is a unique geodesic segment from q
to π∂M( f (q, t)) for all q ∈ ∂M and t ∈ [0, ε], (iii) for all τ ∈ [0, 1], the
map f̃(1−τ)+τ·v is a diffeomorphism. This depends in a continuous
manner on f , and since Di+1 is compact, there is a single ε0 > 0
which works for all Hs for s ∈ Di+1. Then the desired homotopy is
given by

[0, 1] 3 τ 7→ (̃Hs)(1−τ)+τ·v.

It is clear from the construction that this preserves the property
that a diffeomorphism lies in Diff∞

∂,U(M), and that for τ = 1 we land
in Diffr

∂U(M).

Application to the topology of diffeomorphism groups

We can use the techniques of the previous proof to prove that the
Diffr

∂,U(M) is locally contractible for compact M, where we shall
assume for convenience that M has empty boundary.

Proposition 5.3.2. If M is compact with empty boundary, then Diffr(M) is
locally contractible.

Proof. It suffices to prove that there exists a neighborhood U of idM

which deformation retracts onto idM. Fix a Riemannian metric, then
there exists an ε > 0 such that for all v ∈ TM with ||v|| ≤ ε, there is
a unique geodesic from π(v) to exp(v), where π : TM → M denotes
the projection.
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Let us take the open subset of C∞(M, M) consisting of those
diffeomorphisms whose graph lies in the open subset of M × M
consisting of (v, exp(v)) for ||v|| < ε. For each such diffeomorphism
f we may write down a canonical geodesic interpolation ft from
f0 = f to f1 = idM. For each t ∈ [0, 1] this is a smooth function
depending continuously on f . Since diffeomorphisms are open in the
smooth functions, by shrinking U, we may assume that all of these
paths consist of diffeomorphisms.

The case r = 1

Let us also show that in the case r = 1 the map (5.4) is a homotopy
equivalence without requiring M to be compact. I believe this proof
may be modified for r > 1, but the details are involved.

Understanding the map (5.4) amounts to understanding the
difference between Diff1

∂(M) and Diff1
∂,D(M). Pick a C∞-collar

c : ∂M × [0, 1) ↪→ M, and identify the image of c with ∂M × [0, 1)
to reduce the amount of notation. For p = (q, t) ∈ ∂M × [0, 1),
the tangent space Tp M decomposes as Tq∂M ⊕ ε, with ε the trivial
sub-bundle spanned by ∂

∂t . Since both Diff1
∂(M) and Diff1

∂,D(M) fix
pointwise the boundary ∂M, the Tq∂M-component of their deriva-
tives equals the identity in both cases. For Diff1

∂,D(M) the derivative
is also the identity on ε, but for Diff1

∂(M) this may not be the case.
The difference is thus that the derivative at p = (q, 0) of f ∈

Diff1
∂,D(M) may be described by a matrix of the form

Dp f =

[
idTq∂M 0

0 idε

]

while the derivative of g ∈ Diff1
∂(M) may be described by a matrix of

the form

Dpg =

[
idTq∂M X (g)(q)

0 λ(g)(q) · idε

]
. (5.5)

with λ(g) : ∂M → (0, ∞) a C1-function and X (g) a C1-vector field on
∂M (which is the same as a fiberwise linear map ε→ T∂M).

Theorem 5.3.3. The map i : Diff1
∂,D(M) ↪→ Diff1

∂(M) is a homotopy
equivalence.

Proof. We continue the notation used above. We shall deform a C1-
diffeomorphism g ∈ Diff1

∂(M) into Diff1
∂,D(M) in two steps. Firstly,

we shall do a scaling in the collar direction to make λ equal to 1.
Secondly, we will use Γ to make X equal to 0.

Step 1 – rescaling λ Recall that λ(g) denotes the Cr-function λ : ∂M→
(0, ∞) appearing in (5.5). This depends continuously on g. The
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idea is that by scaling the collar in the [0, 1)-direction, we can scale
λ(g) by a positive function.

x
1

y
1

1/2

η(2)

x
1

y
1

1/2

η(1/4)

Pick a map η : (0, ∞) → C∞([0, 1), [0, 1)) such that the adjoint
(0, ∞) × [0, 1) → [0, 1) is smooth, η(l) is a Cr-diffeomorphism
that maps 0 to 0, is the identity on [1/2, 1) and has derivative 1/l
at 0 and so that η(1) is the identity. Using this we can define a
continuous map η̄ : C1(∂M, (0, ∞))→ Diff1

∂(M) by sending λ to the
diffeomorphism given by

η̄(λ)(p) :=

(q, η(λ(q))(t)) if p = c(q, t)

p otherwise

Consider the composition

η̄(λ(g)) ◦ g,

which is a new C1-diffeomorphism of M, whose derivative at
(q, 0) ∈ ∂M given by the composition[

idTq∂M Y(q)
0 1/λ(q)idε

] [
idTq∂M X (q)

0 λ(q)idε

]
=

[
idTq∂M Y(q) +X (q)

0 idε

]
,

where Y(q) involves the derivatives of λ(g) with respect to q. Thus
the composition η̄(λ(g)) ◦ g has function λ = 1. We may interpolate
from g to this diffeomorphism by taking the isotopy

[0, 1] 3 τ 7→ η̄(1− τ + τλ(g)) ◦ g.

This gives a homotopy H(1) : Diffr
∂(M) × [0, 1] → Diff1

∂(M)

whose values on the subspace Diff1
∂(M)× {1} lie in the subspace

Diff1
∂,λ=1(M) where λ = 1. Since η(1) = id, this homotopy is

the identity on Diff1
∂,D(M). We denote the end result at τ = 1 by

H(1)
1 (g).
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Step 2 – substracting X Now that we have made λ equal to 1, it re-
mains to make X equal to 0. We will use Γ to do this.

The idea is that given a vector field X on ∂M, the diffeomorphism
of ∂M× [0, 1) given by (q, t) 7→ (Γ(q,−X (v), t), t) has derivative at
(q, 0) given by [

idTq∂M −X (q)
0 idε

]
and thus can cancel X (q). Suitably interpolating to the identity
near ∂M× {1}, we can extend this diffeomorphism M, and then
compose it with Hs to kill X (Hs).

x
1

y
1

ρ

Figure 5.5: The function ρ.

This interpolation is accomplished by picking a C1-function
ρ : [0, ∞) → [0, 1) that has derivative 1 near 0, that is 0 on [1/2, ∞).
Another concern is that we can only follow the geodesic X (q)
for a small time depending on X (q). Thus we also need to pick
a Cr-function σ : T∂M → (0, 1) such that Γ(q, v, t) is defined for
|t| ≤ σ(q, v). We then define

ρσ(q, v, t) := σ(q, v)ρ (t/σ(q, v)) .

which has the effect of modifying ρ so that its values never exceed
σ(q, v), while keeping its derivative 1 at 0.

Let ΓC1
(∂M, T∂M) ⊂ Γ(M, T∂M) denote the subspace of C1 vector

fields in the Whitney topology. We can define a continuous map
G : ΓC1

(∂M, T∂M) → Diff1
∂(M) by sending X to the diffeomor-

phism given by

G(X )(p) :=

(Γ[q,−X (q), ρσ(q,−X (q), t)], t) if p = c(q, t)

p otherwise

For g ∈ Diff1
∂,λ=1(M), recall that X (g) denotes the Cr-vector field

X appearing in (5.5), and consider the composition

G(X (g)) ◦ g,

which is a new C1-diffeomorphism of M. Its derivative at (q, 0) ∈
∂M is now given by the composition[

idTq∂M −X (q)
0 idε

] [
idTq∂M X (q)

0 idε

]
=

[
idTq∂M −X (q) +X (q)

0 idε

]
,

which is the identity. We may interpolate from g to this diffeomor-
phism by taking the isotopy

[0, 1] 3 τ 7→ G(τ · X (g)) ◦ g.
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This gives a homotopy H(2) : Diff1
∂,λ=1(M)× [0, 1] → Diff1

∂,λ=1(M)

whose values on the subspace Diffr
∂,λ=1(M)× {1} lie in Diff1

∂,D(M).
Since G(0) = id, this is the identity on Diff1

∂,D(M). We denote the

end result at τ = 1 by H(2)
1 (g).

Thus the homotopy inverse is given by r : g 7→ H(2)
1 (H(1)

1 (g)), and
the homotopies provided in steps 1 and 2 above give homotopies
from i ◦ r and r ◦ i to the identity.



6
Convolution

Takeaways:
· Every compact manifold can be

embedded in a Euclidean space.
· Convolution with a bump function

makes functions smoother, and
can be applied to maps between
manifolds using embeddings and
tubular neighborhoods.

· The differentiability of diffeomor-
phisms does not affect the homotopy
type of the diffeomorphism group,
because the condition of being a
diffeomorphism only involves condi-
tions on the underlying continuous
function and the first differential.

· Convolution can be used to produce
a weakly equivalent simplicial
group of diffeomorphisms, without
reference to the Whitney topology.

In the previous two chapters we showed that in the commutative
diagram below all horizontal maps are weak equivalences, and now
we show that the middle vertical arrows are weak equivalences. The
results of this chapter are also discussed in [Hir94], in Section 2.2.

Diff1
∂,U(M) Diff1

∂,D(M) Diff1
∂(M)

Diff2
∂,U(M) Diff2

∂,D(M) Diff2
∂(M)

· · · · · · · · ·

Diff∞
∂,U(M) Diff∞

∂,D(M) Diff∞
∂ (M)

' '

' '

' '

' '

6.1 Weak Whitney embedding theorem

We shall use a technique to increase the smoothness of functions
by convolving them with bump functions, essentially averaging
them locally with the goal of making them smoother. This averaging
procedure requires a notion of translation, and it is enough that this
translation exists locally. We construct it by giving an embedding
of M into an open neighborhood of Euclidean space and using the
globally defined translation on RN . To do so we must show that we
can embed M into Euclidean space.

Theorem 6.1.1. Every compact Cr-manifold M with empty boundary admits
a Cr-embedding ϕ into some Euclidean space RN .

Proof. Let {Vi}k
i=1 be a finite cover by charts φi : M ⊃ Vi → Wi ⊂ Rm,

which exists by compactness. Let {ηi}k
i=1 be a Cr partition of unity
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subordinate to this finite cover. Let us define the functions

φ̄i : M ⊃ Vi → Rm+1

x 7→

(ηi(x), ηi(x)ϕi(x)) if x ∈ supp(ηi) ⊂ Vi,

0 otherwise,

which are well-defined Cr functions. Then we define a Cr-map

ϕ : M→ Rk(m+1),

x 7→ (φ̄1(x), . . . , φ̄k(x)).

This map is injective, because if ϕ(x) = ϕ(y), then this means that
ηi(x) = ηi(y) 6= 0 for some i, so both lie in the same Vi, and then
we can recover x and y from the ηi(x)φi(−) part ϕ̄i by dividing by
ηi(x) = ηi(y). The image ϕ is a compact Hausdorff space, so ϕ is in
fact a homeomorphism.

To check it is a Cr-embedding it thus suffices to check that the
differential is injective. Suppose that ηi(x) 6= 0. Then it suffices to
prove that the differential of φ̄i is injective at x. Let us compose ϕ̄i

with the Cr-diffeomorphism ρ : (0, ∞)×Rm → (0, ∞)×Rm that sends
(x0, . . . , xm) to (x0, 1

x0
x1, . . . , 1

x0
x1). Then ρ ◦ φi has injective differential

at x if and only if φi has. But ρ ◦ φ̄i is given by x 7→ (ηi(x), φi(x)), and
hence its differential is injective between φi was a chart.

A similar proof gives a relative version: given a compact Cr-
manifold M, a closed subset D ⊂ M containing ∂M and an open
subset U ⊂ M with an Cr-embedding ϕ0 : U → RN , there ex-
ists a Cr-embedding ϕ : M → RN+N′ that near D coincides with
ϕ0 : U′ → RN ↪→ RN+N′ . This implies uniqueness up to isotopy after
possibly increasing N. The same technique may be used to show that
Emb(M, R∞) := colimN→∞Emb(M, RN) is weakly contractible.

Remark 6.1.2. There are stronger
versions of the Whitney embedding
theorem. Transversality will get you to
R2m+1, see Proposition 12.1.7. Using
the Whitney trick, one can improve
this to R2m, see Theorem 18.1.4. Using
this, one prove the existence of proper
embeddings of a non-compact manifold
into R2m. A relative version will prove
that Emb(M, RN) is high-connected, see
Lemma 34.1.1.

Non-empty boundary

Recall that we prefer our embeddings ϕ : M ↪→ N of manifolds with
boundary to be neat, cf. Definition 5.2.5: (i) ϕ−1(∂N) = ∂M, and (ii)
for each p ∈ ∂M there is a chart ψ : N ⊃ V →W ⊂ Rn−1 × [0, ∞) such
that ψ−1(Rm−1 × [0, ∞)) = M ∩V.

The relative existence and the existence of collars can be used to
construct neat embeddings of manifolds with boundary. To do so, we
will need a small addendum to relative version stated before; if the
last coordinate of ϕ0 is larger than R on M \U, then we can find ϕ

such that the last coordinate of ϕ is larger than R− ε for any ε > 0.

Proposition 6.1.3. Every compact Cr-manifold M with boundary admits a
neat Cr-embedding φ into RN−1 × [0, ∞).



lectures on diffeomorphism groups of manifolds, version february 22, 2019 51

Proof. Pick an Cr-embedding ϕ∂ of ∂M into RN′ . Then using a collar
c : ∂M× [0, 1) ↪→ M, we can extend this to an embedding of the image
of the collar into RN′ × [0, ∞) by simply taking ϕ0(q, t) = (ϕ∂(q), t)
if x = c(q, t). By applying the previous proposition with addendum
we can extend this without modifying the embedding near ∂M
nor intersecting the hyperplane with last coordinate equal to 0, i.e.
staying inside RN′ × [0, ∞).

6.2 Approximation by smooth functions

We first discuss this smoothing on functions on Euclidean spaces.
We then generalize this to manifolds using the Whitney embedding
theorem and tubular neighborhoods.

Approximation on Euclidean spaces

The main tool for smoothing is convolution, see Chapter I of [DK10].

Definition 6.2.1. The convolution f ∗ g : Rn → Rn of a compactly
supported continuous function f : Rn → R with a continuous
function g : Rn → Rm is given by

( f ∗ g)(x) :=
∫

y∈Rn
f (x− y)g(y) =

∫
y∈Rn

f (y)g(x− y).

By differentiation under the integral sign, this inherits the smooth-
ness of f . Thus to obtain smooth approximations, one lets η : Rn →
[0, ∞) be a C∞-function with support in Dn such that

∫
Rn η = 1, see

e.g. Figure 6.1. Then ηε defined by x 7→ 1
εn η(x/ε) has support in

Dn
ε (0) := {x ∈ Rn | ||x|| ≤ ε} and integral 1. Even if g is Cr, we

still have that ηε ∗ g is C∞ for ε > 0, and one checks that as ε → 0,
ηε ∗ g→ g in the weak Cr-topology.

x
1

y
2

1

η

Figure 6.1: An example of a bump
function η on R. One may give a
formula by combining appropriately
two copies of the function given by
0 if x ≤ 0 and exp(−1/x) if x > 0.
On Rn one may take ∏n

i=1 η ◦ πi , with
πi : Rn → R the projection.

An application of smoothing functions

We thus have a general technique to approximate Cr-functions by
C∞-functions. As an illustrative example we prove the following.

Theorem 6.2.2. Every compact Cr-manifold M with empty boundary and
stably trivial normal bundle admits a C∞-structure.

Here the normal bundle is stably trivial if for some embedding
φ : M ↪→ RN′ the normal bundle is trivial, i.e. isomorphic to the
trivial bundle M×RN′−m. By the uniqueness of embeddings up to
isotopy upon increasing N, which we will prove later, we see that
eventually φ is unique up to isotopy, and this notion is well-defined.
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Proof. Let ϕ : M → RN be a Cr-embedding into RN , and Φ : M ×
RN−m → RN be a tubular neighborhood. Here we have used that
sthe normal bundle is stably trivial. Then M is a collection of compo-
nents of the inverse image of 0 under the Cr-map π̃ : RN → RN−m

given by projection to M on Φ(M × DN−m) and extended by some
smooth map elsewhere. Now approximate π̃ by a smooth map by
convolving it with ηε. Since 0 was a regular value on Φ(M× DN−m)

and ηε ∗ π̃ → π̃ as ε→ 0 in the weak Cr-topology, the same is still true
for ηε ∗ π̃ for ε small enough. Thus the components of (ηε ∗ π̃) near M
form a C∞-submanifold M̃. Consider the map p : Φ(M× DN−m)→ M
given by projecting away the DN−m factor, then p|M is the identity
and thus has injective differential, and thus p|M̃ also has injective
differential for ε small enough. We conclude that p|M̃ : M̃ → M is a
Cr-diffeomorphism from a smooth manifold to M.

With more effort we could have proven a “strongly relative ver-
sion” of this theorem, which allows one to extend a given smooth
structure to a larger part of the Cr-manifold, by noting the above con-
struction works locally because every normal bundle is locally trivial.
Using this one may prove that any Cr-manifold with empty boundary
admits a C∞-structure (Theorem 2.2.9 of [Hir94]). Using collars one
may prove the same for Cr-manifolds with boundary. The arguments
given later will show that any Cr-diffeomorphism between smooth
manifolds is Cr-isotopic to a smooth diffeomorphism, implying that
the smooth structure is unique up to isotopy.

Approximation on manifolds

We next explain how to extend convolution to manifolds. Suppose
we have two compact C∞-manifolds M and N, for the moment with
empty boundary. Take C∞-embeddings ϕM : M → RNM , ϕN : N →
RNN , and tubular neighborhoods ΦM : νM ↪→ RNM , ΦM : νN → RNN .
Denote the images of the tubular neighborhoods by U(M) and U(N),
and let πM : U(M) → M and πN : U(N) → N denote the projections
onto the 0-section.

There exists an ε > 0 such that for any p, p′ ∈ M satisfying
||p− p′|| < ε (with respect to the Euclidean metric on RNM ), the line
segment [0, 1] 3 t 7→ t · p + (1− t) · p′ lies in U(M). Similarly, given
a continuous map f : M → N there exists an ε( f ) > 0, such that the
convex hull in RNN of the set f (πM(Bε( f )(p))) is contained in U(N)

for all p ∈ M.
For a continuous map f : M→ N, the expression∫

y∈RNM
ηε(y) f (πM(x− y))
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is well-defined for x ∈ M ⊂ RNM , because ηε has support in a ball
of radius ε and hence x− y never leaves U(M). This is smooth if ηε

was. If ε < ε( f ), we may apply the C∞ map πN to get a C∞ map we
denote

ηε ∗π f : M→ N.

By construction, as ε→ 0 this approaches f in the Cr-topology.
We have thus extended the approximation technique of the previ-

ous section to manifolds. When M has boundary, some extra care is
required: both embeddings need to be neat and ε tuned down near
the boundary. In the next section we will describe a situation where
this extra care is taken in a slightly different manner.

6.3 The vertical arrows

We shall now prove that the inclusions

Diff∞
∂,D(M) ↪→ Diffr

∂,D(M)

are weak equivalences for all r ∈N.
We start by picking a C∞ collar neighborhood c : ∂M× [0, 1) ↪→ M.

We shall pick a neat C∞ embedding ϕM ↪→ M → RN−1 × [0, ∞)

such that ϕ−1
M (RN−1 × {0}) = ∂M, and denote ϕM|∂M by ϕ∂M.

Using the collar we may assume that ϕM is given by ϕ∂M × id on
∂M× [0, 1/2]. If we use the Euclidean metric to construct a C∞ tubular
neighborhood ΦM : νM → RN−1 × [0, ∞), it will be of the form
Φ∂M × id on ∂M× [0, 1/2].

Theorem 6.3.1. The maps Diff∞
∂,D(M) ↪→ Diffr

∂,D(M) are weak equiva-
lences.

Proof. Suppose we are given a commutative diagram

Si Diff∞
∂,D(M)

Di+1 Diffr
∂,D(M),

h

H

then we need to provide a homotopy through commutative diagrams
to one where there is a lift. We may start with an initial collar sliding
trick homotopy as in Chapter 4 to make each Hs ∈ Diffr

∂,D the identity
on ∂M× [0, 1/2].

We define a cut-off version of the convolution construction. Let
us assume ε < 1/4, pick a smooth function ρ : [0, 1) → [0, 1] that
is 0 on [0, 1/4] and 1 on [1/2, 1). Using it we may define a function
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ρ̄ : M→ [0, 1] by

ρ̄(p) :=

ρ(t) if p = (q, t) ∈ ∂M× [0, 1)

1 otherwise,

and set

(ηε∗̄π f )(x) := πM

(
(1− ρ(x)) · f (x) + ρ(x) ·

∫
y∈RNM

ηε(y) f (πM(x− y))
)

.

By construction this is the identity on y ∈ ∂M × [0, 1/4− ε], and
it is interpolation between the smooth identity map and a smooth
convolution elsewhere. Thus it is smooth everywhere.

For each s ∈ Di+1, there exists a single εs ∈ (0, 1/4) such that
ηε∗̄π Hs : M → N is well-defined for ε < εs and this depends continu-
ous on s. These are smooth maps M → M converging uniformly to
Hs in the Cr-topology as ε→ 0. This means that the first derivative of
ηε∗̄π Hs is bijective when ε is small enough, and since Hs is injective,
ηε∗̄π Hs will be injective for ε small enough, again depending continu-
ously on s. By compactness of Di+1 there exists a single ε0 ∈ (0, 1/4)
such that this is true for all Hs. Thus we define the homotopy by the
formula

τ 3 [0, 1] 7→ πM

(
(1− ρ · τ) · Hs + ρ · τ ·

∫
y∈RNM

ηε0(y)Hs(πM(x− y))
)

.

We remark that this preserves C∞-functions. For τ = 1, we land in
the C∞-diffeomorphisms.

6.4 Diffeomorphism groups as simplicial groups

We promised a construction of a simplicial group of diffeomorphism
which does not involve the Whitney topology. This is sketched in this
final section of this lecture.

A recollection of simplicial sets

We recall the definition of a simplicial set, see e.g. [GJ09]. This is a
different notion of space than topological space,1 which is more 1 This can be made precise. Homo-

topy theories on a category may be
presented by model category structures.
There is a Quillen model structure on
both simplicial sets and compactly
generated weakly Hausdorff spaces,
and these are Quillen equivalent; this
implies they have the same homotopy
category.

combinatorial.
Let ∆ be the category of finite ordered sets, which has a skele-

ton given by [k] = {0, . . . , k} for k ≥ 0. Then a simplicial set is a
functor Y : ∆op → Set. Evaluating on [k] = {0, . . . , k} we obtain
a collection of sets of Yk for k ≥ 0, called the sets of k-simplices. In
geometric examples, these are k-parameters families of geometric
objects. The inclusions {0, . . . , î, . . . , k} → {0, . . . , k} induce the face
maps di : Yk → Yk−1, and the map {0, . . . , k} → {0, . . . , k − 1} hit-
ting i twice induces the degeneracy map si : Xk−1 → Xk. These two
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special types of morphisms generate all the morphisms of ∆, so the
k-simplices, face maps and degeneracy maps describe the simpli-
cial set completely. To see the reason for these names, note that the
combinatorics of di are those of the faces of the standard k-simplices
∆k := {(t0, . . . , tk) | ti ∈ [0, 1], ∑i ti = 1}.

To every topological space X we can assign a simplicial set Sing(X)

with k-simplices given by the set of continuous maps ∆k → X. These
simplicial sets are Kan complexes, which are the simplicial sets one
should think of as corresponding to topological spaces (the definition
is that they have horn fillers, and they are the fibrant objects in the
Quillen model structure). Kan complexes Y have homotopy groups
πi(Y, y0) based at a 0-simplex y0 ∈ Y0, see Section I.7 of [GJ09], and
so we can make sense of weak equivalences between them.

A simplicial map is between two simplicial sets is a natural trans-
formation, i.e. consists of maps fk : Yk → Zk that are compatible with
the face and degeneracy map. A map between Kan complexes is said
to be a weak equivalence if it induces an isomorphism on all these ho-
motopy groups. A continuous map f : Y → Z is a weak equivalence
in the classical sense if Sing( f ) : Sing(X) → Sing(Z) is, so if you are
interested in the homotopy theory of spaces, you might as well think
about Kan complexes.

Diffeomorphism groups as simplicial groups

Note that if a space X is a topological group, then each of the sets
Sing(X)k is a group, and all face and degeneracy maps are group
homomorphisms. In other words, it is a functor ∆op → Grp, and
hence called a simplicial group. All simplicial groups are Kan by
Lemma I.3.4 of [GJ09].

We will now give a simplicial group weakly equivalent to Sing(Diffr
∂(M))k

whose definition does not involve the Whitney topology. It does un-
fortunately involve manifolds with corners, which are locally mod-
eled on [0, ∞)k instead of Rk (manifolds with empty boundary) or
Rk−1 × [0, ∞) (manifolds with boundary).

Definition 6.4.1. Let SDiffr
∂(M) denote the simplicial group with

k-simplicial given by the Cr-diffeomorphisms ∆k ×M→ ∆k ×M that
fix ∆k × ∂M pointwise and preserve the projection to ∆k.2 2 One may similarly define SDiffr

∂,D(M)
and SDiffr

∂,U(M) and these will be
weakly equivalent to SDiffr

∂(M).It follows directly from the definition that the simplicial group
SDiffr

∂(M) is a sub-simplicial group of Sing(Diffr
∂(M))k, consisting

of the “smooth simplices.” It is not all of Sing(Diffr
∂(M))k, as the

1-simplex

∆1 ∼= {(t0, t1) | ti ∈ [0, 1], t0 + t1 = 1} → Diffr(R)

(t0, t1) 7→ x 7→ x + max(0, t0 − 1/2)
(6.1)
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consists of diffeomorphisms and is continuous in the Whitney topol-
ogy, as all partial derivatives converge uniformly on all compact
subsets of R, but is not a 1-simplex of SDiffr(M).

The following is proven by applying the smoothing techniques
of this lecture not in the manifold direction, but in the parameter
direction. For example, in (6.1), this amounts to smoothing the func-
tion x 7→ x + max(0, t0 − 1/2). To prevent issues at the boundary, a
preliminary step involving a collar of ∂∆k ×M ∪ ∆k × ∂M in ∆k ×M is
required, just like in Theorem 6.3.1.

Proposition 6.4.2. The inclusion SDiffr
∂(M) ↪→ Sing(Diffr

∂(M)) is a weak
equivalence.



Part II

Low dimensions





7
Smale’s theorem

Takeaways:
· Diffeomorphisms of D2 fixing the

boundary are contractible.
· The proof of this involves two ideas:

(i) the space of non-zero vector
fields on D2 that are equal to ~e1
near the boundary is contractible,
(ii) Poincaré-Bendixson implies the
flow-lines of such a vector field has
to leave D2 in finite time.

· This allows one to compute that
Diff(S2) ' O(3).

We spend the previous three chapters proving that a number of
variations of the definition of a diffeomorphism group are weakly
equivalent. Hence we make the following convention.

Convention 7.0.1. In the remainder of this book, unless mentioned
otherwise, differentiable manifolds and diffeomorphisms are C∞.
Diffeomorphisms will always have the weak Whitney topology.

Today we will prove that the diffeomorphism group Diff∂(D2)

is contractible, using the proof in [Sma59b]. We will later discuss
isotopy extension, and the alternative proof by Gramain [Gra73].
There are three other proofs:

(1) using complex geometry [EE69], see [EM88] for a variation,

(2) by modifying Hatcher’s proof for D3 [Hat83],

(3) by using a curve-shortening flow as in [Gra89].

We shall also discuss the related diffeomorphism group Diff(S2), and
start the proof that is weakly equivalent to O(3).

7.1 Squares vs. disks

We shall need to compare diffeomorphisms of the square to diffeo-
morphisms of the 2-disk. This uses the following general construc-
tion.

If M, M′ are compact manifolds of dimension m (possibly with
boundary), and i : M ↪→ M′ is an embedding, then there is an
induced continuous map:

i∗ : Diff∂,U(M)→ Diff∂,U(M′)

f 7→ i∗( f )(p) :=

p if p /∈ i(M),

i( f (i−1(p))) otherwise.

This inserts f on the image of i, and extends the identity elsewhere.
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If i is isotopic to i′, then i∗ is homotopic to (i′)∗; an isotopy it
induces a homotopy (it)∗. Thus if we also have an embedding
j : M′ ↪→ M so that i and j are mutually inverse up to isotopy, then
i∗ and j∗ are mutually inverse up to homotopy. Applying this to the
embeddings of Figure 7.1, we obtain the following:

i

j

Figure 7.1: Embeddings of disk into
square, and square into disk, by trans-
lation and scaling. Note that i ◦ j and
j ◦ i are isotopic to the identity by linear
interpolation.

Proposition 7.1.1. The topological groups Diff∂,U(I2) and Diff∂,U(D2) are
homotopy equivalent topological groups.

Remark 7.1.2. Strictly speaking we did not define diffeomorphism of
manifolds with corners, like I2. However, since we require them to
be equal to the identity on a neighborhood of the boundary, we can
equivalently think of Diff∂,U(I2) as a subgroup of Diff(R2). Wall’s
book has a section on manifolds with corners and smoothing of
corners, [Wal16].

7.2 Smale’s proof

To prove that Diff∂(D2) is weakly contractible, it thus suffices to
prove the analogous statements for squares.

Theorem 7.2.1 (Smale). Diff∂,U(I2) is contractible.

The idea is to consider for a diffeomorphism f ∈ Diff∂,U(I2) the
vector field X ( f ) on I2 obtained by pushing forward ~e1 along f :

X ( f )(x, y) := ( f∗(~e1))(x, y) = D f f−1(x,y)(~e1).

One can reconstruct f from X ( f ) as follows. To avoid issues with
domain of certain maps, let us first remark we may extend X ( f ) by
the constant vector field ~e1 to a bounded vector field on R2, which we
shall also denote X ( f ). Then its flow ΦX ( f ) is defined for all t ∈ R,
see e.g. Proposition 1.4.4 of [Wal16].

Let us now take a point (0, y) ∈ {0} × I and flow for time t.
Since X ( f ) is obtained by pushing forward a vector field on R2

along a diffeomorphism, we may compute the flow by flowing for
time t along this vector field and applying f . To see this, note that a
flowline γ of ΦX ( f ) is determined uniquely by the equations

d
dt
(γ(t)) = X ( f )(γ(t)) = (D f ) f−1(γ(t))(~e1)

γ(0) = (0, y).

But t 7→ f (t, y) also satisfies these equations: f (0, y) = (0, y)
since f is the identity near ∂I2 and d

dt f (t, y) = (D f )(x,y)(~e1) =

(D f ) f−1( f (x,y))(~e1). Hence from uniqueness of solutions to ODE’s, we
may conclude that

ΦX ( f )(t, 0, y) = f (t, y).



lectures on diffeomorphism groups of manifolds, version february 22, 2019 61

Now that we have shown how to recover f from X ( f ), the plan is
to use a convexity argument on the vector field X ( f ). Before doing
so, we start with some preparation.

Observe that X ( f ) lies in the space S of non-zero smooth vector
fields on I2 that are equal to ~e1 on an open neighborhood of ∂I2. It is
topologized as a subspace of all smooth maps R2 → R2. Conversely,
we claim that any Y ∈ S gives rise to a diffeomorphism. The con-
struction of this diffeomorphism is essentially by flowing, but there
are some technical details to address.

I2

y

τ(Y , y)
•

t

Figure 7.2: The red line is the flow-line
t 7→ ΦY (t, 0, y), and the τ(Y , y) is the
first and only time where this flowline
hits the side {1} × I of I2.

Let ΦY : R×R2 → R2 denote the map obtained by flowing along
the vector field Y , where again we have implicitly extended Y to R2

by the constant vector field ~e1. This lemma is one of two places where
we use that we are in dimension 2 in a non-superficial manner. The
second place is when we show that S is contractible in Lemma 7.2.5.

Lemma 7.2.2. Let Y ∈ S , then for all (0, y) ∈ {0} × I there exists a
τ(Y , y) ∈ (0, ∞) such that ΦY (τ(Y , y), 0, y) ∈ {1} × I, see Figure 7.2.
This is unique and depends continuously on Y and smoothly on y.

Example 7.2.3. For X ( f ), the function
τ(X ( f ), y) is identically 1.Proof. The uniqueness following directly by remarking that the x-

coordinate increases linearly in t as soon as one leaves I2. Continuity
in Y and smoothness in y follow from Picard-Lindelöf.

Existence is less easy. Since Y equals ~e1 near ∂I, if a flow-line
leaves, it has to do so through {1} × I. Thus we see that existence of
τ(Y , y) can only fail if the flow-line does not hit {1} × I. In fact, a similar argument prove the

stronger Poincaré-Bendixson theorem,
Theorem 7.2.3 of [CC00], which says
that ∞∗(γ) is of one of the following
three forms:
· a fixed point,
· a union of paths between fixed

points,
· a periodic orbit.

Suppose that γ : [0, ∞)→ I2 is a flow-line that does not hit {1} × I.
In that case, we consider the forwards-time limiting set

∞∗(γ) :=
⋂

α>0
γ((α, ∞)).

It is closed and invariant under the flow. It is non-empty as an inter-
section of nested compact subsets. Furthermore, since Y is ~e1 near
∂I2, it is contained in the interior of I2.

Let us thus pick a point q in ∞∗(γ), then since Y ∈ S we have
Y(q) 6= 0. Hence there is a straight line segment η through q which
is transverse to Y near q, i.e. an affine linear embedding (−1, 1)→ I2

such that η(0) = q and all s ∈ (−1, 1), Tsη ⊕Y(η(s)) = R2. The subset
γ−1(im(η)) is discrete, and we can order its non-negative elements
as t1 < t2 < . . .. For each γ(ti) ∈ im(η), we introduce the notation
si := η−1(γ(ti)).

Claim: either (i) s1 = s2 = 0, or (ii) si is strictly increasing or decreasing
to 0.

Proof of claim. Suppose (i) does not hold. Then for concreteness,
consider the instructive Figure 7.3.
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η
•s1

s2

γ Figure 7.3: The flow-line γ intersecting
the transversal η.

Since η is transverse to Y and Y points upwards at s1, any flow-
line through η must point upwards. Thus γ cannot re-enter the
shaded region through η. By uniqueness of solutions to ordinary
differential equations, it cannot re-enter through γ. Finally, the
piecewise-smooth Schoenflies theorem1 applied to the union S of the 1 We will prove the smooth Schoen-

flies theorem in Theorem 11.1.3, and
the piecewise-smooth version easily
follows.

segment of γ between t0 and t1 and the segment of η between s0 and
s1, implies that S separates the plane and thus γ can not re-enter in
any other way. This implies (ii).

In case (i), uniqueness of solutions to ordinary differential equa-
tions implies γ is periodic. In case (ii), let γ̃ be the flowline through
q. Then ∞∗(γ′) ⊂ ∞∗(γ) and the argument above implies that
∞∗(γ′) ∩ im(η) consists of the convergence points of ∞∗(γ) ∩ im(η)

and hence only of q. Thus γ′ is periodic.
Thus in both cases, we obtain that there is a loop in the interior of

I2 along which Y has winding number 1. This implies that it must
have a zero in the interior, by the Hopf-Rinow theorem. We have thus
obtained a contradiction, and γ must leave.

It is tempting to define a diffeomorphism

(x, y) 7→ ΦY (τ(Y , y) · x, 0, y), (7.1)

but this is not the identity near ∂I2. It has two defects:

(a) It might do some scaling in the x-direction near {0, 1} × I.

(b) A flowline might end up moving vertically, e.g. in Figure 7.2,
we have that the flowline enters at a higher y-coordinate than
the one at which it exists. This means the map is a non-trivial
diffeomorphism φ(Y) : I → I when restricted to {1} × I.

We have already seen before that these issues do not tend to
matter, and we can get rid of them if we slightly more careful in
(7.1). To address (a), we pick a smooth family of smooth embeddings
ητ : [0, 1]→ [0, ∞) with the following properties:

(i) the image of ητ is [0, τ],
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(ii) ητ has derivative 1 near 0 and τ, and

(iii) η1 = id.

We shall use this to reparametrize the time coordinate.

x
1

y
1

1/2

η1/2

x
1

y
2

1

η2

To address (b), we pick a smooth function ρ : [0, 1] → [0, 1] that is
0 near 0 and 1 near 1. Given a diffeomorphism φ : I → I that is the
identity near ∂I, we define a diffeomorphism of I2

ρ̄φ : I2 → I2

(x, y) 7→ (x, (1− ρ(x)) · y + ρ(x) · φ−1(y)).

We shall use this to modify the diffeomorphism near {1} × I.
We then define

ΨY : I2 → I2

(x, y) 7→ ρ̄φ(Y)[ΦY (ητ(Y ,y)(x), 0, y)].

Lemma 7.2.4. For any Y ∈ S , the map ΨY is a diffeomorphism.

Proof. The map ΨY is a composition of the three maps

(x, y) 7→ (ητ(Y ,y)(x), 0, y),

(t, y) 7→ ΦY (t, 0, y),

(x, y) 7→ ρ̄φ(Y),

which are easily shown to have bijective differential. Thus as a conse-
quence of the inverse function theorem, ΨY is a local diffeomorphism.
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Thus it suffices to show it is injective and surjective. It will be surjec-
tive as a consequence of the Brouwer fixed point theorem. If it failed
to be injective, this would imply that there exist (x, y) 6= (x′, y′) such
that ΨY (x, 0, y) = ΨY (x′, 0, y′). Uniqueness of solutions implies that
y = y′ and since there are no periodic orbits we must have x = x′,
leading to a contradiction.

By smoothness of the family ητ , the map Ψ : S → Diff∂,U(I2) is
continuous, and by property (iii) we have that ΨX ( f ) = f . Thus it suf-
fices to deform the vector field X ( f ) to X (id) = ~e1 in S , continuously
in f .

Lemma 7.2.5. The space S smoothly deformation retracts onto the constant
vector field~e1.

Proof. Identify S with the space of smooth maps I2 → R2 \ {0} that
equal ~e1 near the boundary. The non-zero vectors may be identified
with R2 \ {0}, so pick a lift ~ε1 of ~e1 to the universal cover

p : R̃2 \ {0} → R2 \ {0}.

Every vector field in S lifts uniquely to a C∞-function X̃ ( f ) : I2 →
R̃2 \ {0} once we specify that on I × {0} it should take value ~ε1. Then
automatically it has value ~ε1 on ∂I2 since I2 is simply-connected.
Thus we may identify S with a subspace of the space of smooth
maps I2 → R̃2 \ {0} that are equal to ~ε1 near ∂I2.

Since R2 \ {0} is homotopy equivalent to S1, its universal cover
R̃2 \ {0} is contractible. Hence there is a deformation retraction
hs, s ∈ [0, 1] onto ~ε1 By the techniques of the previous lecture this
deformation retraction may be made smooth. Then the homotopy

H : S × [0, 1]→ S
(Y , s) 7→ p ◦ hs(Ỹ),

obtained by applying hs to the values of Ỹ , is a deformation retrac-
tion of S onto ~e1.

Proof of Theorem 7.2.1. There is a deformation retraction onto the
identity given by

( f , s) 7→ ΨHs(X ( f )).

This proof fails in dimension n > 2 because there may be non-zero
smooth vector fields X that are equal to ~e1 near ∂In but have periodic
orbits. These can not be integrated to diffeomorphism f by the above
construction, because then X ( f ), the pushforward of the vector field
~e1 without periodic orbits, would have to equal X (possible up to
composition with some easily understood diffeomorphisms).2 2 Here is an example of how to con-

struct such an X . First, take a solid
torus Dn−1 × S1 with the longitudinal
vector field d

dθ for θ the S1-coordinate.
Embed this solid torus in In so that
{1} × S1 bounds a disk. Then we can ex-
tend the vector field to a non-zero vec-
tor field on this disk, as π1(Sn−1) = 0
where Sn−1 is the homotopy type of
the non-zero vectors (here you see
where n = 2 is different: we would get
π1(S1) ∼= Z instead). After thickening
the disk we have an embedded Dn in In

with a non-zero vector field XDn on it
which has a periodic orbit. Pick an arc
I from ∂Dn to ∂In and extend the vector
field to a non-zero vector field XU on
a neighborhood U of ∂In ∪ I ∪ Dn. As
In \ U ∼= Dn, we can extend XU |∂U
to a non-zero vector field on In if it
represents 0 ∈ πn−1(Sn−1). If this is not
already the case, it may be arranged
by adding a second copy of Dn with
vector field r ◦ XDn where r is reflection
in the x-axis, and connecting it to the
boundary.
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7.3 Diffeomorphisms of S2

We give a partial proof of an application of Smale’s theorem, which
we will revisit in the next lecture when we have developed parametrized
isotopy extension. This application is that there is a weak euqivalence
Diff(S2) ' O(3). Today we shall show that Diff(S2) is a product of
O(3) with a topological group G similar to Diff∂(D2), which will later
be shown to be contractible.

We start with the following well-known observations. We consider
S2 as the subspace of R3 given by {z ∈ R3 | ||z|| = 1}. Its tangent
space at z may thus be identified with the subspace of R3 orthogonal
to z. This means that the orthonormal frame bundle FrO(TS2) can
be identified by ordered triples of orthonormal vectors in R3. This
admits a free transitive action of O(3), so we may identify FrO(TS2)

with O(3).
The orthonormal frame bundle is homotopy equivalent to the

general linear frame bundle FrGL(TS2). This consistent of ordered
triples (z1, z2, z3) in R3, with z1 ∈ S2, and the pair (z2, z3) linearly
independent and orthogonal to z1. Gram-Schmidt gives a continuous
map

GS : FrGL(TS2)→ FrO(TS2)

(z1, z2, z3) 7→
(

z1,
z2

||z2||
,

z3 − 〈z2, z3〉 z2
||z2||2

||z3 − 〈z2, z3〉 z2
||z2||2

||

)
,

which is easily seen to be a homotopy equivalence.
Remark 7.3.1. There is also an inclusion
O(3) ↪→ GL3(R) and the Gram-
Schmidt map induces a splitting
GL3(R) ∼= O(3)× H, where H is the
group of upper-triangular matrices with
positive diagonal entries. This is an
example of the Iwasawa decomposition
G = KAN for G = GL3(R).

A diffeomorphism f of S2 acts on the general linear frame bundle.
By applying the Gram-Schmidt map and identifying the orthonormal
frame bundle with O(3), we see thats there is a map

α : Diff(S2)→ O(3)

f 7→ GS( f (~e1), D~e1
f (~e2), D~e1

f (~e3)).

On the other hand, there is a map O(3)→ Diff(S2) by rotating the
sphere, which is a section of the previous map:

G := ker(g) Diff(S2) FrGL(TS2)

FrO(TS2)

O(3) O(3).

α

g

GS

∼=

rotation

We conclude that there is a homeomorphism

Diff(S2) ∼= O(3)× G,
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where G is the subgroup of Diff(S2) consisting of diffeomorphisms
which fix ~e1 and the frame (~e2,~e3) in T~e1

S2 up to an upper triangu-
lar matrix with positive diagonal entries. There is an inclusion of
Diff∂,U(D2) into G by acting on the hemisphere around −~e1. We
claim this inclusion is a weak equivalence. If so, it follows from
Smale’s theorem that:

Theorem 7.3.2. We have that Diff(S2) ' O(3).



8
Parametrized isotopy extension

Takeaways:
· We can extend isotopies of embed-

dings to isotopies of diffeomor-
phisms by flowing along a vector
field obtained by extending the
derivative of the embedding with
respect to t.

· With care, this proves that the action
of diffeomorphisms on embeddings
is a fibration.

In the previous chapter we proved Smale’s theorem that Diff∂(D2) '
∗. We left open a step in the computation of Diff(S2). To finish this
computation, we shall use the parametrized isotopy extension the-
orem to show that certain restriction maps are fibrations. Isotopy
extension is discussed in [Hir94, Wal16].

8.1 Parametrized isotopy extension

Example 8.1.1. Consider the case of the
path [0, 1] 3 t 7→ t ·~e1 in R2, a point
moving with constant speed along a
straight line from (0, 0) to (1, 0). If we
imagine the manifold R2 being made
out of a stretchy material, you put
finger on (0, 0) and, by pushing, deform
the entire manifold while you move
your finger from (0, 0) to (1, 0). This
should convince you that the question
may be answered positively in this
particular case. See Figure 8.1 for a
picture of the end result.

Isotopy extension

A basic question about manifolds is the following: if we move a
point around a manifold M, is this motion induced by a family of
diffeomorphisms? To answer it, we must state the question in a
precise way. In doing so, we shall also generalize it from points to
arbitrary submanifolds.

Definition 8.1.2. · An isotopy of embeddings M ↪→ N is a neat smooth
embedding g : M× [0, 1] ↪→ N × [0, 1] that fits into a commutative
diagram

M× [0, 1] N × [0, 1]

[0, 1].

g

· An isotopy of diffeomorphisms of N is a diffeomorphism f : N ×
[0, 1]→ N × [0, 1] that fits into a commutative diagram

N × [0, 1] N × [0, 1]

[0, 1].

f

R2

•

Figure 8.1: The end result of the point-
pushing, depicted by its effect on
vertical lines in R2. The dashed line
gives the boundary of the support.
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An isotopy of diffeomorphisms is also called an ambient isotopy.
We remark that gt := g|M×{t} is an embedding M ↪→ N, and ft :=
g|N×{t} is a diffeomorphism of N.

The isotopy extension theorem answers the following question:
given an isotopy g of embeddings, when is there an isotopy f of
diffeomorphisms such that gt = ft ◦ g0? We will answer this in the
case of a compactly-supported isotopy of embeddings; this means that
there is a compact set K ⊂ M such that gt|M\K = g0|M\K for all
t ∈ [0, 1]. There is a similar notion of a compactly-supported isotopy
of diffeomorphisms.

Remark 8.1.3. A compactly-supported
isotopy is the same as a smooth map
ḡ : M× [0, 1] → N such that each ḡt is
an embedding and ḡt|M\K = ḡ0|M\K for
all t ∈ [0, 1] for some compact K. This
is not true without the assumption of
compact support [Gei17].

Theorem 8.1.4 (Isotopy extension). Given a compactly-supported isotopy
of embeddings g : M × [0, 1] ↪→ N × [0, 1] with support K such that
K ∩ ∂M = ∅, there exists a compactly-supported isotopy of diffeomorphisms
f : N × [0, 1]→ N × [0, 1] such that f0 = id and gt = ft ◦ g0.

Proof. The smooth vector field on M× [0, 1] given by ∂
∂t can be pushed

forward along the embedding g to obtain a vector field X (g) in
T(N × [0, 1])|M×[0,1]. If we flow along X (g) for time t with initial con-
dition (p, 0), we end up at (gt(p), t): it satisfies the same differential
equations and initial conditions as applying gt to the flow along ∂

∂t on
M× [0, 1].1 We can deduce that g preserves the projection π to [0, 1] 1 This is similar to what happened in

the proof of Theorem 7.2.1.be noting that g preserves π if and only if the vector field π∗(X (g))
on [0, 1] equals ∂

∂t .
If we can extend X (g) to a smooth vector field X ( f ) on N ×

[0, 1] that projects to ∂
∂t under π∗, we can attempt to flow along it to

produce f . The fact that it extends X (g) will then imply gt = ft ◦ g0,
and the fact that it projects to ∂

∂t under π∗ will imply that it preserves
π. To guarantee that f is compactly-supported, we make sure that
X ( f ) is equal to ∂

∂t outside of a compact set. This will also imply that
the flow of X ( f ) is well-defined, i.e. can’t flow away to infinity in
finite time, see e.g. Proposition 1.4.4 of [Wal16].

In fact, we can slightly weaken the conditions on the X ( f ) we
need to construct; it suffices that X ( f ) coincides with X (g) on M×
[0, 1], coincides with ∂

∂t outside a compact subset of N × [0, 1] and
π∗(X ( f )) is a positive multiple of ∂

∂t everywhere. We may then
modify X ( f ) by scaling it with smooth function that is 1 on M× [0, 1]
and outside a compact set, to get that π∗(X ( f )) = ∂

∂t on all of
N × [0, 1]

The condition that X ( f ) maps under π∗ to a vector field that
is a multiple of ∂

∂t by a positive smooth function is convex, so we
can produce X ( f ) by a partition of unity. Since the support of g is
compact, we may find a finite collection of charts φi : N × [0, 1] ⊃
Vi → Wi → Rn−1 × [0, ∞) covering the image of the support of
g, so that φi(Vi ∩ g(M × [0, 1])) = Wi ∩ (Rm−1 × [0, ∞)). Let Xi( f )
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be the vector field on Vi given by first extending (φi)∗(
∂
∂t ) is on

Wi ∩ (Rm−1 × [0, ∞)) in constant fashion to the remaining (n − m)

directions and then applying (φ−1
i )∗. After possibly shrinking Vi to

a smaller open neighborhood of (M × [0, 1]) ∩ Vi, π∗ of Xi( f ) is a
positive multiple of ∂

∂t .
Let V0 be an open subset of N× [0, 1] satisfying V0 ∩ g(M× [0, 1]) =

∅ and V0 ∪
⋃k

i=1 Vi = N × [0, 1], and let ηi be smooth partition of unity
subordinate to this open cover. The desired vector field is

X ( f ) := η0 ·
∂

∂t
+

k

∑
i=1

ηi · Xi( f ).

Remark 8.1.5. We can avoid having to rescale X ( f ) if we had used
nicer charts in our argument. The precise statement concerning
existence of these nice charts is at follows: given an embedding
M× K → N × K over K, there exists a chart κ : K ⊃ V → W ⊂ Rk,
and φ : N × K ⊃ V′ → W ′ ×Rn+k such that (i) φ((M × K) ∩ V′) =

W ′ ×Rm+k, πK(V′) ⊂ V with πK : N × K → K the projection, and (ii)
the following diagram commutes

V′ W ′

V W

φ

π2 π

κ

for π : Rn+k → Rk the projection.
This also works when you have submersions of K, or when there

are boundaries involved. A reference for these types of technical
results is [Sie72].

Example 8.1.6. The compact support condition is necessary, as is
clear from the proof. For example, consider the family given by
moving a knot tied in the x-axis to ∞, see Figure 8.2. This can not be
induced by an ambient isotopy, because if it were then R3 \ K0 would
be diffeomorphic to R3 \ R, but they have different fundamental
groups (see Chapter 3 of [Rol76] for fundamental groups of knot
complements).2 2 There is an interesting review of this

book in [Neu77], which starts with “I
have a friend whom I do not see very
often these days.” It also contains the
word “kudology.”

A knot K0 centered at the ori-
gin for t = 0 moving right-
wards to ∞ as t increases.

Figure 8.2: A family of embeddings to
which isotopy extension does not apply.



70 alexander kupers

Parametrized isotopy extension

What if instead of a single parameter t ∈ [0, 1], we have multiple
parameters? If we define a k-parameter isotopy of neat embeddings
g : M× ∆k → N × ∆k by replacing [0, 1] ∼= ∆1 with ∆k, and similarly
define a k-parameter isotopy of diffeomorphisms f : N × ∆k → N × ∆k.
This involves embeddings and diffeomorphisms of manifolds with
corners, which are locally modeled on [0, ∞)k, and are explained in
[Wal16]. The proof of Theorem 8.1.7 is easily modified to give:

Theorem 8.1.7 (Parametrized isotopy extension). Given a compactly-
supported isotopy of embeddings g : M × ∆k ↪→ N × ∆k with support
K such that K ∩ ∂M = ∅, there exists a compactly-supported isotopy of
diffeomorphisms f : N × ∆k → N × ∆k such that g~t = f~t ◦ g(1,0,...,0) for each
~t ∈ ∆k.

One should think of this Theorem as saying that acting by dif-
feomorphisms g0 is a Serre fibration. This is not true, but it is true
that up to smooth approximation, which is sufficient to compute
the homotopy fiber of this map and get a long exact sequence of
homotopy groups. As before, the issue is that a k-parameter isotopy
is not the same as a continuous map ∆k → Emb(M, N): “a continu-
ous family of smooth embeddings is not a smooth family of smooth
embeddings.” To avoid this problem we define:

Definition 8.1.8. Let SEmb(M, N) be the simplicial set with k-
simplices given by smooth embeddings M× ∆k → N × ∆k covering
the projections to ∆k.

Given a smooth neat embedding g0 : M ↪→ N, SEmbc,∂,U(M, N)

denotes the subsimplicial set of compactly-supported smooth em-
bedding M ↪→ N which agree with g0 on an open neighborhood of
∂M.

As in Section 6.4, the inclusion

SEmbc,∂,U(M, N) ↪→ Sing(Embc,∂,U(M, N))

is a weak equivalence.3 This is a reasonable statement, if SEmbc,∂,U(M, N) 3 Strictly speaking that argument was
only given for M and N compact, but it
may be appropriately generalized.

is Kan, which we shall prove momentarily. The following is a con-
sequence of the parametrized isotopy extension theorem. It uses
the notion of a Kan fibration, see e.g. Section I.3 of [GJ09], which
means it has the left lifting property for horn fillers Λn

i ↪→ ∆n. Let
SDiffc,∂,U(N) ⊂ SDiff(N) denote the subsimplicial set of compactly-
supported diffeomorphisms that are the identity on an open neigh-
borhood of ∂N.

Corollary 8.1.9. Fix a smooth neat embedding g0 : M ↪→ N. Then the
map SDiffc,∂,U(N) → SEmbc,∂,U(M, N) given by acting on g0 is a Kan
fibration.
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Corollary 8.1.10. The simplicial set SEmb(M, N) is Kan.

Proof. Given maps of simplicial sets X → Y → Z, if X → Y and
X → Z are Kan fibrations, so Y → Z. This is clear from the definition
of a Kan fibration in terms of a lifting property. Apply this X =

SDiffc,∂,U(N) (which is Kan because it is a simplicial group), Y =

SEmbc,∂,U(M, N) and Z = ∗.

Convention 8.1.11. We will not distinguish between Emb and SEmb,
and similarly for Diff and SDiff. Thus we apply parametrized isotopy
extension to say a map is a fibration, the reader should either implic-
itly substitute fiber sequence, or replace the topological spaces with
weakly equivalent simplicial sets and substitute Kan fibration.

Manifolds with boundary

There are several extensions of parametrized isotopy extension to
manifolds with boundary. Firstly, we can allow the boundary ∂M
of M to move in ∂N as well, that is, as long as it always maps to the
boundary of N.

Corollary 8.1.12. Given a compactly-supported isotopy g : M × ∆k →
N × ∆k of neat embeddings, there exists a compactly-supported isotopy of
diffeomorphisms f : N × ∆k → N × ∆k such that gt = ft ◦ g0.

Sketch of proof. First apply parametrized isotopy extension to g∂M×∆k : ∂M×
∆k → ∂N × ∆k to obtain f ∂ : ∂N × ∆k → ∂N × ∆k. The neatness as-
sumption means that we can extend all the vector fields used to build
f ∂ to N, so this extends to an f : N × ∆k → N × ∆k. Now f−1 ◦ g
satisfies the assumptions of Theorem 8.1.7.

Secondly, it is also acceptable if M (including its boundary ∂M)
maps to the interior of N.

Corollary 8.1.13. Given a compactly-supported isotopy g : M × ∆k →
int(N)× ∆k of embeddings, there exists a compactly-supported isotopy of
diffeomorphisms f : N × ∆k → N × ∆k such that gt = ft ◦ g0.

Sketch of proof. First apply parametrized isotopy extension to g|∂M×∆k ,
to obtain f ∂ : N × ∆k → N × ∆k. Then f ∂ ◦ g fixes ∂M pointwise. By
a version of the argument used to show that Diff∂(M) ' Diff∂,U(M),
one may deform this through ambient isotopy so that it fixes an open
neighborhood of ∂M pointwise. Cut out a small neighborhood of the
image of ∂M and apply parametrized isotopy extension again.





9
Embeddings of Euclidean space

Takeaways:
· Emb(Dm, M) ' Emb(Rm, M) '

FrGL(TM).
· As the stabilizer of the action

of Diff(S2) on Emb(D2, S2) is
Diff∂(D2), we obtain Diff(S2) '
O(3).

In the previous chapter we proved parametrized isotopy extension.
This was one step on the argument started in Chapter 7 deducing
Diff(S2) ' O(3) from Smale’s theorem Diff∂(D2) ' ∗. Today we shall
finish this argument by computing the homotopy type of the space
of embeddings of Rm into M. This shall be used many more times in
later chapters.

9.1 Embeddings of Rm

It shall be useful to describe the homotopy type of the space of
embeddings of Rm into an m-dimensional manifold M.

Embeddings of Rm into Rm

We start with the case where the target is also Rm, and along the way
determine the homotopy type of Diff(Rm).

Theorem 9.1.1. The inclusions O(m) ↪→ GLm(R) ↪→ Diff(Rm) ↪→ The observant reader may have noticed
that there is a shorter proof of Theorem
9.1.1; by taking for an embedding h the
family

[1, ∞] 7→
{

1
τ · h(τ · −) if τ < ∞,
D0h if τ = ∞.

Emb(Rm, Rm) are all weak equivalences.

Proof. We start with the inclusion GLm(R) ↪→ Emb(Rm, Rm). Firstly,
by translation, we may deformation retract Emb(Rm, Rm) onto the
subspace Emb0(R

m, Rm) of embeddings that fix the origin. This fixes
the the subspace GLm(R) ⊂ Emb(Rm, Rm) pointwise.

Next we shall prove that every commutative diagram

Si GLm(R)

Di+1 Emb0(R
m, Rm)H

may be homotoped through commutative diagrams, to one in which
there exists a lift. To do so, we first deform H into subspace of
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• Hs, our original family

linear approximation near origin

• H(1)
s , linear near origin

zooming in

• H(2)
s , linear everywhere

Figure 9.1: An outline for the strategy
for Theorem 9.1.1.

Emb0(R
m, Rm) of embeddings that are linear near the origin. This

uses a linear interpolation cut off using a small enough bump func-
tion supported near the origin in Rm, and preserves GLm(R).

Let η : Rm → [0, 1] be a smooth function that equals 1 near the
origin and is supported in Dm. By compactness of Di+1 and the
inverse function theorem, one proves that there exists an ε0 > 0 such
that for all s ∈ Di+1, we have that

[0, 1] 3 τ 7→ (1− τη(−/ε0)) · Hs + τη(−/ε0) · D0Hs

is a path of embeddings. At τ = 0, it is Hs, At τ = 1, near the origin
it is the linear map D0Hs. This deformation fixes GLm(R) pointwise.
Let us call the end result H(1) : Di+1 → Emb0(R

n, Rn).

x
1

y

1

η

Figure 9.2: The smooth function η in
the case m = 1.

Finally, we push out the non-linear stuff to ∞ by precomposing
with a family of scaling maps. For λ ∈ (0, ∞), let rλ denote the scal-
ing map x 7→ λ · x. Then the following is a homotopy of embeddings
ending at linear maps

[0, 1] 3 τ 7→

r 1
1−τ
◦ H(1)

s ◦ r1−τ if τ < 1

D0H(1)
s otherwise,

which again fixes GLm(R) pointwise. This completes the proof that
GLm(R) ↪→ Emb(Rm, Rm) is a weak equivalence. (Remark it was
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important here that we used the weak Whitney topology of the
strong one, otherwise this homotopy of embeddings would not be
continuous.)

All of these deformations preserve the subspace Diff0(R
m) of

diffeomorphisms fixing the origin, which is easily seen to be a defor-
mation retract of Diff(Rm), so it also proves GLm(R) ↪→ Diff(Rm) is a
weak equivalence. Finally, O(m) ↪→ GLm(R) is a weak equivalence by
Gram-Schmidt.

The map Emb(Rm, Rm) → GLm(R) taking the derivative at 0 is
a weak homotopy inverse to GLm(R) ↪→ Emb(Rm, Rm). to see this,
note that GLm(R)→ Emb(Rm, Rm)→ GLm(R) is the identity map.

Embeddings into M

Now we generalize the target to M. Note that taking the value and
derivative at the origin gives us a map

Emb(Rm, M)→ FrGL(TM).

Theorem 9.1.2. The map Emb(Rm, M) → FrGL(TM) is a weak equiva-
lence.

Proof. There is a commutative diagram

Emb(Rm, M) FrGL(TM)

M M,

ev0 π

the first of which is a fibration by parametrized isotopy extension
and the second of which is a fibration since it is the projection of
a locally trivial bundle. Thus it suffices to prove that the map on
fibers over p ∈ M is a weak equivalence. By shrinking in the Rm

direction, we may assume we always land in some fixed chart around
p ∈ M. This reduces the proof to the statement that the derivative
map Emb0(R

m, Rm) → GLm(R) is a weak equivalence, which we
proved above.

This also allows us to compute the homotopy type of Emb(Dm, M).
The following is a generalization of a result on diffeomorphisms from
Section 7.1. Note we do not need a compactness assumption in this
case.

Lemma 9.1.3. Given m-dimensional manifolds M and M′ with embeddings
i : M → M′ and j : M′ → M that are inverse up to isotopy, the spaces of
embeddings Emb(M, N) and Emb(M′, N) are homotopy equivalent.

Corollary 9.1.4. The restriction map Emb(Rm, M) → Emb(Dm, M) is a
homotopy equivalence.
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Generalization to embeddings of Rk

We shall state the generalization of the results of the previous section
to embeddings of Rk into M, where k < m. Let GL(Rk, Rm) be the
space of injective linear maps Rk → Rm, and O(Rk, Rm) the space of
linear isometries Rk → Rm. Then Theorem 9.1.1 generalizes to

Theorem 9.1.5. The inclusions

O(Rk, Rm) ↪→ GL(Rk, Rm) ↪→ Emb(Rk, Rm)

are all weak equivalences. Taking the derivative at 0 gives a homotopy
inverse Emb(Rk, Rm)→ GL(Rk, Rm) to the latter map.

Just like the orthonormal and general linear frame bundles gener-
alizes O(m) and GLm(R), the orthonormal and general linear Stiefel
bundles generalize O(Rk, Rm) and GL(Rk, Rm). These may be de-
fined as associated bundles for the orthogonal and general linear
frame bundles. This uses that there are right actions of O(m) on
O(Rk, Rm), and GLm(R) on GL(Rk, Rm):

VO
k (M) := O(Rk, Rm)×O(m) FrO(TM),

VGL
k (M) := GL(Rk, Rm)×GLm(R) FrGL(TM).

Recording the value and derivative at the origin gives a map
Emb(Rk, M)→ VGL

k (M).

Theorem 9.1.6. The map Emb(Rk, M)→ VGL
k (M) is a weak equivalence.

9.2 Connected sums

We shall give a classical corollary of Theorem 9.1.1: by combining it
with isotopy extension, we can prove a result of Palais on the well-
definedness of the connected sum operation [Pal60]. The input for this
construction is a pair of path-connected oriented manifolds M, N of
the same dimension. It is given by taking an orientation-preserving
embedding ϕM : Dm ↪→ M, and an orientation-reversing embedding
ϕN : Dm ↪→ M. One then removes the interiors of their images, and
glues the resulting manifolds along their boundary using the identity.

ϕM

ϕN

Figure 9.3: A connected sum.

Definition 9.2.1. The connected sum M#N is given by

(M \ ϕM(int Dm)) ∪ (N \ ϕN(int Dm)),

where we identify

∂(M \ ϕM(int(Dm))) ∼= Sm−1 and ∂(N \ ϕN(int(Dm))) ∼= Sm−1

via the identity map.
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The connected sum M#N is again an oriented manifold, this was
the reason for choosing one embedding to be orientation-preserving
and the other to be orientation-reversing. Of course the construction
M#N depends on the choice of ϕM and ϕN , and if we want to re-
member this in the notation we write M#ϕM ,ϕN N. We shall show that
M#N is well-defined up to diffeomorphism.

Lemma 9.2.2. If ϕM is isotopic to ϕ′M, then M#ϕM ,ϕN N is diffeomorphic to
M#ϕ′M ,ϕN

N.

Proof. By isotopy extension there is a diffeomorphism f : M → M
such that f ◦ ϕM = ϕ′M. This induces a diffeomorphism

f #id : M#ϕM ,ϕN N → M#ϕ′M ,ϕN
N

p 7→

 f (p) if p ∈ M \ ϕM(int(Dm)),

p otherwise,

where we use f ◦ ϕM = ϕ′M to see that this is well-defined.

By symmetry the same is true when we modify ϕN by an isotopy.
Thus to show that M#N is well-defined, it suffices to show that the
spaces Emb+(Dm, M) and Emb+(Dm, N) of orientation-preserving
embeddings are path-connected. If so, the same is true for the space
of orientation-reversing embeddings because it is homeomorphic.

Lemma 9.2.3. If M is path-connected and oriented, Emb+(Dm, M) is
path-connected.

Proof. We computed above that Emb+(Dm, M) ' FrSO(M), and the
latter fits into a fiber sequence

SO(m)→ FrSO(M)→ M,

with both fiber and base path-connected.

9.3 Diffeomorphisms of S2 revisited

In Chapter 7, we showed that Diff(S2) ∼= O(3)× G, with G similar
to Diff∂(D2), and claimed that in fact there is a weak equivalence
Diff(S2) ' O(3). This result is originally due to Smale [Sma59b].

Theorem 9.3.1. We have that Diff(S2) ' O(3).

Proof. The map Diff(S2)→ O(3) factors as

Diff(S2)→ Emb(D2, S2)→ Emb(R2, S2)→ FrGL(TS2)→ FrO(TS2),

with all except the first map weak equivalences. Hence it suffices to
show that the homotopy fiber of Diff(S2) → Emb(D2, S2) is a weakly
contractible. But this map is a fibration by parametrized isotopy
extension and its fiber is the contractible space Diff∂(D2).





10
Gramain’s proof of Smale’s theorem

Takeaways:
· That Diff∂(D2) ' ∗ is equivalent

to a space of embedded arcs being
weakly contractible, which can be
deduced from the fact that O(2)
only has non-trivial π0 and π1.

· The same techniques prove that
the path-components of Emb∂(I, Σ)
are weakly contractible for any
surface Σ with compact boundary
components.

· This implies the diffeomorphism
groups of most surfaces have weakly
contractible components.

In Chapter 7, we proved Smale’s theorem that Diff∂(D2) ' ∗. We will
now give a different proof due to Gramain (based on a proof of Cerf
in [Cer68]). It has the advantage of avoiding dynamics in the form of
the Poincaré-Bendixson theorem, instead using that O(2) has few ho-
motopy groups and the parametrized isotopy extension theorem. The
proof appears in [Gra73], but we instead follow Hatcher’s exposition
[Hat11] (which I highly recommend).

Convention 10.0.1. Having spend a few lectures discussing how
various boundary conditions do not affect the homotopy type, we
shall henceforth not distinguish between them.

10.1 Gramain’s proof of Smale’s theorem

γ0

Figure 10.1: The arc γ0 in D2.

We shall prove that Diff∂(D2) is weakly contractible by letting it act
on the arc γ0 in D2 ⊂ R2 connecting −~e2 and ~e2, see Figure 10.1. By
parametrized isotopy extension as discussed in Chapter 8, we obtain
a fibration

Diff∂(D2)→ Emb∂(I, D2).

Its fiber over γ0 is given by those diffeomorphisms that fix γ0 point-
wise. Since both components of the complement of γ0 are disks,
up to smoothing corners, this is weakly equivalent to Diff∂(D2) ×
Diff∂(D2).1 1 This strategy is a slight deviation from

Hatcher’s proof in [Hat11], who lets
Diff∂(D2) act on Emb∂+ (D2

+, D2).Remark 10.1.1. In the above paragraph, we strictly speaking should
have used simplicial sets of diffeomorphisms that are the identity
near ∂D2 and embeddings that equal γ0 near ∂I to apply parametrized
isotopy extension. Then the fiber over γ0 would have been a simpli-
cial set of diffeomorphisms that fix γ0 and a neighborhood of ∂D2

pointwise, which is weakly equivalent Diff∂(D2)×Diff∂(D2) using the
results of Chapters 4 and 5. These technical details are tedious and
easy to provide.
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Now consider the long exact sequence of homotopy groups, based
at the identity in the total space Diff∂(D2). Restricting to the relevant
components of the base (the one containing γ0) and total space (the
identity), in low degrees this is the exact sequence of groups

π1(Diff∂(D2))2 π1(Diff∂(D2)) π1(Emb[γ0]
∂ (I, D2))

{(g, g−1)} {[id]} {[γ0]},

with g ∈ π0(Diff∂(D2)) and Emb[γ0],∂(I, D2) denotes the path compo-
nent of Emb∂(I, D2) containing γ0. We have also slightly simplified
notation by leaving out the path components we restrict to in π1 of
the diffeomorphism groups (since it doesn’t matter anyway).

Thus π0(Diff∂(D2)) is trivial if the path component of Emb[γ0]
∂ (I, D2)

is simply-connected. For the higher homotopy groups Diff∂(D2) there
is a long exact sequence of abelian groups

· · · πi(Diff∂(D2))⊕2 πi(Diff∂(D2)) πi(Emb[γ0]
∂ (I, D2)) · · · .

There is a section up to homotopy Diff∂(D2) → Diff∂(D2)2 given
by f 7→ f × id, which induces the dashed arrow. This implies that
the long exact sequence splits into a collection of split short exact
sequences and for i ≥ 1 we get an isomorphism of abelian groups

πi(Diff∂(D2)) ∼= πi+1(Emb[γ0]
∂ (I, D2)).

The conclusion is that the higher homotopy groups of Diff∂(D2)

vanish if and only if the path component of Emb∂(I, D2) containing
γ0 is weakly contractible. We have thus reduced Smale’s theorem to
the following statement:

Remark 10.1.2. Note that we do
not claim that Emb∂(I, D2) is path-
connected, though this is true. This
follows from the smooth 2-dimensional
Schoenflies theorem, which we will
prove next chapter.

Theorem 10.1.3 (Equivalent to Smale’s theorem). The path component
Emb[γ0]

∂ (I, D2) of Emb∂(I, D2) containing γ0 is weakly contractible.

Proof. Consider the manifold T given by gluing a 1-handle [−1, 1]× I
to ∂D2 containing both components of ∂D2 \ ∂γ0 as in Figure 10.2. It is
diffeomorphic to the manifold obtained by removing the disk S from
a larger 2-disk (D2)′.

We shall study embeddings of I ∪ S into (D2)′ that send 0 ∈ I to
the boundary. Even though I ∪ S is not a manifold, but one can still
prove that a version of parametrized isotopy extension is true for it
by applying ordinary parametrized isotopy extension first to S and
then to I. We conclude that we have a fiber sequence

Emb∂(I, T)→ Emb∂(I ∪ S, (D2)′)→ Emb(S, (D2)′). (10.1)
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γ0

β0

S

Figure 10.2: The surface T, diffeomor-
phic to an annulus.

As S ∼= D2, the results of the previous lecture say that the base
Emb(S, (D2)′) is weakly equivalent to O(2). We next claim that
Emb∂(I ∪ S, (D2)′) is weakly contractible. To see this, “drag the
lollipop into the part where the embedding is the identity.” Firsly,
precomposition I ↪→ I ∪ S induces a weak equivalence Emb∂(I ∪
S, (D2)′) → Emb∂(I, (D2)′) by techniques as in the previous lecture.
Next, we may use a collar as in Lecture 3 to replace any compact
family in Emb∂(I ∪ S, (D2)′) by one that coincides with γ0 on half
of I. Then by precomposing with self-embeddings I → I fixing {0},
we can homotope this compact family to one equal to constant map
given by a small vertical line segment.

From the long exact sequence of homotopy groups for (10.1)
and the fact that πi(O(2)) = 0 for i > 1, it thus follows that
πi(Emb∂(I, T)) = 0 for i > 0 and base point in any path compo-
nent.

We shall now use this to prove that Emb[γ0]
∂ (I, D2) is weakly con-

tractible. Let β0 = {0} × I denote the so-called core of the added
1-handle. As D2 and T \ β0 are isotopy equivalent, there is a homotopy
equivalence Emb[γ0]

∂ (I, D2) ' Emb[γ0]
∂ (I, T \ β0) and it suffices to

prove the latter is weakly contractible. We then remark that there is
an inclusion

ι : Emb[γ0]
∂ (I, T \ β0) ↪→ Emb[γ0]

∂ (I, T),

which we claim induces an injection on homotopy groups. Once we
establish this claim, we have finished the proof because we showed
that latter has vanishing higher homotopy groups; only trivial groups
inject into the trivial group.

To prove the claim we consider the universal cover T̃ of T. We can
identify this explicitly; it is diffeomorphic to R× I, and we may pick
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coordinates such that β0 lifts to the arcs {2i + 1} × I and a lift γ̃0 of γ0

is given by the arc {0} × I (of course there are other choices, we pick
one). An arc γ ∈ Emb[γ0]

∂ (I, T \ β0) has a unique lift γ̃ which coincides

with γ̃0 at 0. Hence we may identify Emb[γ0]
∂ (I, T) with a subspace

E ⊂ Emb[γ̃0]
∂ (I, R× I).

Similarly, we may identify Emb[γ0]
∂ (I, T \ β0) with the subspace

Emb[γ̃0]
∂ (I, (−1, 1)× I) ⊂ Emb[γ̃0]

∂ (I, R× I).

There is a retraction r : Emb[γ̃0]
∂ (I, R× I) → Emb[γ̃0]

∂ (I, (−1, 1)× I)
by precomposition with an embedding R ↪→ (−1, 1), i.e. shrinking
the R-direction. We conclude that there is a homotopy commutative
diagram

Emb[γ0]
∂ (I, T \ β0) Emb[γ0]

∂ (I, T)

E

Emb[γ0]
∂ (I, T \ β0) Emb[γ̃0]

∂ (I, R× I),

ι

∼=

r

which establishes the claim.

Remark 10.1.4. Why does this argument fail in higher dimensions?
To make the argument go through, T should have been obtained by
attaching a 1-handle to the boundary of Dn. But then the base we
would be studying in our generalization of (10.1) involves the space
of embeddings of a complementary Dn−2 × D2 rel ∂Dn−2 × D2 into
Dn. These spaces of embeddings will be highly non-trivial in general.

10.2 Path-components of embeddings of arcs in surfaces

We shall now generalize the results of the previous sections from
arcs in D2 to arcs in a surface Σ with non-empty boundary, whose
boundary components are compact (hence circles). We have already
done most of the work, and only need to replace D2 with Σ in the
arguments.

We fix two points x0, x1 in ∂Σ, and a smoothly embedded arc γ0

in Σ between them. Let Emb[γ0]
∂ (I, Σ) denote the path-component of

Emb∂(I, Σ) containing γ0.

Lemma 10.2.1. If x0 and x1 do not lie in the same boundary component,
then Emb[γ0]

∂ (I, Σ) is weakly contractible.
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Proof. The proof in the first part of Theorem 10.1.3 works. One
defines Σ′ as the surface obtained by gluing a disk S to the boundary
component containing x1. Analogous to (10.1), we obtain a fiber
sequence

Emb∂,U(I, Σ)→ Emb∂,U(I ∪ S, Σ′)→ Emb(S, Σ′) (10.2)

where again Emb∂,U(I ∪ S, Σ′) is weakly contractible and now there
is a weak equivalence Emb(S, Σ′) ' FrO(TΣ′). The space FrO(TΣ′)
has vanishing πi for i > 1 using the long exact sequence of homotopy
groups associated to the fiber sequence

O(2)→ FrO(TΣ′)→ Σ′,

using that πi(Σ′) = 0 for i > 1 since Σ′ is a path-connected surface
with non-empty boundary. As before, the long exact sequence of
homotopy groups for (10.2) implies the lemma.

Lemma 10.2.2. If x0 and x1 lie in the same boundary then, Emb[γ0]
∂ (I, Σ) is

weakly contractible.

γ0

β0

S

Σ

Figure 10.3: The surface T, in the
case diffeomorphic to the boundary
connected sum of a genus 2 surface
Σ with boundary component, and an
annulus.

Proof. If ∂0Σ denote the path-component of ∂Σ containing x0, x1, and
glue a 1-handle [−1, 1] × I via {−1, 1} × I to both components of
∂0Σ \ {x0, x1} to obtain surface similar to T.

Let β0 denote the core {0} × I of this handle, then we have that
Emb[γ0]

∂ (I, Σ) ' Emb[γ0]
∂ (I, T \ β0). As before we claim that

ι : Emb[γ0]
∂ (I, T \ β0) ↪→ Emb[γ0]

∂ (I, T)

is injective on higher homotopy groups. Since in T, γ0 goes between
two different boundary components, Lemma 10.2.1 says that its higher
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homotopy groups vanish, and establishing the claim would imply the
lemma.

To do so, note that π1(T) ∼= π1(Σ) ∗Z and let T̃ denote the cover
corresponding to the summand π1(Σ). That is, π1(T̃) ∼= π1(Σ). This
is obtained by cutting T along β0 to get a surface U with two copies
β
(1)
0 and β

(2)
0 of β0 in its boundary, letting Ũ denote its universal

cover (which is contractible), and writing

T̃ := Ũ ∪U ∪ Ũ

where we identify β
(1)
0 with a lift of β

(2)
0 in the first copy of Ũ, and

β
(2)
0 with a lift of β(1)0 in the second copy of Ũ.

γ0β
(1)
0 β

(2)
0

U

Figure 10.4: The surface U.

After picking a lift γ̃0 of γ0, we may identify Emb[γ0]
∂ (I, T) with a

subspace of Emb[γ̃0]
∂ (I, T̃) and Emb[γ0]

∂ (I, T \ β0) with Emb[γ0]
∂ (I, U).

As before, we may give a retraction r : Emb[γ̃0]
∂ (I, T̃) → Emb[γ0]

∂ (I, U).
We conclude that there is a homotopy commutative diagram

Emb[γ0]
∂ (I, T \ β0) Emb[γ0]

∂ (I, T)

E

Emb[γ0]
∂ (I, T \ β0) Emb[γ̃0]

∂ (I, T̃),

ι

∼=

r

which establishes the claim.

10.3 Path-components of diffeomorphism groups of surfaces

We may use the previous results to prove a version of the Earle-Eels
theorem [EE67]. We are going to assume the classification of compact
oriented smooth surfaces.

Theorem 10.3.1. Let Σ be a compact path-connected oriented surface with
non-empty boundary. Then the path-components of Diff∂(Σ) are weakly
contractible.
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Proof. It suffices to prove that the path component of the identity
is weakly contractible. The proof is by induction over the genus g
and number n of boundary components, in lexicographic order. The
initial case (g, n) = (0, 1) is the disk, which we have proven already.
Let γ0 : I → Σ be a non-trivial arc (i.e. it does not isotopic to an arc in
the boundary). Then there is a fiber sequence

Diffid
∂,U(Σγ0)→ Diffid

∂,U(Σ)→ Emb[γ0]
∂ (I, Σ)

where Σγ0 is the surface Σ cut upon along γ0 (so that there are two
copies of γ0 in the boundary). This has lower genus g′ < g, or equal
genus g′ = g and lower number n′ < n of boundary components
(the latter happens when γ0 connects two different boundary com-
ponents, the former when it does not). Thus Diffid

∂,U(Σγ0) is weakly
contractible by the induction hypothesis. But we have also proven
that Emb[γ0]

∂ (I, Σ) is weakly contractible. The long exact sequence of
homotopy groups finishes the proof.

We can extend this to closed surfaces:
Remark 10.3.2. What about g = 0, 1?
We saw before that Diff(S2) has two
path-components, each of which
homotopy equivalent to SO(3). Since
T2 is itself a topological group, at least
T2 splits off Diff(T2). This is in fact
the homotopy type of the identity
component, and its path-components
are given by SL2(Z), see e.g. Chapter 2

of [FM12].

Theorem 10.3.3. Let Σ be a compact oriented surface of genus > 1. Then
the path-components of Diff(Σ) are weakly contractible.

Proof. It again suffices to prove that the path-component of the
identity is weakly contractible. We have a fiber sequence

Diff∂(Σ \ int(D2))→ Diff(Σ)→ Emb+(D2, Σ)

and we know that the fiber has weakly contractible components.
The base is weakly equivalent to FrSO(TΣ), and we saw before
that this implies its components only have non-vanishing π1 (this
only needs g > 0). Now an argument is needed that the map
π1(Emb+(D2, Σ)) → π0(Diff∂(Σ \ int(D2))) is injective (this needs
g > 1). This is a theorem of Birman, e.g. Theorem 4.6 of [FM12]. The
long exact sequence of homotopy groups finishes the proof.
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Hatcher’s proof of the Smale conjecture

Takeaways:
· Smale’s theorem together with

2-dimensional smooth Schoenflies
is equivalent to the statement that
Emb(D2, R2) → Emb(S1, R2) is a
weak equivalence.

· Hatcher’s proof uses Morse the-
ory to prove Emb(D3, R3) →
Emb(S2, R3) is a weak equivalence,
which implies Diff∂(D3) ' ∗.

· This may be used to prove 3-
dimensional versions of the con-
sequences of Smale’s theorem.

We gave two proofs that Diff∂(D2) is weakly contractible. After
reading a paper of Cerf, Smale conjectured that Diff∂(D3) is weakly
contractible as well. This was proven by Hatcher in [Hat83], after
Cerf computed π0(Diff∂(S3)) ∼= π0(O(4)) which amounts to comput-
ing π0(Diff∂(D3)) = 0 [Cer68]. We shall not be able to give Hatcher’s
proof, but shall attempt to describe the approach and state some con-
sequences. There is also an approach due to Eliashberg using contact
geometry, the π0-case of which is worked out in [GZ10].

11.1 A restatement of Smale’s theorem

Hatcher did not directly prove that Diff∂(D3) is contractible, like
Smale did. Instead, the proof is more along the lines of Gramain’s
theorem, which leveraged a proof that a certain space of embeddings
is contractible.

In this section we will use Smale’s theorem to prove in dimension
2 the statement that Hatcher proved in dimension 3:

Proposition 11.1.1. The restriction map Emb(D2, R2)→ Emb(S1, R2) is
a weak equivalence.

Proof. We shall let Diff(R2) act on the standard embedding of D2,
resp. S1, into R2. This gives a commutative diagram

Diff(R2) Diff(R2)

Emb(D2, R2) Emb(S1, R2),
(∗)

(11.1)

where both vertical maps are fibrations by parametrized isotopy
extension. They are also surjections on π0. For the left map this
follows from the results of Lecture 7, and for the right map this
follows from smooth 2-dimensional Schoenflies, proven below in
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Theorem 11.1.3. Thus it suffices to prove that the map on fibers over
the standard embeddings is a weak equivalence; this map is given by

id× {id} : Diff(R2 rel D2) ↪→ Diff(R2 rel D2)×Diff∂(D2)

which is a weak equivalence by Smale’s theorem.
Remark 11.1.2. In Theorem 9.1.1
we proved that the left vertical map
Diff(R2) → Emb(D2, R2) of (11.1)
is a weak equivalence, and hence
Diff(R2 rel D2) is weakly contractible.

For completeness and later comparison with the three-dimensional
case, let us prove the relative π0-case, i.e. that the map (∗) is sur-
jective on π0, which amounts to proving smooth Schoenflies in
dimension 2. We shall only be able to give a sketch, because the proof
uses codimension one Morse theory, which we have not discussed yet.
One may even take this as a motivation for the Morse theory that we
will discuss in the next couple of lectures.

Theorem 11.1.3 (Smooth Schoenflies in dimension 2). Every smooth
embedding ϕ : S1 ↪→ R2 extends to a smooth embedding D2 ↪→ R2.

We shall need the following basic consequences of Morse theory,
to be discussed in Chapter ??; any smooth function f : S1 → R admits
an arbitrarily small perturbation to a smooth function g with the
following properties:

(i) The set of p ∈ S1 such that Dpg = 0, called critical points, is finite.

(ii) The values g(p) for p a critical point, called critical values, are
distinct.

(iii) Near each critical point p there is a local coordinate x on S1 with p
corresponding to x = 0 such that g is given by g(x) = g(p) + αx2

with α ∈ R \ {0}.
Such a function is said to be generic Morse.

Sketch of proof. We shall ignore most issues involving corners and
parametrizations, as this is only a sketch. Using the previous facts,
we may take the height function

h : S1 ϕ
↪→ R2 → R

and perturb it to be generic Morse. Since the subspace of embeddings
in all smooth maps is open, if this perturbation is small enough, a
linear interpolation to it will stay in the subspace of embeddings. By
isotopy extension this interpolation is induced by an ambient isotopy.
Thus it suffices to prove that the perturbed ϕ smoothly bounds a disk
(since we may use the ambient isotopy to get a bounding disk for the
original ϕ from one for the perturbed ϕ).

Let us now temporarily forget about ϕ, and only remember its
image ϕ(S1). Then we can find a finite set {yi}k

i=1 of yi ∈ R which
are not critical values of h, and such that each subset f−1([yi, yi+1]) ⊂
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R2 contains at most one critical point. By linear interpolation, we can
arrange that near R× {yi} have the image of ϕ is vertical. The image
of the embedding now looks like Figure 11.1.

Figure 11.1: Intermediate result 1.

Next we shall simplify ϕ by a number of cuts along the lines
R× {yi}. We shall remember the order in which we do these cuts, and
the exact process we use, since we later want to reverse them.

To make the first cut, we note that there is always an even number
of points ϕ(S1) ∩ ({yi} ×R) and so we may pick an “innermost” pair,
i.e. so that interval connecting them in R× {yi} contains no other
points. Since the embedding is locally vertical, we can separate two
cuts by a small distances ε1 > 0 from R× {yi}. That is, we insert
parallel vertical translates of these interval connecting the innermost
pair, separated by distance 2ε1. The missing pieces left out separating
the cuts is bounded by a rectangle, which obviously bounds a square
in a standard manner.

Next we do the same for a next choice of points innermost after
removing the pair, now separating the parallel translates by distance
2ε2 with ε2 < ε1, etc. At the end of the process, the result might look
like Figure 11.2 (depending on the choice of innermost pairs).

Figure 11.2: Intermediate result 2. It has
5 pieces (not 4!).

Let us restrict our attention to each of the pieces. The crucial
observation that they contain at most one critical points, because
the yi’s separated all critical values and all critical values for all
critical points are distinct. Away from the critical points, each piece
is described by a smooth family of embeddings of a finite number of
points into R. We know how to manipulate these, so we can write
down an isotopy moving these pieces into the inverse image under
f of a small neighborhood of the critical values. This is chosen small
enough so that we can use the local coordinates near the critical
point and so that we can linearly interpolate the parallel families of
points to be straight. By isotopy extension this isotopy is induced by
a compactly-supported isotopy of R2.

(i) rectangle (ii) parabola
bounded above

(iii) parabola
bounded below

Figure 11.3: Standard models. Only
(i) and (ii) occur in Figure 11.2, but
if we had picked the innermost pairs
differently for the middle line, (iii)
would have occurred.

Now the situation has been isotoped to look like a disjoint union
of the five standard models given by Figure 11.3 or their vertical
reflections. Here it is very important that we do not mean just an
impressionistic shape: these are given by explicit formulas. This
means we can write down formulas for the half-disks or squares that
they bound, and running the ambient isotopy in reverse, the pieces in
Figure 11.2 bound a disk (or rather half-disk or rectangle).
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Now we reverse the cutting process. By construction, we obtain
Figure 11.1 by combining these pieces along some standard rectan-
gles. This combination process involves finitely many steps given
by either an addition or substraction of a disk. By Lemma 11.1.4 this
preserves the diffeomorphism type. Thus the image of ϕ bounds a
disk.

Now we remember ϕ again, instead of just its image. We realize
that we may have ended up with a bounding disk D2 for ϕ(S1)

whose boundary parametrization does not agree with that coming
from ϕ. However, since Diff(S1) has two path-components, we can
isotope and/or reflect the disk to make the parametrizations line
up.

Lemma 11.1.4. Given a smooth manifold M, smooth embeddings ϕ0 : Dm−1 ↪→
Dm and ϕ1 : Dm−1 ↪→ ∂M, we have that M and M ∪ Dm (obtained using
ϕ0 and ϕ1) are diffeomorphic modulo smoothing corners.

Proof. This follows from isotopy extension, as gluing along isotopic
embeddings gives a diffeomorphic manifold. On the one hand, we
observe that Emb(Dm−1, ∂Dm) has two path components, so up to
reflection, we may assume that ϕ0 is the standard inclusion Dm−1 ↪→
Dm. On the other hand, after picking a chart of Rm−1 × [0, ∞) ↪→ M
hitting the component of ∂M containing the image of ϕ1, we may
assume ϕ1 coincides up to reflection with the standard inclusion
Dm−1 × {0} ↪→ Rm−1 × [0, ∞). Then the observation is that

(Rm−1 × [0, ∞)) ∪ Dm

obtained from gluing along standard inclusions, is diffeomorphic to
Rm−1 × [0, ∞). This is proven by writing down an explicit diffeomor-
phism.

11.2 Hatcher’s proof and Alexander’s theorem

Hatcher’s approach is to prove the following analogue of Proposition
11.1.1, which is equivalent to the combination of smooth Schoenflies
in dimension 3 with Diff∂(D3) ' ∗.

Theorem 11.2.1 (Hatcher). The restriction map Emb(D3, R3) →
Emb(S2, R3) is a weak equivalence.

In words, any smooth family of embeddings S2 ↪→ R3 can be
extended to a smooth family of embeddings D3 ↪→ R3. This is equiv-
alent to the combination of Diff∂(D3) ' ∗ and the 3-dimensional
Schoenflies theorem, by the same argument as in the previous sec-
tion. To give an idea of why this is true, we shall sketch the proof
of Alexander’s theorem. This is equivalent to the relative π0-case of
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Theorem 11.2.1, saying that Emb(D3, R3)→ Emb(S2, R3) is surjective
on π0. More details are given in Theorem 1.1 of [Hat07].

Theorem 11.2.2 (Alexander). Every smooth embedding ϕ : S2 ↪→ R3

extends to a smooth embedding D3 ↪→ R3.

Sketch of proof. The argument is basically the same as for Theorem
11.1.3:

1. Make the height function generic Morse.

2. Pick non-critical values {zi} separating the critical points and
make the embedding vertical near the planes R2 × {zi}.

3. Cut along the R2 × {zi}, innermost1 circles first, separating the cuts 1 In fact, the situation is slightly nicer
now; where before there were some-
times non-equivalent choices which
pairs of points in ϕ(S1) ∩ (R× {yi}) to
consider innermost, e.g. in the middle
line of Figure 11.1, now there is no need
to make such a choice. This is essen-
tially because circles are path-connected,
but pair of points are not. Thus there
is now only a choice of order in which
circle to take innermost, which in the
2-dimensional case you take different
pairs. This is why in Figure 11.4 no
“cylinder with half-disk removed” anal-
ogous to the “parabola bounded below”
as in Figure 11.3 shows up among the
pieces.

by ε’s.

4. Isotopy the pieces to live near a critical level, so that the local
coordinates near the critical point apply.

5. Using your understanding of Emb(S1, R2) to maneuver the circles
so that we have a disjoint union of pieces described by one of
seven standard models as in Figure 11.4. These by construction
bound a disk.

6. Run the isotopy and cutting process in reverse, and put together
the pieces. By Lemma 11.1.4 the result is again a disk.

7. Adjust difference between parametrization of boundary coming
from embedding and the bounding disk using Smale’s theorem on
diffeomorphisms of S2.

Figure 11.4: Four of the standard mod-
els. The remaining three are obtained
by reflecting vertically. Note that in the
right one, the inner horizontal disk does
not reach all the way down (otherwise it
would bound a solid torus, not a disk).

Note that we used our understanding of path-components of
Emb(S1, R2), and proving the πi-versions will involve the entire
strength of Proposition 11.1.1.

Remark 11.2.3. Why does this strategy fail for dimension 4? It was
important that in both 2- and 3-dimensional case the intersections
with the hyperplanes of constant height were very simple: either
points in dimension 2, or circles in dimension 3. For dimension 4

we’d be dealing with surfaces in R3. We can still define a notion of
“innermost” for these and isotope the pieces to live near a critical
level. Thus steps (1)–(4) work. However, step (5) fails, as the pieces
may not bound a disk, being of the form ∂(Σ× I ∪ {1-handle}) and
hence a surface of possibly high genus.
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11.3 Consequences of Hatcher’s theorem

We give a few consequences of Hatcher’s theorem.

Diffeomorphisms of S3

Recall our proof that Diff(S2) ∼= O(3). Hatcher’s theorem implies a
similar result for Diff(S3).

Theorem 11.3.1. We have that Diff(S3) ' O(4).

Proof. There is a fiber sequence

Diff(S3 rel D3)→ Diff(S3)→ Emb(D3, S3),

with fiber homeomorphic to Diff∂(D3) ' ∗ and base weakly equiva-
lent to FrO(TS3) ∼= O(4).

Path-components of diffeomorphism groups

Recall we proved that for path-connected compact oriented surfaces
Σ with non-empty boundary, Diffid

∂ (Σ) is weakly contractible. One
way of rephrasing this, is saying that the map

Diffid
∂ (Σ)→ hautid

∂ (Σ)

is a weak equivalence. This follows since we claim that hautid
∂ (Σ) is

weakly contractible. To see this in the case that Σ has one boundary
component, note that hautid

∂ (Σ) ∼= Mapid
∗ (Σ̄, Σ̄), where Σ̄ is the

surface obtained by filling in the boundary component with a disk,
putting a base point in its center. For i ≥ 1, any map Si × Σ̄ → Σ̄
extends to Di+1; we need to extend from ∗ × Si to ∗ × Di+1 (which
we can do by a constant map), then for each of 2g arcs D1 from
D1 × Si ∪ ∂D1 × Di+1 to D1 × Di+1 (which we can do since this is
the same as extending a map from Si+1 into Σg to Di+2, and Σg has
to πi+1 for i ≥ 1), and then from D2 × Si ∪ ∂Di × Di+1 (for similar
reasons as before).

One generalization of this to 3-manifolds is the following [Hat76,
Iva76] (though the π0 and π1 case are due to Waldhausen and Lau-
denbach respectively). A Haken 3-manifold is by definition a compact
path-connected P2-irreducible sufficiently large 3-manifold, though
we have not defined the majority of these terms (see e.g. [Hem04],
[Wal68]).

Theorem 11.3.2 (Hatcher-Ivanov). For M a Haken 3-manifold, we have
that Diffid

∂ (M)→ hautid
∂ (M) is a weak equivalence.
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Spaces of long knots

Let Embc(R, R3) denote the space of embeddings R ↪→ R3 that
are standard outside of a compact set. These look like knots tied
in a straight line, called long knots. Of course there are many path-
components, but we can say something about that of the trivial long
knot. We start by noting that Embc(R, R3) ' Emb∂(D1, D3) and
prove some preliminary results.

Lemma 11.3.3. We have that Emb∂(D2, D3) is weakly contractible.

Proof. We reverse the proof of Gramain’s theorem to obtain a fiber
sequence

Diff∂(D3)2 → Diff∂(D3)→ Emb∂(D2, D3)

with fiber and total space weakly contractible. Use the 3-dimensional
smooth Schoenflies or Alexander’s theorem for path-connectedness.

Let D2
+ be the half-disk, and define the subset S1

+ := S1 ∩ D2
+ of

its boundary ∂D2
+. Then it is easy to prove that Emb(D2

+, D3 rel S1
+)

is weakly contractible, by precomposing with self-embeddings of D2
+

fixing S1
+ to move into the neighborhood of S1

+ where the embedding
is the identity. D1

S1
+

D2
+

D3

We may now also fix D1 := D2
+ ∩R× {0} (so that ∂D2

+ = S1
+ ∪ D1);

to be the standard embedding D1 ↪→ D3. We have that D3 and
D3 \ D2

− are isotopy equivalent, so that Emb(D2
+, D3 \ D2

− rel ∂D2
+)

is homotopy equivalent to Emb∂(D2, D3). Hatcher proved in [Hat76]
(see also [Hat]) that

Emb(D2
+, D3 \ D2

− rel ∂D2
+) ↪→ Emb(D2

+, D3 rel ∂D2
+)

is a weak equivalence. One should think of this as an analogue of the
argument we compare arcs in Σ and Σ ∪ strip in the previous lecture.

Proposition 11.3.4. We have that the path-component Emb0
c (R, R3)

of Embc(R, R3) containing the standard inclusion R ↪→ R3 is weakly
contractible.

Proof. Consider the fiber sequence

Emb0(D2
+, D3 \D2

− rel ∂D2
+)→ Emb0(D2

+, D3 rel ∂D2
+)→ Emb0

∂(D1, D3)

with fiber weakly contractible and left map a weak equivalence. The
long exact sequence of homotopy groups implies that Emb0

∂(D1, D3)

is weakly contractible.





Part III

The s-cobordism theorem





12
Transversality

Takeaways:
· Sard’s lemma says that regular

values are dense.
· This can be used to reprove the

Brouwer fixed point theorem, and
to improve the Whitney embedding
theorem.

· Using Sard’s lemma and a strongly
relative argument, we can prove
functions can be made transverse to
submanifolds of the target.

· A stronger version of transversality
is jet transversality.

Now that we have discussed dimension 2 in detail, and outlined
what happens in dimension 3, we shall start to move on to high
dimensions. Our next main goal is the s-cobordism theorem. This is
done using Morse theory, or equivalently handle theory. Today we
shall show that Morse function exists. References are Chapters 2 and
3 of [Mil97], Chapter 4 of [Wal16], and Chapter IV of [Kos93].

12.1 Sard’s lemma

Sard’s famous lemma is one of the basic foundational results of
smooth manifold theory, rivaled in importance only by the inverse
function theorem and existence and uniqueness for solutions of
ordinary differential equations. We start by recalling some definitions.
For the moment, all manifolds have empty boundary.

Definition 12.1.1. If f : M → N is a smooth map, then q ∈ M is
said to be a critical point if Dq f : Tq M → Tf (q)N is not surjective. A
point p ∈ N is said to be a critical value if it is the image under f of a
critical point.

Conversely, if Dq f : Tq M → Tf (q)N is surjective, we call q ∈ M a
regular point, and if p ∈ N is not a critical value, we call it a regular
value.

x

y

f

••

critical points

•

•

critical values

Figure 12.1: The graph of a smooth
function f : R→ R.

If p ∈ N is regular, then f−1(p) is a smooth submanifold of M by
the implicit function theorem and it has codimension n.

Example 12.1.2. The element 1 ∈ R is
a regular value of ∑ x2

i : Rm → R and
its inverse image is the (m− 1)-sphere
Sm−1. Its only critical value is 0.

Theorem 12.1.3 (Sard). Let U ⊂ Rm be open and f : U → Rn be a smooth
map. Then the set C ⊂ Rn of critical values has measure 0.

Here measure 0 makes sense without defining a Lebesgue mea-
sure; a set is measure 0 if in each chart it is contained in a union of
disks of total volume < ε for every ε > 0. A measure 0 set can not
contain an open subset, and thus we conclude that the regular values
are dense. Furthermore, the continuity of the derivative means that



98 alexander kupers

the regular values form an open subset. Thus another formulation of
Sard’s lemma is sometimes that the regular values are a dense open
subset of the target.

A proof of Sard’s lemma is given in Chapter 3 of [Mil97], and
Chapter 4.1 of [Wal16] gives a short proof in the case m < n. We start
with a mild generalization.

Proposition 12.1.4. The set of critical values of a smooth map f : M → N
has measure 0. As a consequence of the regular values are open and dense.

x

y

Figure 12.2: The critical values can have
a convergence point.

Proof. First assume that ∂M = ∂N = ∅. We first consider the case
M = U ⊂ Rm open. Cover N with a countable collection of charts of
the form ϕi : N ⊃ Vi → Rn. Then we have that

Crit( fi) =
⋃

i
ϕ−1

i (Crit(ϕi ◦ f | f−1(Vi)
)),

the union of the inverse images under ϕi of the critical values of the
maps ϕi ◦ f | f−1(Vi)

: Rm ⊃ f−1(Vi)→ Rn. Since smooth maps preserve
measure 0 sets, e.g. Lemma 4.1.1 of [Wal16], Crit( f ) is a countable
union of measure 0 sets and hence has measure 0.

By a similar argument, we reduce the general case to that of M
open in Rm. Cover M with a countable collection of charts ϕ′i : M ⊃
V′i → Rm. Then we have that

Crit( f ) =
⋃

i
Crit( f ◦ (ϕ′i)

−1),

the union of the sets of critical values of the maps f ◦ (ϕ′i)
−1 : ϕ′i(V

′
i )→

N. Again this is a countable union of measure 0 sets and hence mea-
sure 0.

Finally, if the boundaries are not empty, one adds an exterior collar
on N, and remarks that the critical values are the union of the critical
values of f |∂M and a Whitney extension of f after adding exterior
collar on M. Since a union of two measure 0 sets has measure 0, this
reduces it to the case of empty boundary.

Manifolds with boundary

If we are dealing with manifolds with boundary, for the defini-
tion of critical point we need to distinguish two cases. In the case
p ∈ int(M), the definition is as above. However, in the case p ∈ ∂M,
it is a critical point if it is a critical point of f or f |∂M (or both). We
may then also define critical value, regular points and regular val-
ues, and f−1(p) is a neat submanifold when p is a regular value
in the interior of N, by Lemma 2.4 of [Mil97]. It is also true that
∂( f−1(p)) = f−1(p) ∩ ∂M. Sard’s lemma and its consequences hold as
before.
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The role of neatness is sufficiently subtle that we give an explana-
tion; firstly, this is a local question and only subtle near the boundary
of M, in which case we are considering a map

f : Rm−1 × [0, ∞)→ Rn.

Either by definition or the Whitney extension theorem, we may
extend f to a smooth map f̃ : U → V, with U a neighborhood of
Rm−1 × [0, ∞) in Rm. Without loss of generality f̃ has no critical
points, so that f̃−1(p) is a submanifold of U. If πM : Rm → R de-
notes the projection onto the last coordinate, we claim that the map
πm : f̃−1(p)→ R has 0 as a regular value. This is because the tangent
space of f̃−1(p) at q is the kernel of Dq f and if ker(Dq f ) was con-
tained in ker(Dqπm) = Tq∂M, then f |∂M would not have had p as a
regular value. This guarantees f̃−1(p) is neat, and if we had dropped
the assumption that f |∂M was regular, then f−1(p) might not have
been neat.

A generalization of the Brouwer fixed point theorem

We can now give the first of two classical applications of Sard’s
lemma, which is a generalization of the Brouwer fixed point theorem.

Theorem 12.1.5 (Hirsch). If M is a compact manifold, there is no smooth
map f : M→ ∂M that is the identity on ∂M.

Proof. This is a proof by contradiction. Let q ∈ ∂M be a regular value,
which exists since they are dense by Lemma 12.1.4. Then f−1(q) is
a compact 1-dimensional neat submanifold of M whose boundary
lies in ∂M. By construction, f−1(q) ∩ ∂M = {q}. But all compact
1-dimensional manifolds are a finite disjoint union of circles and
intervals as in Figure 12.3, and hence have an even number of points
in their boundary.

f−1(p)

Figure 12.3: An f−1(p) as in the proof
of Theorem 12.1.5 when M = D2.

Applying this to M = Dn and using the smooth approximation
techniques of Chapter 6, we obtain:

Corollary 12.1.6. There is no continuous retraction Dn → ∂Dn.

From this the Brouwer fixed point theorem follows as usual, which
says that every continuous map f : Dn → Dn has a fixed point. From
an f : Dn → Dn without fixed points one constructs a a continuous
retraction g : Dn → ∂Dn by sending x to f (x)−x

|| f (x)−x|| .

An improved Whitney embedding theorem

The second is the first improvement on the result that a compact
smooth manifold M admits a smooth embedding into some Eu-
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clidean space; we shall show that if M has dimension m, it can be
smoothly embedded into R2m+1.

Proposition 12.1.7. Every compact smooth manifold M can be smoothly
embedded into R2m+1.

Proof. Starting with a smooth embedding ϕ : M ↪→ RN , then we shall
show that one can reduce N by 1 as long as N > 2m + 1.

The idea is to pick a unit vector v ∈ SN−1 and consider πv⊥ ◦
ϕ : M ↪→ RN−1 where πv⊥ : RN → RN−1 is projection onto the
hyperplane orthogonal to v. What can go wrong? Firstly, πv⊥ ◦ ϕ

may not be injective, or secondly, πv⊥ ◦ ϕ may be injective but its
derivative might have a kernel somewhere. The first happens if there
are x, y ∈ M distinct such that v = ϕ(x)−ϕ(y)

||ϕ(x)−ϕ(y)|| and the second
happens if there is a w ∈ TM such that Dϕ(w) = v.

So, we should pick an v in the complement of the union of the
images of the smooth maps 1 1 cho stands for “chord”, and tan for

“tangent line”. Alternatively one could
define a single map on the Fulton-
MacPherson compactification of the
configuration space C2(M).

cho : {(x, y) | x 6= y} ⊂ M2 → SN−1

(x, y) 7→ ϕ(x)− ϕ(y)
||ϕ(x)− ϕ(y)||

tan : {w | ||w|| = 1} ⊂ TM→ SN−1

(x, w) 7→ Dϕ(w)

||Dϕ(w)|| .

If 2m < N − 1, then v ∈ SN−1 is a regular value of cho if and
only if it is not in the image of cho, and similary for tan as long as
2m− 1 < N − 1. Thus if we assume that 2m < N − 1, it suffices to
show that im(cho) ∪ im(tan) 6= SN−1. But this follows from the fact
that both terms are sets of critical values and hence have measure 0.

Thus as long as N ≥ 2m + 2, we can find a unit vector v ∈ SN−1 to
project along and still have an embedding.2 2 The proof also makes clear that we

can go down to R2m if we only want to
avoids cusps. A variation of cho would
also allow us to guarantee that the
tangent plane at any intersection point
are distinct.

12.2 Transversality

The main consequences of Sard’s lemma are transversality results.
We shall prove the basic version.

Definition of transversality

Let us start with the definition of transversality. For the moment, all
manifolds have empty boundary.

Definition 12.2.1. Let f : M → N and g : M′ → N be smooth
maps. Then f and g are said to be transverse, denoted f t g, if for
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all p ∈ f (M) ∩ g(M′), q ∈ f−1(p) and q′ ∈ g−1(p), we have that
D fq(Tq(M)) + Dgq′(Tq′(M′)) = Tp(N).

Example 12.2.2. If dim M + dim M′ < dim N then f and g are
transverse if and only if f (M) and g(M′) are disjoint.

Let us discuss some special cases:
Remark 12.2.3. There are several other
useful notions of transversality of a
map with respect to a submanifold,
which generalize better to PL and
topological manifolds. These include
microbundle transversality, block
bundle transversality, and stable
transversality. The main issue is that PL
or topological submanifolds might not
have normal bundles [RS67].

Example 12.2.4. If g is the inclusion of a submanifold X, then the
definition simplifies upon identifying X with its image; f t X if for
all p ∈ f (M) ∩ X and q ∈ f−1(p) we have that D fq(Tq(M)) + Tp(X) =

Tp(N). An equivalent statement is that for all p ∈ f−1( f (M) ∩ X) the
map π ◦ Dp f : Tp M→ Tf (p)N → ν f (p)X, the latter being a fiber of the
normal bundle of X in N, is surjective.

The implicit function theorem says that if f is transverse to X then
f−1(X) ⊂ N is a smooth submanifold. It will be of codimension n− x,
hence of dimension m + x− n.

Example 12.2.5. If f is the inclusion of a submanifold, this definition
simplifies: two smooth submanifolds M and X are transverse if
Tp M + TpX = TpN for all p ∈ M ∩ X. The implicit function theorem
then says that we can find a chart U near x such that N ∩U and X ∩U
in this chart are given by two affine planes intersecting generically
(that is, in an (m + x− n)-dimensional affine plane).

•

Figure 12.4: A transverse intersection
of a 2-dimensional and a 1-dimensional
submanifold.

Let us explain the modification to manifolds with boundary only
in the case of f t X with ∂X = ∅. Then f t X if not only f is
transverse to X in the ordinary sense, but also f |∂M is transverse to X.
In this case f−1(X) ⊂ M is a neat submanifold with boundary (see
IV.1.4 of [Kos93]). Remark that X ⊂ N is neat if and only if X t ∂N.

Proof of transversality

We shall now give a proof that every smooth map can be approxi-
mated by smooth maps transverse to X. The case of transversality
with respect to a map g is done by considering graphs, see Chapter
IV of [Kos93]. We give this proof as an example how a strongly rela-
tive statement allows one to do an induction over charts and reduce to
the local case. This is a very common technique.

Theorem 12.2.6. Every smooth map f : M → N can be approximated by a
smooth map transverse to X.

Proof. To do induction over charts in Step 3, we actually need
to prove a strongly relative version. That is, we assume we are
given a closed subsets Cdone, Dtodo ⊂ M and open neighborhoods
Udone, Vtodo ⊂ M of Cdone, Dtodo respectively, such that f is already
transverse to X on Udone (note that Cdone ∩ Dtodo could be non-empty).
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See Figure 12.5. It will be helpful to let r := n− x denote the codimen-
sion of X.

X

NM

Cdone

Udone

Dtodo

Vtodo

f

Figure 12.5: The input for the strongly
relative version of transversality in
Theorem 12.2.6. We are then asked to
fix f near Dtodo with support in Vtodo,
by moving the graph for example a bit
upward or downwards.

Then we want to make f transverse on a neighborhood of Cdone ∪
Dtodo without changing it on a neighborhood of Cdone ∪ (M \ Vtodo).
We also fix a continuous ε : M → (0, ∞) and a metric on N, and
demand that f (m) is not moved more than ε(m).3 3 In fact, we could have ignored the

smallness of the approximation, be-
cause it turns out that strongly relative
results always imply approximations,
see Appendix I.C of [KS77].

Step 1: M open in Rm, X = {0}, N = Rr, Dtodo is compact We first
prove that the subset of C∞(M, Rr) which consists of smooth
functions M→ Rr that are transverse to {0} is open and dense.

Note that f is transverse to 0 near Dtodo if and only if 0 is regular.
Openness follows from the fact that being transverse to 0 near a
compact subset K is an open condition. For density, we use Sard’s
lemma, which says that the regular values are dense in Rr. Thus
for every f ∈ C∞(M, Rn) there is a sequence of xk ∈ Rr of regular
values of f : M→ Rr converging to 0. Then

fk := f − xk

is a sequence of functions transverse to {0} converging to f .

This is not a strongly relative version yet. Fix a compactly-supported
smooth function η : M → [0, 1] such that η is 0 near Cdone ∪ (M \
Vtodo) and 1 on a neighborhood of Dtodo \Udone (compactness of
Dtodo means we can take the support of η to be compact). Then
consider the smooth functions

f̃k := η fk + (1− η) f .

For k sufficiently large, this is transverse to {0} on a neighborhood
of Cdone ∪ Dtodo, by openness of the condition of being transverse to
{0} near a fixed compact subset (here the support of η). Taking k
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even larger, we can also arrange that d( f̃k(m), f (m)) < ε(m) for all
m.

Step 2: M open in Rm, N = Rr × X, Dtodo compact Then f : M → N =

Rr × X is transverse to X if and only if f̄ := π1 ◦ f : M→ Rr × X →
Rr is transverse to {0}. So this reduces it to step (1).

Step 3: M open in Rm, νX trivializable, Dtodo compact Since νX is trivial-
izable, we may take a trivialized tubular neighborhood Rr × X in N,
and substitute

· M′ = f−1(Rr × X) and N′ = Rr × X,

· f ′ = f |M′ .
· C′done = Cdone ∩ f−1(Rr × X),

· U′done = Udone ∩ f−1(Rr × X),

· D′todo = Dtodo ∩ f−1(Dr × X) (which is fine since if f (x) /∈
Dr × X then you are transverse to X anyway),

· V′todo = Vtodo ∩ f−1(int(2Dr)× X) (which serves to control the
support so that we can extend by f outside M′ ⊂ M),

· ε′ = ε′|M′ , d′ = d|N′ .

This reduces it to step 3.

Step 4: General case This will be an induction over charts. Take a
locally finite covering Uα of X so that each νX |Uα is trivializable.
We can then find a locally finite collection of charts ϕi : M ⊃
Vi → Wi ⊂ Rm covering M, such that (i) 2Dm ⊂ Wi, (ii) Dtodo ⊂⋃

i ϕ−1
i (Dm) and (iii) for all i there exists an α with f (Vi) ⊂ Uα.

Let’s order the i, and write them as i ∈ N from now on. By
induction one then constructs a deformation to fi transverse on
some open neighborhood Ui of Ci := Cdone ∪

⋃
j≤i ϕ−1

j (Dm). For the
induction step from i− 1 to i, use step (3) with the substitution

· M′ = Wi+1 and N′ = N,

· f ′ = fi ◦ ϕ−1
i+1,

· C′done = ϕi+1(Ci ∩Vi),

· U′done = ϕi+1(Ui ∩Vi),

· D′todo = Dm ∩ ϕi(Dtodo ∩Vi) (note this is compact),

· V′todo = int(2Dm) ∩ ϕi(Vtodo ∩Vi),

· ε′ is smaller than ε and sufficiently small such that we do not to
disturb property (iii) and d′ = d.

Since the cover is locally finite, f is modified near each p ∈ M only
finitely many times. Thus limi→∞ fi is a well-defined smooth map
that is transverse to X near

⋃
Ci ⊃ Cdone ∪ Dtodo.
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We may apply this to the case that f is the inclusion of a submani-
fold.

Corollary 12.2.7. If M and X are smoothly embedded compact submanifolds
of N, then there is an arbitrarily small ambient isotopy φt of N such that
φ1(M) t X. In particular, if m + x < n we can make M and X disjoint.

Proof. Pick a Riemannian metric g on N. The embeddings are open
in all smooth maps, so if we pick a perturbation f̃ of the inclusion
f : M ↪→ N transverse to X small enough, then it is an embedding
and furthermore has the property that for all q ∈ M there is a unique
geodesic in N connecting f̃ (q) and f (q) in N. This gives a family of
embeddings ft such that f0 = f and f1 = f̃ . By isotopy extension ft is
induced by an ambient isotopy.

12.3 Jet transversality

A Morse function will be a particularly nice type of function, and we
shall show that such functions exist using a transversality theorem
that applies to the jet spaces we used to define the Whitney topology.
To explain this, let us revisit transversality.

One can rephrase transversality in terms of the first jet space.
Recall that Jr(M, N) was given by the space of pairs of a point in m
and an r-jet of a map f : M → N near m. This r-jet contains the data
of the rth Taylor approximation of f at m, i.e. for r = 1 its value and
first derivative. It is a locally trivial bundle over M × N with fiber
given by n-tuples of polynomial of degree ≤ r in m variables taking
the value 0 at the origin. As the transition maps between these local
trivializations are induced by diffeomorphisms and hence smooth,
we see that Jr(M, N) is in fact a smooth manifold, of dimension
m + n(1 + m + (m+1

2 ) + . . . + (m+r−1
r )).

Example 12.3.1. If r = 0, Jr(M, N) is
just the product M × N and (m + n)-
dimensional. If r = 1, there is the
additional data of the n-dimensional
directional derivative in each of the
m directions, so it is (m + n + nm)-
dimensional.

There is a r-jet map

jr : C∞(M, N)→ Γ(M, Jr(M, N))

recording the r-jets of a smooth map f at all points in m. Considered
as a map M→ Jr(M, N) this is smooth.

For any r ≥ 1, we can describe the condition f is transverse to X
in terms of jr( f ). For concreteness, let us take r = 1, then there is a
subspace X of J1(M, N) consisting of those 1-jets with image in X
(and arbitrary first derivatives). We then have f t X if and only if
j1( f ) t X . Note that X has dimension m + x + nm, i.e. codimension
m− x, as locally we are imposing (m− x) equations to get the values
to lie X.

R2

•

Figure 12.6: A 1-dimensional stratified
subset of R2.

We can arrange j1( f ) t X using jet transversality, a transversality
result with respect to any closed stratified subset of the jet bundle.
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A stratified subset here is in the sense of Whitney; it is a subset Y ⊂
Jr(M, N) that is a union of finitely many i-dimensional submanifolds
Yi so that cl(Yi) =

⋃
j≤i Yj. A proof may be found in Section 4.5 of

[Wal16].

Theorem 12.3.2. Let D be a closed stratified subset of Jr(M, N). Every
smooth map f : M → N can be approximated by a smooth map whose r-jet
is transverse to D, i.e. transverse to each stratum. There is also a strongly
relative version.

Generic maps

The classical application is the studying of generic maps M → N
when m ≥ n, the starting point of singularity theory [AGZV12].
To do so, one definition a stratification of J1(M, N) in terms of the
dimension of the cokernel of the derivative. That is, it is the union of
strata S i given by the subspace of J1(M, N) where the derivative has
i-dimensional kernel.

Lemma 12.3.3. The Σi form a stratification of J1(M, N), and Σi has
codimension (m− n + i)i.

Example 12.3.4. If n = m, then
(m− n + i)i = i2. For example, a map
S2 → R2 will generically only have
regular points and circles of folds.

Then the jet transversality theorem implies that any smooth map
f : M → N can be arbitrarily approximated by a map f̃ such that
j1( f̃ ) t Σi. In particular, the subset Σi( f̃ ) where the rank of the
derivative drops by i, is a submanifold of codimension i(m− n + i)
and its closure in M is

⋃
j≥i Σj( f̃ ).





13
Morse functions

Takeaways:
· Morse functions are smooth func-

tions M → R with non-degenerate
critical points. One proves that these
exist by rephrasing the condition in
terms of jet transversality.

· The Morse lemma says that non-
degenerate critical points locally
look like −∑λ

i=1 x2
i + ∑m

i=λ+1 x2
i .

We shall define Morse functions, prove that they exist, and explain
that near a critical point a Morse function admits a nice form in
well-chosen coordinates. References are Chapters 2 and 3 of [Mil97],
Chapter 2 of [Mil63], and Chapter 4 of [Wal16].

13.1 Morse functions

Morse functions are particularly nice functions from manifolds to R;
they are the functions where the critical points are as non-degenerate
as possible.

Definition of Morse functions

To make this precise, we define the Hessian Hessp( f ) of a smooth
map f : M → R at a critical point p ∈ M. Before giving a coordinate-
independent definition, we discuss its construction on Rm. The
Hessian of f at 0 ∈ Rm is defined in terms of Taylor approximation
around 0 as

f (x) = f (0) + 〈∇0 f , x〉+ 1
2
〈H0( f )x, x〉+ remainder, (13.1)

with 〈−,−〉 denoting the standard standard Euclidean inner product,
and the remainder vanishes up to second order at 0. To make this
equation hold, the symmetric matrix H0( f ) must be given by1 1 So if m = 1, H0( f ) is just the second

derivative d2 f
dx2 (0).

(H0( f ))ij :=
∂2 f

∂xi∂xj
(0).

The matrix H0( f ) at 0 is not invariant under coordinate changes, as it
is non-zero is not invariant under coordinate changes unless 0 was a
critical point.

However, if 0 was a critical point, the following appropriate ver-
sion of H0( f ) is invariant under coordinate changes. Any two tangent
vectors v, w ∈ Tp M may be extended to smooth vector fields ṽ and
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w̃.2 Let ṽ[ f ] : M → R denote the directional derivative of f in the 2 Clearly this is possible in a chart and
we may use a bump function to extend
to M.

ṽ-direction, and ṽ[ f ](p) its value at p. This is independent of the
choice of ṽ extending v and linear in v. If p is a critical point, then
ṽ[ f ] vanishes at p for any v.

Let us now consider the expression w̃[ṽ[ f ]](p) ∈ R, which satisfies

ṽ[w̃[ f ]](p)− w̃[ṽ[ f ]](p) = [ṽ, w̃][ f ](p) = 0, (13.2)

with [ṽ, w̃] the vector field obtained by taking the Lie bracket. Since
ṽ[g](p) is independent of the choice of extension ṽ for any g : M→ R,
(13.2) implies w̃[ṽ[ f ]](p) is independent of the choices of extensions ṽ
and w̃ of v and w to vector fields.

Let us denote the real number w̃[ṽ[ f ]](p) by Hessp( f )(v, w).
The function Hessp( f ) : Tp(M) × Tp(M) → R given by (v, w) 7→
Hessp( f )(v, w), is bilinear by construction, and symmetric by (13.2).
This is the right definition of the Hessian.

Definition 13.1.1. A critical point p ∈ M is said to be a non-degenerate
if the Hessian Hessp( f ) : Tp(M) ⊗ Tp(M) → R of f at p is a non-
degenerate bilinear form.

The classification of non-degenerate bilinear forms is easy; by
Gram-Schmidt up to GLm(R) they are equivalent to a unique bilinear
form of the form −∑λ

i=1 x2
i + ∑m

i=λ+1 x2
i . The integer λ ∈ {0, . . . , m}

is called the index, and thus we can associate to each non-degenerate
critical point a well-defined index.

Definition 13.1.2. A smooth function f : M→ R is Morse if it is regu-
lar near ∂M, i.e. there is an open neighborhood of ∂M that contains
no critical points, and all critical points of f are non-degenerate.

Existence of Morse functions

We may describe this in terms of the second jet space J2(M, R). This
contains a subspace D of 2-jets with arbitrary value, vanishing first
derivatives and degenerate second derivatives. This is a stratified
subset, with stratification by the dimension of the kernel of the
Hessian. We have chosen D so that j2( f )(m) /∈ D is equivalent to f
either being regular at m or having a non-degenerate critical point.
That is, for f that are regular near the boundary. j2( f ) ∩D = ∅ if and
only if f is Morse.

Note D has codimension m + 1, because all first derivatives have
to vanish, as does the determinant of the Hessian. We conclude that
j2( f ) is disjoint from D if and only if it is transverse to D. Using the
relative version of the jet transversality theorem of Theorem 12.3.2,
we conclude that Morse functions exist:
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Theorem 13.1.3. Every smooth function f : M → R which is regular near
∂M may be approximated by a Morse function without modifying it near
∂M.

Remark 13.1.4. Note that the codimen-
sion of D is barely enough for Theorem
13.1.3. In particular, one can not use
the same argument to show that a
1-parameter family of smooth functions
M → R can be approximated by a
family of Morse functions. This is in
fact impossible, and one needs to allow
additional singularities. These are the
so-called birth-death singularities, which
locally look like

x3
1 −

λ

∑
i=2

x2
i +

m

∑
i=λ+1

x2
i .

Generic Morse functions

In Chapter 11 we used the notion of a generic Morse function, i.e. a
Morse function all of whose critical values are distinct. We could
have proven this by a stronger version of jet transversality called
multi-jet transversality. However, it is easy to prove their existence by
hand. We start with the following remark:

Lemma 13.1.5. The Morse functions are open in C∞(M, R).

Proof. It suffices to prove that D ⊂ J2(M, R) is closed.

Corollary 13.1.6. Every smooth function f : M→ R which is regular near
∂M may be approximated by a generic Morse function without modifying it
near ∂M.

Proof. Without loss of generality f is Morse already. Then for critical
point p ∈ M pick a smooth function ηp : M → R that is 1 at p
and with support away from the other critical points and an open
neighborhood of ∂M. Then consider for εi ∈ R consider

f + ∑
i

εiηi,

which is Morse with the same critical points if all εi are small enough.
Now just pick the εi such that the critical values f (pi) + εi are distinct.

13.2 The Morse lemma

Now that we have defined Morse functions and have shown they
exist, we shall study them in more detail. In particular, we shall see
that there exist coordinate near a non-degenerate critical point in
which the function takes a standard form.

Morse singularities

We shall describe a particular situation in which a critical point is
non-degenerate.

Definition 13.2.1. A critical point p ∈ M of f : M → R is said to be a
Morse singularity if there exists a chart with coordinates (x1, . . . , xm)

around p (that is, p corresponds to 0) so that f near p is given by

(x1, . . . , xm) 7→ f (p)−
λ

∑
i=1

x2
i +

m

∑
i=λ+1

x2
i .
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Lemma 13.2.2. Every Morse singularity is a non-degenerate critical point.

The Morse lemma

The Morse lemma is the converse to Lemma 13.2.2, and is proven
in Chapter 2 of [Mil63]. We shall follow the proof in Section 4.8 of
[DK04] instead.

Theorem 13.2.3 (Morse lemma). Every non-degenerate critical point is a
Morse singularity.

Proof. Without loss of generality we may assume that f (p) = 0,
and fix a chart ϕ : M ⊃ V → W ⊂ Rm so that ϕ(p) = 0. Let
x = (x1, . . . , xm) denote the coordinates near p coming from this
chart, defined on W ⊂ Rm.

Let Sym(Rm) denote the space of symmetric (m × m)-matrices
over R. The multi-variable version of Taylor approximation says
that there is a smooth map Q : W → Sym(Rm) such that f (x) =

〈Q(x)x, x〉, which satisfies Q(0) = H0( f ) (e.g. obtained from (13.1)
by absorbing the remainder into the Hessian term). We first want
to change coordinates from x to y so that Q is independent of y. To
do this, make the ansatz that y = A(x)x for a smooth map A : W →
GLn(R). In that case we need to solve the equation

〈Q(0)A(x)x, A(x)x〉 = 〈Q(x)x, x〉,

or equivalently At(x)Q(0)A(x) = Q(x). The insight of Duistermaat-
Kolk’s proof is to consider the smooth map G : Sym(Rm) ×W →
Sym(Rm) given by

(B, x) 7→
(

id +
1
2

Q(0)−1B
)t

Q(0)
(

id +
1
2

Q(0)−1B
)
−Q(x).

This is equal to 0 at (B, x) = (0, 0) and its derivative with respect
to B at B = 0 is the identity

∂

∂B
G(B, 0) =

(
1
2

Q(0)−1
)t

Q(0) + Q(0)
(

1
2

Q(0)−1
)

=
1
2

id +
1
2

id = id.

By the implicit function theorem, there exists a neighborhood U of
0 in W and a smooth map β : U → Sym(Rm) such that G(β(x), x) = 0.
Taking

A(x) := id +
1
2

Q(0)−1β(x)

we obtain that 〈Q(0)A(x)x, A(x)x〉 = 〈Q(x)x, x〉. So we shall use
coordinates y = A(x)x. Since x 7→ A(x)x has derivative id at 0, by the
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inverse function theorem there exists some smaller neighborhood U′

on which this map is a diffeomorphism.
Now that in y-coordinates we have that f (y) = 〈Q(0)y, y〉, it is a

matter finding a matrix A such that AtQ(0)A diagonal with entries
±1 and using the coordinates z = Ay instead. This is possible as a
consequence of Gram-Schmidt.

A useful observation following from the Morse lemma is that
non-degenerate critical points are isolated. In particular, a compact
manifold can only contain a finite number of them.





14
Handles

Takeaways:
· If f : M → R is a Morse function,

every critical point corresponds to
a handle in a handle decomposition
of M, i.e. we write M as being build
by attaching copies of Dλ × Dm−λ

along ∂Dλ × Dm−λ corresponding to
critical points.

· This implies copmcat smooth
manifolds have the homotopy type
of finite CW complexes.

Now that we have defined Morse functions and have shown that
there exist coordinates near a non-degenerate critical point in which
the function takes a standard form, we use this to relate Morse
functions to handle decompositions. References are Chapters 2 and 3

of [Mil97], Chapter 2 of [Mil63], and Chapter 4 of [Wal16].

14.1 The difference between level sets

A generic Morse function f : M → R will provide us an understand-
ing of M by studying the inverse images of points of intervals in R.
A level set of f is a subset of M of the form f−1(a), which is a sub-
manifold of codimension 1 if a is a regular value. A sub-level set of f
is a subset of M of the form f−1((−∞, a]), which is a manifold with
boundary if a is a regular value.

The difference between two sub-level sets involves f−1([a, b]). If a
and b are regular values of f , then f−1([a, b]) is a smooth manifold
with boundary. We shall start by explaining how its diffeomorphism
type depends on a and b.

No critical values in [a, b]

The first case is when [a, b] contains no critical values, i.e. f−1([a, b])
contains no critical points. Recall that a continuous function is said to
be proper if the inverse image of a compact subset is compact.

Proposition 14.1.1. If f : M → R is proper and f−1([a, b]) contains no
critical points, then f−1([a, b]) is diffeomorphic to f−1(a)× [a, b].

Proof. To prove this, we use the notion of a strict gradient-like vector
field. This is a smooth vector field X on f−1([a, b]) such that d f (X ) =

1. One way to construct these is by picking a Riemannian metric g
on f−1([a, b]) and taking the gradient ∇ f , the dual of the 1-form d f .
Since the condition on a strict gradient-like vector field is convex, we
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can also patch them together from local constructions using smooth
bump functions.

So let X be a strict gradient-like vector field. Since f−1([a, b]) is
compact and d f (X ) = 1, its forwards-time flow ΦX exists until the
flow-line hits f−1(b) at time (b− a) (as f increases linearly along the
flow-line). Consider the smooth map given by

ϕ : f−1(a)× [a, b]→ f−1([a, b])

(p, t) 7→ ΦX (p, t) .

It has bijective differential, and hence is a local diffeomorphism
using the inverse function theorem. It is injective by uniqueness of
solutions to ordinary differential equations and surjective because
every point p ∈ f−1([a, b]) lies on a flow-line from f−1(a) to f−1(b).
Hence it is a diffeomorphism.

For a ≤ b, the sub-level set f−1((−∞, b]) is obtained by glueing
f−1([a, b]) to the sub-level set f−1((−∞, a]) along f−1(a). Proposition
14.1.1 then implies:

Corollary 14.1.2. If M is compact and f−1([a, b]) contains no critical
points, then the sub-level sets f−1((−∞, a]) and f−1((−∞, b]) are diffeo-
morphic manifolds with boundary.

f−1(a) f−1(b)

M

f

R •a •
b

f−1([a, b])

Figure 14.1: An example of a proper
map f : M → R such that f−1([a, b])
contains no critical point. note that
f−1((−∞, a]) contains 7 critical points.

A single critical value in [a, b]

What happens when there is a unique non-degenerate critical point
p in f−1([a, b])? Pick a coordinate chart ϕ : M ⊃ V → W ⊂ Rm such
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that ϕ(p) = 0, and in terms of coordinates (x1, . . . , xn) ∈ W, f is
given by

f (x1, . . . , xn) = c−
λ

∑
i=1

x2
i +

m

∑
i=λ+1

x2
i .

This is possible by Theorem 13.2.3.
Let ε > 0 be small enough such that W contains the ball B√2εs(0)

and a < c− 2ε < c + 2ε < b. Then we shall describe the difference be-
tween f−1([a, c− ε]) and f−1([a, c + ε]), at first homotopy-theoretically
and then as a manifold. To do so, define the subset C ⊂ B√2ε(0) by
{(x1, . . . , xλ, 0, . . . , 0) | ∑λ

i=1 x2
i ≤ ε}, where C stands for core. This is

of course a λ-dimensional disk, whose boundary (λ− 1)-sphere lies in
f−1(c− ε).

The description of f−1([a, c + ε]) up to homotopy is as follows, and
along the way we will in fact obtain a description up to diffeomor-
phism.

Proposition 14.1.3. The union f−1([a, c− ε]) ∪ C is a deformation retract
of f−1([a, c + ε]).

To prove this, we follow Milnor and shall find a neighborhood U
of f−1([a, c− ε]) ∪ C that is a deformation retract of f−1([a, c + ε]) and
itself deformation retracts onto f−1([a, c− ε]) ∪ C:

f−1([a, c− ε]) ∪ C
'
↪→ U

'
↪→ f−1([a, c + ε]).

The construction uses a modification F of f . This modification is
obtained by chaning f only on the subset f−1([c − ε, c + ε]), using
a smooth function φ : [0, ∞) → [0, ∞) satisfying (i) φ(0) ∈ (ε, 2ε),
(ii) φ(t) = φ(0) for t near 0, (iii) φ(t) = 0 for t ∈ [2ε, ∞), and (iv)
φ′(t) ∈ (−1, 0] for all t ∈ [0, ∞).

x

y

2ε

ε

2ε

Figure 14.2: The function φ.

Then F is given by

F : M→ R

x 7→

 f (x)− φ
(

∑λ
i=1 x2

i + 2 ∑m
i=λ+1 x2

i

)
if x ∈ V

f (x) otherwise.

This is a smooth function because φ
(

∑λ
i=1 x2

i + 2 ∑m
i=λ+1 x2

i

)
has

compact support in V.

Lemma 14.1.4. F has the following properties:

(i) f−1([a, c + ε]) = F−1([a, c + ε]).

(ii) F has the same critical points as f .

(iii) In B√2ε(0) ⊂ W, F−1([a, c− ε]) is described by Figure 14.3. More
precisely, U is diffeomorphic to f−1([a, c − ε]) ∪ (Dλ × Dm−λ)

attached along an embedding ∂Dλ × Dm−λ (up to smoothing
corners), with C corresponding to Dλ × {0}.
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U

f−1([a, c + ε])

f−1([a, c− ε])

C Rλ

Rm−λ Figure 14.3: The set U is the union of
the red and purple parts. The set is
f−1([a, c + ε]) is the union of the red,
purple and dashed parts.

Proof. Let us write x = (y, z) when x ∈ V, with y = (y1, . . . , yλ)

denoting the first λ coordinates and z = (z1, . . . , zm−λ) denoting the
remaining m− λ.

Part (i) follows by noting that since F ≤ f (since φ is non-negative),
we have that f−1([a, c + ε]) ⊂ F−1([a, c + ε]). For the converse, if
x ∈ F−1([a, c + ε]) and φ(||y||2 + 2||z||2) > 0, then ||y||2 + 2||z||2 < 2ε

(since φ(t) = 0 when t ≥ 2ε), so that

f (x)− f (c) = −||y||2 + ||z||2 ≤ 1
2
||y||2 + ||z||2 < ε

and thus x ∈ f−1([a, c + ε]) as well.

For part (ii) there is only something to check when p ∈ V. Work-
ing in local coordinates, we have that 1

2∇F(x) = (−y− φ′(x)y, z−
φ′(x)2z). This certainly vanishes at 0, so p is a critical point. To see
this is the only critical point, note that since φ′(x) > −1, we must
have y = 0 and since φ′(x) ≤ 0, we must have z = 0.

The precise proof of part (iii) is a rather long computation, as
we need to produce an explicit diffeomorphism. For details the
reader may look at Chapter 3 of [Mil63] or Section VII.2.2 of [Kos93].
The main observation is that upon fixing the first λ-coordinates
to be equal to y = (y1, . . . , yλ) with ||y||2 ≤ ε, the intersection of
F−1([a, c − ε]) with the (m − λ)-dimensional plane {y} ×Rm−λ is
given by a disk whose radius depends smoothly on y. Of course, as
soon as ||y||2 + 2||z||2 reaches T0 := inf{t | φ(t) = 0}, then this disk
coincides with the intersection of the original set f−1([a, c− ε]) with
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f−1([a, c + ε])

f−1([a, c− ε])

√
T0y•

Dy Rλ

Rm−λ Figure 14.4: The gray part consists of
those disks Dy in the proof of Lemma
14.1.4 that do not coincide with those
for the original function f .

the (m− λ)-dimensional plane {y} ×Rm−λ.
To check this, note that this intersection is given by the set (y, z) ∈

Rλ ×Rm−λ with z satisfying

c− ||y||2 + ||z||2 − φ(||y||2 + 2||z||2) ≤ c− ε.

The condition may be rewritten in terms of α(y, z) := ||y||2 + 2||z||2 as

φ(α(y, z))− α(y, z)/2 ≥ ε− 3
2
||y||2. (14.1)

Since φ(t)− t/2 is decreasing on the interval [0, 2ε] from φ(0) > ε to
−ε, there is a unique t0 > 0 such that φ(t0)− t0/2 = ε− 3

2 ||y||2. In
terms of t0, the inequality (14.1) is equivalent to

||z||2 ≤ 1
2
(t0 − ||y||2). (14.2)

Since φ(0) > ε and φ′(t) > −1, we have that φ(t0) > ε− t0, so that
we have φ(t0)− t0/2 > ε− 3

2 t0 and thus that t0 > ||y||2, so the right
hand side of (14.2) is strictly positive. The set Dy := {(y, z) | ||z||2 ≤
1
2 (t0 − ||y||2)} is the desired disk.

We shall then define U = F−1([a, c− ε]), which is diffeomorphic
to f−1([a, c + ε]). To see this, apply Proposition 14.1.1 using the
observation that there is no critical point in f−1([a, c + ε]) \U. From
this observation and part (iii) of the Lemma, we not only obtain
the homotopy-theoretic description also the stronger statement that
f−1([a, c + ε]) is diffeomorphic to ( f−1({a}) × [a, c − ε]) ∪ (Dλ ×
Dm−λ).
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Corollary 14.1.5. If f is proper and f−1([a, b]) contains a unique non-
degenerate in its interior, then the sub-level set f−1((−∞, b]) is given by
f−1((−∞, b]) ∪∂Dλ×Dm−λ (Dλ × Dm−λ) up to diffeomorphism.

14.2 Handles

Handle decompositions

We say that the manifold with boundary f−1((−∞, b]) is obtained
from f−1((−∞, a]) by attaching a handle (and implicitly smoothing
corners, see Chapter 2.6 of [Wal16]):

Definition 14.2.1. Let M be a smooth manifold with boundary ∂M,
and let ϕ : ∂Di × Dm−i ↪→ ∂M be a smooth embedding. Then the
manifold

M ∪ϕ (Di × Dm−i)

is a smooth manifold with boundary (after smoothing corners) and is
said to be the result of attaching a handle to M.

We shall also introduce some terminology for handles (see Figure
14.5).

Definition 14.2.2. Suppose we are given a handle attachment M ∪ϕ

(Di × Dm−i).

· the subset Di × Dm−i is called the handle, and is said to have index i,
so is also called an i-handle,

· the subset Di × {0} is called the core and its boundary ∂Di × {0}
the attaching sphere,

· the subset {0} × Dm−i is called the cocore and its boundary {0} ×
∂Dm−i the transverse sphere.

A handle decomposition of M is a way of writing M as obtained by
iterated handle attachments from ∅. If we use that generic proper
Morse functions exist and that each critical point gives rise to a
handle attachment, we conclude that:

Corollary 14.2.3. Every closed smooth manifold admits a handle decomposi-
tion.

This is a necessarily finite handle decomposition, since we re-
marked before that there can only be finitely many non-degenerate
critical points.

Example 14.2.4. For example, Sn has a handle decomposition with a
single 0-handle and a single n-handle. The n-handle is attached along
the identity map ∂Dn × D0 ∼= Sn−1 → Sn−1 ∼= ∂(D0 × Dn).
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Figure 14.5: A 3-dimensional 1-handle
attached to R2 = ∂(R2 × (−∞, 0]).
The colored 2-disk is the cocore (its
boundary the transverse sphere), the
thick line (i.e. 1-disk) the core (its
boundary the attaching sphere).

An application

We shall deduce a corollary about the topology of manifolds from
this:

Remark 14.2.5. In fact, even compact
topological manifolds have the ho-
motopy type of a finite CW-complex
[Mil59], though they need not admit
handle decompositions [FQ90].

Corollary 14.2.6. Every compact smooth manifold has the homotopy type of
a finite CW-complex.

Proof. The proof is by induction over the number of handles, the case
of no handles being trivial. If M is a CW-complex, then M ∪ϕ (Di ×
Dm−i) deformation retracts onto M ∪ϕ|core (Di × {0}). This amounts
to attaching a cell to a CW complex, and it is well-known that a
space obtained by attaching a cell to a CW complex is homotopy
equivalent to a CW complex (you just need to rearrange the order of
the cell attachments to that the next i-cell is attached to the (i − 1)-
skeleton).





15
Handle modifications

Takeaways:
· One may change the attaching map

of a handle up to isotopy.
· Transversality may be used to move

the attaching map of a j-handle off
an i-handle if i ≥ j. Consequently,
handles may be rearranged in order
of increasing index.

· If an attaching sphere of a handle
intersects a transverse sphere of
another handle transversally in a
single point, these handles cancel.

In the previous lecture we proved that closed manifolds admit handle
decompositions. Now we shall apply the same theory to cobordisms,
and give several lemma’s that will aid us in the manipulation of han-
dle decompositions. The main reference of this material is the first
chapter of [L0̈2], but see also Chapters VI and VII of [Kos93], Chapter
5 of [Wal16], and Milnor’s book [Mil65] for a purely Morse-theoretic
approach. We prefer the handle-theoretic approach, since it applies
to PL and topological manifolds once one establishes transversality,
isotopy extension and the existence of handle decompositions.

∂0(W) ∼= t2S1

∂1(W) ∼= t3S1

W

Figure 15.1: A cobordism from S1 t S1

to S1 t S1 t S1.

15.1 Cobordisms

We start with the definition of a cobordism, see Figure 15.1 for an
example in the case m = 1.

Definition 15.1.1. Let M0, M1 be closed manifolds of the same
dimension m. A cobordism from M0 to M1 consists of a 5-tuple
(W, ∂0(W), f0, ∂1(W), f1) where W is a compact (m + 1)-dimensional
manifold with boundary ∂(W), ∂0(W) and ∂1(W) are submanifolds
of ∂(W) and ∂(W) = ∂0(W) t ∂1(W), and f0 : M0 → ∂0(W) and
f1 : M1 → ∂0(W) are diffeomorphisms.

Example 15.1.2. Every closed (m + 1)-
dimensional manifold is a cobordism
from ∅ to ∅.

Handle attachments give rise to cobordisms. In describing this, it
shall be useful to change the focus to the cobordism, whose dimen-
sion is w. Indeed, given an embedding φ : ∂Di ×Dw−i ↪→ ∂0(W)× {1},
we obtain a cobordism by taking

(∂0(W)× I) ∪φ (Di × Dw−i)

and smoothing the corners. I find Lück’s notation convenient for this,
(∂0(W)× I) + (φ). This is a cobordism from ∂0(W) to the manifold
∂1(W) := ∂1((∂0(W)× I) + (φ)) given by

(∂0(W) \ φ(∂Di × int(Dw−i)) ∪ (Di × ∂Dw−i),
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which is said to be the result of doing surgery along φ to ∂0(W).
If we attach a second handle to ∂1(W) along φ′ we get a larger

cobordism (∂0(W) × I) + (φ) + (φ′). Note that the order matters;
(∂0(W)× I) + (φ′) + (φ) does not even make sense, as φ′ does not
have image in ∂0(W) × {1} and hence can not be used to attach a
handle.

In fact, all cobordisms can be written as iterated handle attach-
ments. To see this, we use that our previous results imply that there
is a generic Morse function f : W → R that takes the value 0 on
∂0(W) and 1 on ∂1(W) and is regular near the boundary. Each critical
point of this Morse function will correspond to a handle and since
critical points are isolated and W is compact, there are only finitely
many.

Proposition 15.1.3. Every cobordism W can be written up to diffeomor-
phism rel ∂0(W) as

(∂0(W)× I) + (φ1) + . . . + (φk),

and ∂1(W) is hence diffeomorphic to ∂0(W) modified by finitely many
surgeries.

One next immediate goal is to see how we can manipulate handle
decompositions without changing the diffeomorphism type of the
cobordism rel ∂0(W). We will see that we can in particular make the
following changes:

(1) Change the φi’s by isotopes.

(2) When index(φi) ≥ index(φi+1), interchange φi and φi+1 after an
isotopy of φi+1.

(3) When index(φi+1) = index(φi) + 1 and the attaching sphere of
φi+1 meets the transverse sphere of φi transversally in a single
point, cancel φi and φi+1.

The last part contained some terminology introduced at the end
of last section, which we review. We call that for a handle Di × Dw−i,
Di × {0} was called the core and {0} × Dw−i the cocore. The boundary
∂Di × {0} of the core is the attaching sphere, and the boundary {0} ×
∂Dw−i of the cocore is the transverse sphere.

In the next chapters we will develop more subtle tools to manipu-
late handle decompositions, culminating in the s-cobordism theorem.
These have topological assumptions, in contrast with the tools in this
chapter.

15.2 The handle isotopy lemma

We start by proving that changing the map φ by an isotopy does not
affect the diffeomorphism type of the cobordism rel ∂0(W).
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Lemma 15.2.1 (Handle isotopy lemma). If φ1 is isotopic to φ′1, then
W + (φ1) is diffeomorphic to W + (φ′1) rel ∂0(W).

Proof. Let φ1(t) : Di × Dw−i × [0, 1] → ∂1(W) × [0, 1] denote the
isotopy of embeddings, with φ1(0) = φ1 and φ1(1) = φ′1. By the
isotopy extension theorem, there is an isotopy of diffeomorphisms
ft : ∂1(W) × [0, 1] → ∂1(W) × [0, 1] such that f0 = id and φ1(1) =

f1 ◦ φ1(0). Now let c : ∂1(W)× [0, 1] → W be a collar, and define a
diffeomorphism

F : W + (φ1)→W + (φ1)

p 7→

c( f1−t(q), t) if p = c(q, t) ∈W,

p otherwise.

Suppose that before applying the handle isotopy lemma, a handle
is attached using φ2 to W + (φ1). Then we can use φ′2 := F ◦ φ2 as
an attaching map to W + (φ′1), where F : W + (φ1) → W + (φ′1) is
the diffeomorphism defined in the proof of Lemma 15.2.1. Then the
diffeomorphism W + (φ1) ∼= W + (φ′1) extends to a diffeomorphism
W + (φ1) + (φ2) ∼= W + (φ′1) + (φ′2). Thus if we modify one handle by
an isotopy, we can compatible modify subsequent handles too.

15.3 The handle rearrangement lemma

We will use the handle isotopy lemma to prove the handle rear-
rangement lemma. Recall that the outgoing ∂1(W + (φ0)) is ob-
tained from ∂1(W) by a surgery, and in particular contains the subset
∂1(W) \ φ0(∂Di × int(Dw−i)) of ∂1(W).

Lemma 15.3.1 (Handle rearrangement). Suppose we are given a cobor-
dism W + (φ0) + (φ1). If index(φ0) ≥ index(φ1), we may isotope
φ1 to φ′1 with image in ∂1(W + (φ0)) \ φ0(∂Di0 × int(Dw−i0)), where
i0 := index(φ0).

Proof. There are four steps. We shall use the notation i0 := index(φ0)

and i1 := index(φ1).

Step 1(a): make transverse and attaching spheres disjoint. Our first step is
to show that we can make the attaching spheres of φ1 disjoint from
the transverse sphere of φ0 by an isotopy of φ1.

We know by transversality results discussed in Chapter 12 that
by an ambient isotopy of ∂1(W + (φ0)) we can make the attach-
ing sphere of φ1 transverse to the transverse sphere of φ1. This
transverse sphere is diffeomorphic to {0} × ∂Dw−i0 and thus
(w− i0 − 1)-dimensional, while the attaching sphere is diffeomor-
phic to ∂Di1 × {0} and thus (i1 − 1)-dimensional. They live in the
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(w− 1)-dimensional manifold ∂1(W + (φ0)), so they are transverse
if and only if they are disjoint.

Step 1(b): shrink rest of image to be disjoint from attaching sphere. By
shrinking the Dw−i1-direction of the image of φ1, we can make the
entire image of ∂Di1 × Dw−i1 under φ1 disjoint from the transverse
sphere.

Step 2(a): flow attaching sphere out of handle. Now pick a vector field on
∂1(W + (φ0)) \ transverse(φ0) that is pointing radially outwards in
Dw−i0 \ {0}-direction of φ0((Di0 \ {0})× ∂Dw−i0). Flowing along
this for finite time will isotope the attaching sphere of φ1 out of
φ0((Di \ {0})× ∂Dw−i).

Step 2(b): shrink rest of image out of handle. By shrinking the Dw−i1

direction of the domain ∂Di1 × Dw−i1 of φ1, we can isotope φ1 so
that its image lies in the complement of φ(Di0 × ∂Dw−i0) in M.

By the handle isotopy lemma, W + (φ0) + (φ1) and W + (φ0) + (φ′1)

are diffeomorphic rel ∂0(W). But in the conclusion of the lemma,
we can make sense of M + (φ′1) + (φ0) and it is clear that this is
diffeomorphic to W + (φ0) + (φ1) rel ∂0(W). Let us record this:

Lemma 15.3.2 (Handle rearrangement lemma). Given a cobordism
W + (φ0) + (φ1), if index(φ0) ≥ index(φ1), we may isotope φ1 to φ′1 such
that W + (φ0) + (φ1) is diffeomorphic to W + (φ′1) + (φ0) rel ∂0(W).

Thus we can always arrange the handle attachments to happen in
order of increasing index, and have all handles of the same index by
attaching simultaneously.

Corollary 15.3.3. Every cobordism W is diffeomorphic rel ∂0(W) to one of
the form

(∂0(W)× I) + ∑(φ0
i0) + . . . + ∑(φw

iw),

where the superscript denotes the index of the handle.

Remark 15.3.4. In the duality between handle decomposition
and Morse functions, this implies that every Morse functions is
homotopic through Morse functions to a self-indexing one, i.e.
f (∂0(W)) = −1, f (∂1(W)) = w + 1 and f (p) = index(p) for each
critical point. This simplifies the proof in the previous lecture that
compact smooth manifolds admit a finite CW decomposition.

15.4 The handle cancellation lemma

So far we have only rearranged the handles, but not changed the
number (or indices) of handles. Now we described a special situation
where you can remove two handles of adjacent index.
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Example 15.4.1. We have already seen a case of this where discussing
Hatcher’s proof of the Smale conjecture. Supposed that we have a 0-
handle φ0 and a 1-handle φ1 so that φ1 one component of ∂D1 × Dw−1

is mapped to φ0(∂Dw) ⊂ W + (φ0). Then up to isotopy, we may
assume φ1 is a standard embedding, and W + (φ0) + (φ1) is given by
glueing a disk Dw to ∂1(W) along half its boundary Dw−1 ⊂ ∂Dw. We
saw before this is diffeomorphic to W rel ∂0(W).

The following lemma is the generalization of this from adjacent
indices 0 and 1, to adjacent indices i and i + 1.

Lemma 15.4.2 (Handle cancellation lemma). Given a cobordism W +

(φ0) + (φ1) with index(φ1) = index(φ0) + 1 so that the attaching sphere
φ1 intersects the transverse sphere φ0 transversally in a single point, there is
a diffeomorphism from W + (φ0) + (φ1) to W rel M0.

Proof. We now use the notation i := index(φ0), so that index(φ1) = i +
1. Our strategy will be to isotope φ1 so that it has a certain standard
form on ∂(W + (φ0)), and then find nice coordinates to reduce to a
computation in a standard model. Let us identify Di × ∂Dw−i with a
subset of ∂(W + (φ0)).

Step 1(a): make intersection point standard Recall that ∂Di+1 × {0} ⊂
∂Di+1 × Dw−i−1 is the attaching sphere of (φ1). By rotating
∂Di+1, and dilating and translating Dw−i−1, we can assume
that φ−1

1 (φ1(∂Di+1 × Dw−i−1) ∩ ({0} × ∂Dw−i)) = (~e1, 0) and
φ1(~e1, 0) = (0,~e1).

Step 1(b): make derivative at intersection point standard Now we con-
sider the derivative of φ1 at (~e1, 0), a bijective linear map

T(~e1,0)(∂Di+1×Dw−i−1) ∼= Ri×Rw−i−1
D(~e1,0)φ1
−→ T(0,~e1)

(Di× ∂Dw−i) ∼= Ri×Rw−i−1.

By transversality of the intersection of the attaching sphere with
the transverse sphere, the composition

Ri × {0} ↪→ Ri ×Rw−i−1 → Ri ×Rw−i−1 → Rw/Rw−i−1 (15.1)

is surjective. Since the group of invertible matrices that map Ri

surjectively onto Rw/Rw−i−1 is a lower triangular group and
hence has at most two connect components, we can homotopy the
derivative, so that it is given by id (up to reflection) within losing
the property that (15.1) is surjective.

To show that this to homotopy of derivatives is induced by an
isotopy of embeddings, we recall that the map

Emb(∂Di+1 × Dw−i−1, ∂(W + (φ0)))→ Fr(T∂(W + (φ0)))

given by recording the derivative at (~e1, 0) is a fibration.
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Step 1(c): make φ1 standard near intersection point The restriction to a
hemisphere ∂Di+1 × Dw−i−1 ⊃ Di

+ × Dw−i−1 → Di × ∂Dw−i

(so that (~e1, 0) corresponds to (0, 0)) lands in a hemisphere Di ×
Dw−i−1
+ ⊂ Di × ∂Dw−i (so that (0,~e1) corresponds to (0, 0)). By

linear interpolation we can make it the identity near the origin.

Step 2: make attaching map standard on handle By first shrinking the
Dw−i−1-direction and then flowing along an appropriate vector
field as in Step 2 of Lemma 15.3.1 and reparametrizing, we can
make φ1 standard on the entire handle, in the sense that the map
∂Di+1 × Dw−i−1 ⊃ Di

+ × Dw−i−1 → Di × Dw−i−1
+ ⊂ Di × ∂Dw−i is

the identity.

Step 3: find standard coordinates We may now use φ1 itself to find nice
coordinates of the part of the image of φ1 outside of the handle.
Indeed, we may identify that image using φ1 with Di

− × Dw−i−1.
Combining the image of φ0 and this part of the image of a φ1, we
obtain a subset of ∂1(W) identified with

(∂Di × Dw−i) ∪
∂Di×Dw−i−1

−
(Di
− × Dw−i−1) ∼= Dw−1.

Step 4: prove result in standard model In this these coordinates, we first
attach an i-handle along

ϕ0 : ∂Di×Dw−1 → Dn−1 ∼= (∂Di×Dw−i)∪
∂Di×Dw−i−1

−
(Di
−×Dw−i−1)

given by the inclusion of the first term. Next we attach an (i + 1)-
handle along the inclusion of the union (Di

− × Dw−i−1) ∪∂Di×Dw−i−1

(Di
+ × Dw−i−1) ∼= ∂Di+1 × Dw−i−1. In a local model, one can prove

this is diffeomorphic to attaching Dn along an embedding of a
bottom hemisphere Dn−1

− ⊂ ∂Dn, and we say before that this is
diffeomorphic rel ∂0(W) to not attaching anything at all.



16
Handle exchange

Takeaways:
· Rearranged handle decomposi-

tions correspond to relative CW
decompositions.

· Topologically the simplest cobor-
disms are h-cobordisms, where the
inclusions of ∂0(W) and ∂1(W) into
W are weak equivalences.

· If certain geometric conditions
are satisfied, it is possible to ex-
change an i-handle for an (i + 2)-
handle. This allows one to remove
the 0, 1, w − 1, w-handles of an
h-cobordism.

In the previous lectures we proved that manifolds admit handle de-
compositions, and obtained the handle isotopy, handle rearrangement
and handle cancellation lemma’s as tools to manipulate handle de-
compositions. We shall now make additional assumptions on our
cobordism W will shall allow us to use these tools, are results derived
from them, to simplify the cobordism. This is based on Chapter 1 of
[L0̈2], see also Chapter 8 of [Mil65].

16.1 Handle decompositions and topology

CW decompositions

Let us provide more details about producing a CW-complex out of
a rearranged handle decomposition. Suppose that we are given a
rearranged handle decomposition

W = (∂0W × I) + ∑
I0

(φ0
i0) + . . . + ∑

Iw

(φw
iw),

where the superscript denotes the index of the handle. Then we
may inductively produce a CW complex X relative to ∂0W which is
homotopy equivalent to W rel ∂0W. To do so define

Wk := W = (∂0W × I) + ∑(φ0
i0) + . . . + ∑(φk

ik ),

and remark that W−1 = (∂0W × I) and Wk is obtained from Wk−1 as a
pushout ⊔

Ik
∂Dk × Dw−k Wk−1

⊔
Ik

Dk × Dw−k Wk.

⊔
fk−1◦φik

|
∂Dk×{0}

(16.1)

We then define X−1 = ∂0W with homotopy equivalence f−1 : W−1 =

∂0W × I → X−1 given by projection onto the first component, and in-
ductively produce Xk with map fk : Wk → Xk by letting Xk be defined
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as the pushout

⊔
Ik

∂Dk Xk−1

⊔
Ik

Dk Xk,

⊔
fk−1◦φik

|
∂Dk×{0}

(16.2)

and letting fk by induced by the obvious map of commutative dia-
grams from (16.1) to (16.2) induced by the projection Dw−k → ∗ and
the map fk−1 : Wk−1 → Xk−1. We’re finished when k = w, and we set
X := Xw.

This construction is easily seen to have the following properties.
Firstly, the k-cells of X are in bijection with the k-handles of X, so that

H∗(Wk, Wk−1) ∼=
⊕

Ik

H∗(Dk × Dw−k, ∂Dk × Dw−k)

∼=
⊕

Ik

H∗(Dk, ∂Dk)

∼= H∗(Xk, Xk1).

In computing cellular homology, we use these identifications in
combination with the map

∂k : H∗(Xk, Xk−1)→ H∗−1(Xk−1)→ H∗−1(Xk−1, Xk−2)

to obtain a small chain complex computing the homology of X (and
hence W). Given the bases of H∗(Xk, Xk−1) and H∗−1(Xk−1, Xk−2)

in terms of handles, we can compute the coefficient of ∂k from a
k-cell Dk

ik
to a (k − 1)-cell Dk−1

ik−1
, as the intersection number of the

attaching sphere of the corresponding k-handle with the transverse
sphere of the (k− 1)-handle (i.e. the number of points in a transverse
perturbation counted with sign). Note this involves a choice of
orientation of the core of each handle (which then induces one via
your favorite convention on the attaching and transverse sphere), just
like in the cellular homology of a CW complex we implicitly choose
an orientation on each cell.

Poincaré duality

Thus we can compute H∗(W, ∂0W) from the geometric data of the
handles and the intersection numbers of attaching spheres and
transverse spheres of adjacent indices.

A classical consequence is a special case of Poincaré duality.
Without loss of generality we may add a little collar ∂1(W) × I at
the end of a cobordism. In that case, we can read the handle de-
compositions backwards; we note that each i-handle contributes
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a subset Di × Dw−i to W, and we can start at ∂0(W), thinking of
each of these as attached along ∂Di × Dw−i. However, we can
also start at ∂1(W), thinking of each of these as attaching along
∂(Di × Dw−i) \ ∂Di × Dw−i = Di × ∂Dw−i. This converts attaching
spheres in transverse spheres and vice versa.

To translate the matrix of ∂k with respect to the bases of handles
from the original handle decomposition to the reversed one, we run
into a difficulty is that an orientation of a core does not induce a
canonical orientation of the cocore unless W is oriented. But if we
assume W is oriented, then the matrix for ∂k for the reversed handle
decomposition is the transposes up to sign of the matrix for ∂k of the
original handle decomposition. From this we conclude that

H∗(W, ∂1(W)) ∼= Hw−∗(W, ∂0(W)),

a version of Poincaré duality.

h-cobordisms

We shall use the relationship between handle decompositions and
homology by translating statements about homology to statements
about the intersection numbers of attaching spheres and transverse
spheres. The goal is to produce a pair of handles that has a single
transverse intersection point, so that we can apply handle cancella-
tion to simplify the handle decomposition. The following definition
will give us the topological information about a cobordism which
shall allow us to achieve this goal in many cases:

Definition 16.1.1. A cobordism (W, M0, M1, f0, f1) is said to be an
h-cobordism if both inclusions M0 ↪→ W and M1 ↪→ W are weak
equivalences.

From now on our task will be to simplify handle decompositions
of h-cobordisms.

16.2 The handle exchange lemma

Occasionally it is helpful to create to new handles. This is done using
the handle addition lemma, obtained by running the proof of the
handle cancellation lemma in reverse.

Lemma 16.2.1 (Handle addition). Given an embedding Dw−1 ↪→ ∂1(W),
let φ0 : ∂Di × Dw−i → ∂1(W) denote the restriction to a standard ∂Di ×
Dw−i ⊂ Dw−1. Then there exists an embedding φ1 : ∂Di+1 × Dw−i−1 →
∂1(W + (φ0)) such that W ∼= W + (φ0) + (φ1).
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Following Lück, we say an attaching map φ0 : ∂Di × Dw−i → ∂1(W)

is trivial if it is the restriction to ∂Di × Dw−i of an embedding Dw−1 ↪→
∂1(W). Note that φ0 is trivial.

The handle addition lemma is often used to create a (i + 1)-handle
custom built to cancel an i-handle, at the expense of create a new
(i + 2)-handle. This procedure is called a handle exchange, since we
exchanged an i-handle to an (i + 2)-handle. We introduce some
notation in addition to Wi, the subcobordism with only j-handles for
j ≤ i:

∂̂1(Wi) := ∂1(Wi) \
⊔
Ii+1

φi+1
j (∂Di+1 × Dw−i−1)

is the complement of the images of the attaching maps of the (i + 1)-
handles.

Lemma 16.2.2 (Handle exchange). Let W have a handle decomposition
given by

W = ∂0(W)× I + ∑(φi
j) + ∑(φi+1

j ) + . . . + ∑(φw
j ).

Suppose that for one of the i-handles φi
j0

, there exists an embedding ϕi+1 : ∂Di+1×
Dw−i−1 → ∂̂1(Wi) such that

(a) the attaching sphere of ϕi+1 is isotopic in ∂1(Wi) to an embedding
intersecting the belt sphere of φi

j0
transversally in a single point.

(b) ϕi+1 is isotopic to a trivial embedding in ∂1(Wi+1).

Then W is diffeomorphic rel ∂0(W) to

W = ∂0(W)× I + ∑
j 6=j0

(φi
j) + ∑(φi+1

j ) + (ϕ̄i+2) + . . . + ∑(φw
j ).

Proof. We can disregard all handles of index > i + 1. By handle
addition we have that

W = ∂0(W)× I + ∑(φi
j) + ∑(φi+1

j )

∼= ∂0(W)× I + ∑(φi
j) + ∑(φi+1

j ) + (ϕ̄i+1) + (ϕ̄i+2)

for some ϕ̄i+1 isotopic to ϕi+1 and ϕ̄i+2 coming from handle addition.
By handle isotopy we have that

W ∼= ∂0(W)× I + ∑(φi
j) + ∑(φi+1

j ) + (ϕ̄i+1) + (ϕ̄i+2)

∼= ∂0(W)× I + ∑(φi
j) + ∑(φi+1

j ) + (ϕi+1) + (ϕ̄i+2),

and now ϕi+1 has image in ∂̂1(Wi). Thus we may interchange it with
the (i + 1)-handles. Then isotoping ϕi+1, we may write this as

W ∼= ∂0(W)× I + ∑(φi
j) + ∑(φi+1

j ) + (ϕi+1) + (ϕ̄i+2)

∼= ∂0(W)× I + ∑(φi
j) + (ϕi+1) + ∑(φi+1

j ) + (ϕ̄i+2)

∼= ∂0(W)× I + ∑(φi
j) + (ϕ̃i+1) + ∑(φi+1

j ) + (ϕ̄i+2)
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where ϕ̃i+1 has an attaching sphere which intersects the belt sphere
of φi

j0
once transversally, so that we may use handle cancellation to

write

W ∼= ∂0(W)× I + ∑(φi
j) + (ϕ̃i+1) + ∑(φi+1

j ) + (ϕ̄i+2)

= ∂0(W)× I + ∑
j 6=j0

(φi
j) + ∑(φi+1

j ) + (ϕ̄i+2).

16.3 Removing handles of index 0, 1, w− 1, and w

We start by explaining how to remove the 0- and 1-handles when
w ≥ 6. By reversing the handle decompositions, the same argument
also removes the w- and (w− 1)-handles.

Lemma 16.3.1. Let ∂0(W) ↪→W be 0-connected. Then there exists a handle
decomposition of W without 0-handles.

Proof. We inductively remove the 0-handles. Since ∂0(W) → W is a
bijection on connected components, for some 0-handle there must a
1-handle connecting its transverse sphere ∂Dw to ∂1(∂0(W)× I). This
1-handle will have attaching sphere intersecting the transverse sphere
∂Dw transversally in a single point, so by the handle cancellation
Lemma 15.4.2, they cancel. With one less 0-handle, the induction
hypothesis kicks in.

Lemma 16.3.2. Let w ≥ 6 and ∂0(W) ↪→ W be 0-connected. Then there
exists a handle decomposition of W without 0- and 1-handles.

Proof. By the previous lemma we may assume there are no 0-handles.
We will use the handle exchange lemma to inductively trade each
1-handle for a 3-handle. To do so, it suffices to explain how to build a
embedding ϕ2 : ∂D2 × Dw−2 → ∂̂1(W1) suited to apply Lemma 16.2.2
to (φ1

1). The easiest way to guarantee condition (a) is to start with
the interval S1

+ given by restriction of the copy of D1 × {~e1} inside
the D1 × ∂(Dn−1) inside ∂1(φ

1
1). This automatically intersects the

transverse sphere {0} × ∂Dn−1 once transversally.
Since π0(∂0(W)) → π0(W) is a bijection and there are no 0-

handles, both endpoints have to lie in the same path-component of
∂0(W). Since ∂̂1(W0) = ∂1(W) \ ⊔I1

φ1
i1
(∂D1 × Dw−1) is up homo-

topy given by removing some points from ∂0(W) and w ≥ 6, this
does not affect path-connectivity. Hence the endpoints of S1

+ also
lie in the same path component of ∂̂1(W0), and we may connect
them by a path S1

− there. Since w ≥ 6, π1(∂̂1(W0)) is isomorphic
to π1(∂1(W0)) ∼= π1(∂0(W)) and hence surjects onto π1(W). Thus
we may assume S1 := S1

+ ∪ S1
− is null-homotopic in W, adding a

non-trivial loop in ∂̂1(W0) if necessary (which does not affect the fact
that S1 intersects the transverse sphere of φ1

1 in a single point).



132 alexander kupers

We may assume S1 is embedded by transversality, since w− 1 ≥ 3.
The result is an embedded circle S1 in ∂1(W1), which satisfies the
relevant part of condition (a). Since a circle is 1-dimensional and
the attaching spheres of the 2-handles are also 1-dimensions, and
w− 1 ≥ 3, we can isotope the attaching spheres of the 2-handles so
that they do not intersect S1, i.e. into ∂̂1(W1).

We claim that ∂1(W2) → W is an isomorphism on π1. This is
the case since to obtain W from ∂1(W2) one needs to add i-handles
for i ≥ 3, as well as (w − 1) and (w − 2)-handles (the 1- and 2-
handles on the other side), and w − 2 ≥ 4. Up to homotopy, this
amounts to attaching cells of dimension ≥ 3, which does not affect
π1. We conclude that S1 is nullhomotopic in ∂1(W2), and because
a generic map of a 2-disk into a (w − 1)-dimensional manifold is
embedded when n ≥ 6, bounds an embedded D2 in ∂1(W2). This
2-disk guarantees the existence of an extension of S1 full-fledged
ϕ2 : ∂D2 × Dw−2, since a disk has trivial normal bundle, satisfying
condition (b).

Corollary 16.3.3. If W is an h-cobordism of dimension ≥ 6, it has a handle
decomposition of the form

W = (∂0W × I) + ∑
I2

(φ2
i2) + . . . + ∑

Iw−2

(φw−2
iw−2

).

16.4 Smooth structures on D2

We may use the results obtained in the previous section to prove a
result that should have appeared in the previous part of this book.

Theorem 16.4.1. Let Σ be a compact smooth surface with boundary S1

and such that there is a homotopy equivalence Σ → D2 rel S1. Then Σ is
diffeomorphic to D2 rel S1.

Proof. Since every homeomorphism of S1 is homotopic through
homeomorphism to a diffeomorphism, S1 has a unique smooth
structure and it suffices to prove that Σ is diffeomorphic to D2.

Let us remove a small disk from the interior of Σ to obtain an
2-dimensional smooth cobordism S from S1 to S1. An easy appli-
cation of Mayer-Vietoris and Seifert-van Kampen implies S is an
h-cobordism. In particular, both inclusions S1 ↪→ S are homotopy
equivalences.

If we put a handle decomposition on S, then 16.3.1 will allow
us to remove the 0- and 2-handles. Thus S is obtained from S1 × I
by adding only 1-handles. However, we cannot add any 1-handles
without changing the homology and violating the condition that S
is an h-cobordism, so in fact we must have that S is diffeomorphic to
D2 ∪ S1 × I and hence diffeomorphic to D2.
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In particular, if Σ is homeomorphic to D2 rel S1, then Σ is diffeo-
morphic to D2. This is captured by the slogan: D2 has a unique smooth
structure rel boundary.





17
The s-cobordism theorem

Takeaways:
· If dim W ≥ 6, the Whitney trick may

be used to show that a homological
condition implies that the geometric
condition be arranged by an isotopy,
implying that an h-cobordism has
a handle decomposition with only
q, q + 1-handles for 2 ≤ q ≤ w− 2.

· The Whitehead torsion τ(W) of
W is an invariant in the algebraic
K-theoretic group Wh1(Z[π1]),
extracted from a two-index handle
decomposition by noting which
modifications of the matrix of
degrees of attaching matrix can be
realized geometrically.

· In dimension ≥ 6, an h-cobordism
is diffeomorphic to a product if and
only if τ(W) = 0.

· This implies homotopy spheres of
dimension ≥ 6 are homeomorphic to
spheres, and that π0(Diff∂(Dn)) sur-
jects onto the set Θn+1 of homotopy
(n + 1)-spheres.

We finish the proof of the h-cobordism theorem [Mil65, Kos93, L0̈2,
Wal16], and deduce some consequence for manifolds homotopy
equivalent to spheres [Sma61], and the group of path components of
diffeomorphisms of disks.

17.1 The two-index lemma

Our next goal is to generalize the techniques of the previous lec-
ture to trade i-handles for (i + 2)-handles, eventually reaching the
following conclusion:

Lemma 17.1.1 (Two-index lemma). Let 2 ≤ q ≤ w − 3. If W is an
h-cobordism of dimension w ≥ 6, it has a handle decomposition of the form

W = (∂0(W)× I) + ∑
Iq

(φ
q
iq) + ∑

Iq+1

(φ
q+1
iq+1

).

For ease of exposition we shall make the following simplification:
W is simply-connected.

Proof. It suffices to explain how, for i < q, to trade an i-handle in a
handle decomposition

W = ∂0(W)× I + ∑
Ii

(φi
ii ) + . . . + ∑

Ir

(φr
ir )

for an (i + 2)-handle. We can then inductively remove all handles of
index < q, and reversing the handle decomposition also all handles
of index > q + 1.

Suppose (φi
i) is the handle we want to exchange. Then we pick a

trivial embedding ψi+1 : Si × Dw−i−1 ↪→ ∂̂1(Wi), which is condition
(b) of the handle exchange lemma. We show that Si admits an isotopy
in ∂1(Wi+1) to an embedded sphere lying in ∂̂1(Wi) which satisfies
property (a) of the handle exchange lemma, i.e. its attaching sphere
intersects the transverse sphere of (φi

i) transversally in a single point.
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We start by noting the relative homology group Hi(W, ∂0(W)) =

0 because W is an h-cobordism, and there are no i′-handles for
i′ < i. Thus we must have that in the cellular chain complex
[φi

i ] = ∑ ajd[φi+1
j ]. That is, there is some formal Z-linear combi-

nation of the attaching spheres of the (i + 1)-handles φi+1
j which has

intersection number 1 with the transverse sphere of φi
i .

We shall explain how to modify Si × Dw−i−1 by an isotopy in
∂1(Wi+1) to an embedding in ∂̂1(Wi) which represents ∑ ajd[φi+1

j ]. To

do so, it suffices to explain how to add a single copy of d[φi+1
j ] (or its

negative). This is called a handle slide. Pick one of the infinitely many
parallel translates S̄i

j of the i-dimensional attaching sphere (φi+1
j )

in ∂̂1(Wi) (these certainly exist after shrinking the Dw−i-direction
of φi+1

j ). Now pick an arc in ∂̂1(Wi) from ~e1 ∈ Si to a point in S̄i
j.

Generically the arc is embedded and its interior avoids Si and S̄i
j. We

may thicken it to a I×Di, so that {0, 1}×Dw−i−1 coincide with Si and
S̄i

j, with orientations depending on the desired sign. We use the arc to

create an embedded connected sum Si#S̄i
j in ∂̂1(Wi). By construction

S̄i
j bounds an (i + 1)-dimensional disk in ∂1(Wi+1), and thus Si#S̄i

j

is isotopic to Si in ∂1(Wi+1). By isotopy extension, we extend Si to
Si × Dw−i−1.

This is a candidate Si × Dw−i−1 which almost satisfies (a) and
(b), with the exception that in (a) instead of the actual number of
intersection point being 1, we only have that the intersection number
of Si with the transverse sphere of φi

i is 1. We now use a consequence
of the Whitney trick; this consequence says since ∂̂1(Wi) is at least 5-
dimensional, i is at least 2 and w− i− 1 ≤ w− 3 with the complement
of the (w − i − 1)-dimensional transverse sphere of φi

i in ∂̂1(Wi)

simply-connected, we can isotope Si such that actual number of
intersection points is 1. An application of the exchange lemma now
exchanges (φi

i) for an (i + 2)-handle.

17.2 Manipulating two-index h-cobordisms

Now we have reached the stage where for 2 ≤ q ≤ w − 3, the
h-cobordism W has a handle decomposition of the form

W = (∂0W × I) + ∑
Iq

(φ
q
iq) + ∑

Iq+1

(φ
q+1
iq+1

).

Manipulation of the remaining handles

Since W is an h-cobordism, the relative homology H∗(W, ∂0(W))

has to vanish. Thus the differential ∂q from the free abelian group
on (q + 1)-handles to that on q-handles has to be an isomorphism.
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In particular Iq = r = Iq+1, and taking the handles as a basis we
obtained an invertible (r× r)-matrix Dq representing over the integers.
We have shown how to do three manipulations on the handles which
affects this matrix:

(i) We can change the arbitrary choice of orientations we made,
multiplying a row or column by −1.

(ii) We can change the order of the handles, switching rows and
columns.

(iii) We use handle addition to add a canceling pair of handles,
which replaces Dq by [

Dq 0
0 1

]
.

(iv) We can do a handle slide as in the proof of Lemma 17.1.1,
which adds a multiple of one column to another (or a row if
we reverse the handle decomposition).

If W were not simply-connected, we should instead have lifted
everything to the universal cover and would have obtained an isomor-
phism ∂̃q of free Z[π1]-modules with canonical basis after a choice of
lift of handles, so that we get a representative matrix D̃q with entries
in Z[π1] on which geometrically we can do the following operations:

(i) We can change the arbitrary choice of orientations and lifts we
made, multiplying a row or column by ±γ for γ ∈ π1.

(ii) We can change the order of the lifts of handles, switching
rows and columns.

(iii) We use handle addition to add a canceling pair of handles,
which replaces D̃q by [

D̃q 0
0 1

]
. (17.1)

(iv) We can do a handle slide as in the proof of Lemma 17.1.1,
which adds a Z[γ]-multiple of one column to another (or a
row if we reverse the handle decomposition).

If it is possible to reduce the matrix D̃q to the identity matrix using
these operations, we can apply the Whitney trick as in Lemma 17.1.1
to cancel all the i-handles against an (i + 1)-handles and end up with
a handle decomposition without any handles!

The Whitehead torsion

Let us define a group which carries the obstruction to this. We first
note that third operation amount to multiplication with an elemen-
tary matrix eij(a) for i 6= j and a ∈ Z, which is equal to the identity
matrix except the (i, j)th entry is a instead of 0.
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This leads to define for any ring R, here Z[π1], the group En(R)
as the subgroup GLn(R) generated by elementary matrices. If n ≥ 3,
elementary matrices are commutators; for i, j, k all distinct we have

eik(ab) = [eij(a), ejk(b)].

This contains (up to sign) matrices switching rows or columns as in
(ii) by modifying the following expression for n = 2:

e12(1)e12(−1)e12(1) =

[
0 1
−1 0

]
(17.2)

Taking the colimit E(R) over the map (17.1), colimn→∞En(R), we
claim we get the commutator subgroup of GL(R) := colimn→∞GLn(R).
This uses the equation in GL2n(R) for [g, h] ∈ GLn(R) stabilized n
times;

[g, h] =

[
g 0
0 g−1

] [
h 0
0 h−1

] [
(hg)−1 0

0 hg

]
and we have that in GL2n(R)[

g 0
0 g−1

]
=

[
idn g
0 idn

] [
idn 0
−g−1 idn

] [
idn g
0 idn

] [
0 −idn

idn 0

]
,

and in this expression all except the last matrix are obviously in
E2n(R), and the last is by a mild generalization of (17.2).

So let us instead define for a not necessarily commutative ring R,
the first algebraic K-theory group as

K1(R) := colim
n→∞

H1(GLn(R)) = colim
n→∞

GLn(R)ab,

which takes care of (ii), (iii) and (iv). When R = Z[G] (note G = π1

in our application), we thus obtain the group containing the invariant
by killing of ±g in K1(Z[G]), so as to implement (i):

Definition 17.2.1. If R = Z[G], then we have {±g|g ∈ G} ∈
GL1(Z[G])ab, and we define the first Whitehead group as

Wh1(G) := K1(Z[G])/(±g).

See Table 1.1 for some computations of Whitehead groups.

Definition 17.2.2. We denote the class of the matrix M in Wh1(π1) by
τ(W) and called it the Whitehead torsion of W.

17.3 The s-cobordism theorem

We can now state the s-cobordism theorem, and prove the most rel-
evant part. After that we shall also give an important application,
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the high-dimensional Poincaré conjecture. We also explain its conse-
quences for diffeomorphisms of disks.

Here is the statement, Theorem 1.1 of [L0̈2], of which we proved
the most relevant “if” part.

Remark 17.3.1. Let us recap the proof
strategy:

(1) Give a W a handle decomposition.
(2) Get rid of 0-handles by handle

cancellation, and 1-handles by
handle exchange. By turning the
handle decomposition upside down,
we may also remove the w and
(w− 1)-handles.

(3) For i ≥ 2, exchange i-handles for
(i + 1)-handles using the handle
exchange lemma until only handles
of index > bw/2c remain. This
uses the h-cobordism theorem
assumption and w ≥ 6 to create the
ϕi+1’s, and the Whitney trick (which
we still need to discuss). Turning
the handle decomposition upside
down, exchange i-handles for (i− 2)-
handles using the handle exchange
lemma until only handles of index
bw/2c and bw/2c+ 1 remain.

(4) Extract the algebraic invariant
τ ∈ Wh1(π1) from the matrix
containing the intersection numbers
the transverse spheres of the bw/2c-
handles and the attaching spheres of
the (bw/2c+ 1)-handles.

(5) Show that the vanishing of τ implies
we can get rid of the remaining
handles. This uses that the invariant
is built so that it encodes the ob-
struction to reducing matrices to the
identity using only certain moves
(namely those that can modeled
geometrically by manipulations of
handles).

Theorem 17.3.2 (s-cobordism theorem). If W is an h-cobordism and
w ≥ 6, then W ∼= ∂0(W)× I rel ∂0(W) if and only if the torsion τ(W) ∈
Wh1(π1) vanishes. In fact, every element of Wh1(π1) is realized by an
h-cobordism and two h-cobordisms are diffeomorphic rel ∂0(W) if and only
if they have the torsion.

For τ ∈ Wh1(π1), one may build an h-cobordism with torsion τ

by attaching handles according to a representative matrix for τ. The
remaining parts of the theorem follow by showing that Whitehead
torsion may be defined purely topologically and satisfies certain
addition formula’s, see Chapter 2 of [L0̈2].

The Poincaré conjecture

We shall now give the classical application of this theorem, the
Poincaré conjecture in dimension ≥ 6 [Sma61]. It requires the fol-
lowing fact:

Proposition 17.3.3. Wh1({e}) = 0.

Proof. Firstly, the determinant det : GLn(Z) → {±1} factors over the
abelianization. Since the map

{±1}
∼=−→ GL1(Z)→ GLn(Z)→ {±1}

is an isomorphism, it suffices to show that the kernel of det, the spe-
cial linear group SLn(Z), is perfect when n ≥ 3. Thus H1(GLn(Z)) ∼=
{±1} if n ≥ 3 (this is an example of homological stability).

To show this, we use that SLn(Z) equals En(Z) for n ≥ 3 (a baby
case of [BMS67]). Clearly En(Z) ⊂ SLn(Z), so it suffices to prove
SLn(Z) ⊂ En(Z). This is not so hard: in order for a integer matrix
to be invertible, all columns and rows have to have gcd equal to 1.
Thus by adding rows to rows according to the Euclidean algorithm
we can make the last column have a single non-zero entry ±1. By
switching the rows using (17.2) we can assume it is the last entry that
is ±1. Then we can also make the last row be 0 except the last entry.
Inductively, we can make the entire matrix be diagonal with entries
±1. Using for a ∈ Z× ∼= {±1} the equation

e12(−a)e21(1/a)e12(−a)e12(1)e21(−1)e12(1) =

[
a 0
0 a−1

]
,

we can make all diagonal entries by 1 except possibly the bottom-
right one. But since we are in SLn(Z), this has to be 1 as well. Since
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all operations are implemented by multiplying with elements of
En(Z) on the left or right, we conclude that the matrix was in En(Z).

Remark 17.3.4. Note we just proved
that K1(Z) ∼= Z/2Z, as in Table 20.2.

Remark 17.3.5. A similar but easier
proof using row reduction tells us that
if F is a field and n ≥ 3, then SLn(F) is
generated by eij(a). We conclude that
K1(F) = F× for all fields F.

The following is a special case of the s-cobordism theorem which
follows from the above computation.

Corollary 17.3.6 (h-cobordism theorem). If W is an h-cobordism, w ≥ 6
and π1(W) = {e}, then W ∼= ∂0(W)× I rel ∂0(W).

Theorem 17.3.7 (Smale). If M is a smooth closed manifold of dimension
≥ 6 which is homotopy equivalent to Sm, then it is (PL-)homeomorphic to
Sm.

Proof. Embed two disks Dm disjointly in M. Their complement is a
cobordism W. It is simply-connected by Seifert-van Kampen and the
two maps ∂Dm → W are homology equivalences by Mayer-Vietoris.
We conclude that M is an h-cobordism.

By the h-cobordism theorem, we conclude that M ∼= Sn−1 × [0, 1]
rel Sm−1 × {0}. This means that M is obtained from Dm ∪id Sm−1 ×
[0, 1] = Dm

− by gluing on a copy of Dm
+ along a possibly non-trivial

orientation-preserving diffeomorphism f of Sm−1. By the Alexan-
der trick for (PL-)homeomorphisms, every (PL-)homeomorphisms
f : Sm−1 → Sm−1 extends to a (PL-)homeomorphism F : Dm → Dm.
Then a (PL-)homeomorphism M→ Sm is given by

G : M ∼= Dm
− ∪ f Dm

+ → Sm ∼= Dm
− ∪id Dm

+

x 7→

F−1(x) if x ∈ Dm
+

x if x ∈ Dm
−.

Consequences for diffeomorphism groups

The following is a fundamental object in the theory of smooth mani-
folds (see Table 1.2 for a table):

Definition 17.3.8. Let Θm denote the set of oriented smooth closed
manifold of dimension m which are homotopy equivalent to Sm, up
to orientation-preserving diffeomorphism. We shall later see that it
admits an abelian group structure, and call it the group of homotopy
spheres of dimension m (or exotic spheres).

From the construction in Smale’s theorem, we see that for m ≥ 5
every (m + 1)-dimensional homotopy sphere is obtained by gluing
a Dm+1 to a Dm+1 along a orientation-preserving diffeomorphism of
Sm.

Corollary 17.3.9. If m ≥ 5, then the map π0(Diff+(Sm)) → Θm+1 is
surjective.
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Recalling our discussion of diffeomorphisms of S2, we can re-
late this to disks. Note that the inclusion Dm ↪→ Sm induces a ho-
momorphism π0(Diff∂(Dm)) → π0(Diff+(Sm)), and hence a map
π0(Diff∂(Dm))→ Θm+1.

Corollary 17.3.10. If m ≥ 5, then the map π0(Diff∂(Dm)) → Θm+1 is
surjective.

Proof. As in the 2-dimensional case, the above inclusion and the
inclusion of rotations of Sm into diffeomorphisms induce a weak
equivalence

Diff∂(Dm)× SO(m + 1)→ Diff+∂ (S
m),

which implies that the map π0(Diff∂(Dm)) → π0(Diff+(Sm)) is an
isomorphism.

Example 17.3.11. Milnor proved that Θ7 contains a copy of Z/7Z

[Mil56] (it is in fact isomorphic to Z/28Z [KM63]). Thus we conclude
that π0(Diff∂(D6)) has at least 7 (or least 28) path components.





18
The Whitney trick

To finish the proof of the s-cobordism theorem, we need a tool to
make the number of intersection points of two submanifolds equal to
the absolute value of their algebraic intersection number. The latter
counts the intersection points with sign, and hence some may cancel.
This tool will be the so-called Whitney trick [Mil65, Chapter 6], [Sco05,
Section 1.5]. We shall also discuss what happens in dimension 4, in
particular the Casson trick [Cas86], [Sco05, Chapter 2]. Takeaways:

· The Whitney trick allows one to cancel two intersection points of
opposite sign. It works for submanifolds of dimension m, x in a
simply-connected (m + x)-manifold, when m + x ≥ 6 and m, x ≥ 3.

· The assumptions come from: (i) finding an immersed 2-disk
bounding a pair of paths between the intersection points, (ii)
making this 2-disk generically embedded, (iii) finding normal
vector fields.

· In dimension four, it fails, but you can localize this failure to (ii)
using the Casson trick. This is the starting point of Freedman’s
proof of the Whitney trick for topological 4-manifolds.

18.1 The Whitney trick

We give the standard proof of the Whitney trick, as in Milnor’s book
[Mil65]. We then give an application by improving the dimension
bound in the Whitney embedding theorem.

The Whitney trick

Suppose that N is a smooth manifold, and we have smooth subman-
ifolds M, X ⊂ N such that m + n = x and M t X. Let us take two
intersection points p0, p1 ∈ M ∩ X such that p0, p1 are in the same
path components of M and X. Let us pick embedded smooth paths
γM : [0, 1] → M and γX : [0, 1] → X starting at p0 and ending at p1

avoiding other intersection points, see Figure 18.1.
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γX

γM

• •

X

M

p0 p1

Figure 18.1: The submanifolds M, X of
R3, and the arcs γM and γX .

We shall also pick a Riemannian metric on N, such that M and
X are totally geodesic near γM ∪ γX, and at p0 and p1, M and X
are orthogonal. This may be arranged by constructing the Rieman-
nian metric by a partition of unity; clearly these conditions can be
arranged locally first near p0 and p1 and then near γM and γX in-
dependently, and we may extend the Riemannian metric elsewhere
arbitrarily.

Now pick a basis (ζ1(0), . . . , ζx(0) of Tp0(X) ∼= Tp0(M)⊥ at p0,
with ζx(0) = dγX

dt (0), and similarly a basis (ξ1(0), . . . , ξm(0)) of
Tp0(M) ∼= Tp0(X)⊥ at p0 with ξm(0) = dγM

dt (0). In particular, we
obtain a basis (ζ1(0), . . . , ζx(0), ξ1(0), . . . , ξm(0)) of Tp0(N), see Figure
18.2.

• •
ξ2(0)ξ1(0)

ζ1(0)

Figure 18.2: The basis of Tp0 (N).

We can parallel transport these along γM and γX respectively,
resulting in two families of frames for t ∈ [0, 1]

(ζ1(t)M, . . . , ζM
n−m(t), ξM

1 (t), . . . , ξM
n−x(t)) over γM,

(ζ1(t)X , . . . , ζX
n−m(t), ξX

1 (t), . . . , ξX
n−x(t)) over γX .

We shall need to assume that their values at t = 1, in Tp1 N, are oppo-
sitely oriented. This makes sense without reference to any orientation
of N.
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For later use we make two independent remarks. Firstly, since M
was totally geodesic near γM, parallel transport along γM preserves
lying in or being orthogonal to M, and similarly for X. Secondly,
ξM

n−x(1) =
dγM

dt (1) and ζX
m−x(1) =

dγX
dt (1), so by flipping one of these

in one of the frames we can make the frames at p1 be equally oriented.
It shall be useful to consider the following manifold with corners

now: let B2 (a 2-dimensional bigon) be the submanifold of R2 as in
Figure 18.3. We get an embedding of the boundary ∂B2 ↪→ N by
sending the top half to γM and the bottom half to γX .

B2

Figure 18.3: A 2-dimensional bigon.

Lemma 18.1.1. If m, x < n − 2 and N is simply-connected, then N \
(M ∪ X) is simply-connected. If additionally n ≥ 5,1 then there exists an

1 In fact n ≥ 6 is forced; m + x = n and
m, x ≤ n− 3 implies that n ≤ 2n− 6, so
that 0 ≤ n− 6 so n ≥ 6.

embedding B2 ↪→ N such that B2 ∩ (M ∪ X) = ∂B2, i.e. given by γM ∪ γX .

Proof. For the first statement, we note that by transversality any 2-
disk in N generally avoids both M and X, so their complement in
N is simply-connnected, π1(N \ (M ∪ X)) = 0. Thus there exists an
extension of ∂B2 → N to a continuous map B2 → N the image of
whose boundary is the image of γM ∪ γX and whose interior lands in
N \ (M ∪ X). We can make it smooth and generically an immersion. In
fact, if n > 4 it is generically even an embedding (since generically it
is self-transverse using multi-jet-transversality, and self-intersections
have dimension 2 · 2− n < 0).

We may assume that B2 is totally geodesic near ∂B2, and the
tangent space to B2 will coincide with the span of ζM

x (t), ξM
m (t) over

γM and the span of ζX
x (t), ξX

m(t) over γX .

Lemma 18.1.2. If m− 1 ≥ 2, we can extend (ζX
1 (t), . . . , ζX

x−1(t)) (resp.
(ξM

1 (t), . . . , ξM
m−1(t))) from γX (resp. γM) to B2, such that they together

from a trivialization of the normal bundle (TB2)⊥, the extension of the
ζX’s over γM is orthogonal to M and the extension of the ξM’s over γX is
orthogonal to X.

Proof. We start with the ξ’s, here both the sign condition on the
intersections and the dimensional restrictions will come in.

Let ρ be a vector field on B2 that is orthogonal to ∂−B2. Then at
p0 and p1, the points in ∂(∂+B2), we have x-frames (ζX

1 , . . . , ζX
x−1, ρ1)

in (TM)⊥. Since ρ1(p0) = dγX
dt , but ρ1(p1) = − dγX

dt , these have the
same orientation in (TM)⊥ (as trivialized over γM) and thus can be
extended over ∂+(B2) lying in (TM)⊥

Now we have an (x− 1)-frame over ∂B2 and we want to extend it to
the (trivial) (n− 2)-dimensional normal bundle to B2. The obstruction
to extension lies in π1(O(n− 2)/O(m− 1)), which vanishes as long as
m− 1 ≥ 2.

Finally, the ξM’s provide us with (m− 1)-frames over ∂B2
+, and we

need to extend this to the remaining (m− 1)-dimensional sub-bundle
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over the normal bundle to B2 orthogonal to the ξ’s. As ∂B2
+ → B2 is a

weak equivalence, this is always possible.

Let us denote the corresponding vector fields on B2 by

(ζ1, . . . , ζx−1, ξ1, . . . , ξm−1).

These form an integrable distribution, i.e. their span is closed under the
Lie bracket, since they are constructed orthogonal to TB2. The Frobe-
nius theorem then implies that we can extend them a bit outside B2

so that they may be consistently exponentiated to give a neighbor-
hood U ⊂ N of B2 whose intersections with N and X are as in the
following standard model: the two parts of ∂B2 are parts of graphs
P1 = {(t, t2 − 1) | t ∈ R} and P2 = {(t, 1− t2) | t ∈ R2}, then N is
Rn, B2 is the subset bounded by P1 and P2 in R2 × {0}, M is given
by P1 ×Rm−1 × {0}, X is given by P2 × {0} ×Rn−1. In this standard
model, M and X intersect once with opposite sign, and we can cre-
ate a compactly supported isotopy removing both intersections by
moving either P1 upwards or P2 downwards, see Figure 18.4.

• •
B2

Figure 18.4: The Whitney move.

The conclusion is the following:

Theorem 18.1.3 (Whitney trick). Suppose that N is simply-connected, M
and X smooth submanifolds of dimension m, x ≥ 3,2 m + x = n, intersecting 2 As the proof shows, it is in fact

acceptable to have m = 3 and x = 2, as
long as we assume that π1(N \M) = 0.

transversally. If p0, p1 ∈ M∩X have opposite sign on same path components
of M and X, then there is a compactly supported ambient isotopy φt of N
such that M ∩ φ1(X) = M ∩ X \ {p0, p1}.
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Here originally the sign was only defined with respect to some
arcs γM and γX, but since N is orientable because simply-connected,
we can define this sign a priori (and it is in particular independent of
the arcs).

The strong Whitney embedding theorem

The classical application of the Whitney trick is the strong Whitney
embedding theorem. So far we have proven the “moderately strong”
Whitney embedding theorem, every closed smooth m-dimensional
manifold M embeds into R2m+1.

Theorem 18.1.4 (Whitney). Every closed smooth m-dimensional manifold
M embeds into R2m.

Proof. We have classified all ≤ 2-dimensional manifolds, so we can
check it by hand for these. Let us thus assume m ≥ 3.

Recall that to obtain the embedding into R2m+1 one projects along
a line onto a hyperplane. Doing this once more, generically results
in an immersion M # R2m with only double points, i.e. transverse
self-intersections. If we can find paths pairing these with oppo-
site sign, then we can apply the Whitney trick to remove all inter-
sections. However, a priori there is no reason that this is possible.
Whitney solved this by showing that you can locally introduce a
self-intersection of whichever sign you want, the higher-dimensional
generalization of Figure 18.5. You can thus modify the immersion by
creating for each self-intersection point its own canceling one.

7→

Figure 18.5: A Whitney pinch.

18.2 Dimension 4

The main concern with trying to applying the Whitney trick in
dimension 4 is when m = x = 2, as there are often special techniques
to deal with 1-dimensional submanifolds. In this case we run into
three obstructions: (i) the complement of M and X in N may not
be simply-connected even if N (or even N \ M) is, (ii) a generic
immersion of a 2-disk into N is not an embedding, and (iii) we might
encounter a framing obstruction in π1(O(2)/O(1)) ∼= Z. One might
think a hands-on method might get around it. This is not possible, as
the following example by Lackenby shows [Lac96].
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Proposition 18.2.1. Given N = S2 × S2, M = S2 × ∗, there is a smoothly
embedded 2-sphere Q ⊂ S2 × S2 intersecting M in two points with opposite
sign, such that no Whitney disk exists.

However, we can still try to construct a Whitney disk. It turns
out that (i) and (iii) may be fixed, at the expensive of making (ii)
worse. For (i) we refer to Section 1.3 of [FQ90]. The idea is to twist an
immersed 2-disk around this boundary to change the obstruction by
1. Instead we focus on the more geometrically intersection (iii).

The Casson trick

The construction underlying Casson’s trick is a finger move. This is 4-
dimensional construction and involves an immersed surfaces Σ ⊂ N
and an embedded arc γ in N, whose interior avoids Σ (generically
always the case) and whose endpoints are two distinct points p0, p1

in Σ which are not points of self-intersection. Then we form a tubular
neighborhood U ∼= D3 × (−ε, 1 + ε) of γ, such that U ∩ Σ is given
near p0 by D2 × {0} × {0}, and near p1 by {0} × D2 × {1}. We
may “push up” Σ near p0 by replacing D2 × {0} × {0} with points
F = {(x, y, 0, f (x2 + y2))} with f : [0, 1] → (−ε, 1 + ε) a smooth
strictly decreasing function that is 1 + ε/2 at 0, 1 at 1/4 and 0 on
[1/2, 1]. Then F ∩ {0} × D2 × {1} consists of two points of the form
{(0,±y, 0, 1)}, and the intersection is transverse. Let us denote F (Σ)
the result of replacing D2 × {0} × {0} with F , which has two more
intersection points.

Now let us consider the special situation that p1 is really close to
p0. In that case we shall describe the difference between π1(N \ F (Σ))
and π1(N \ Σ).

For every point the image of N that is not a self-intersection, there
is a loop in N \ Σ called the meridian. It is given by noting that locally
N looks like R2 ↪→ R4 and the loop S1 3 θ 7→ (0, 0, sin(θ), cos(θ))
circles around the surface near the origin. So, let z be class of the the
meridian around Σ at p0 in π1(N \ Σ). We may construct from γ a
loop η in π1(N \ Σ) (well-defined up to the meridian). See Figure 18.6.

Lemma 18.2.2. We have that π1(N \ F (Σ)) ∼= π1(N \ Σ)/([z, zη ]), with
([z, zη ]) denoting the normal subgroup generated by the commutator of z
and the conjugate of z by η.

Proof. If we remove a 2-disk C whose boundary connects the new in-
tersection points through N and the finger (in coordinates {0, y, 0, t}
with y2 ≤ 1/4, 1 ≤ t ≤ f (x2 + y2)), the result is equivalent to moving
the finger slightly less far and connecting by an arc, see Figure 18.7.
Since an arc is 1-dimensional, removing it does not affect π1. Think-
ing of C as the cocore of a two-handle, we see that to get from this
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•p1

•p0

Σ

γ

ηz

•

•

Figure 18.6: The result of a finger move
along γ.

picture to N \ F (Σ), we add a 2-handle, which is a D2 × D2 attaching
along a ∂D2 × D2, so kills off a single generator of π1. It suffices to
figure out this is [z, zη ].

The generator it kills is represented by the meridian of C. To iden-
tify it, we look near one of the new intersection points in N \ F (Σ),
its link is a 2-torus, a product of a meridian of N and a meridian of
the finger. The disk C intersects its 2-torus once. This show that the
meridian of C is the commutator of the meridian of N, which is z,
and the meridian of the finger, which is zη .

•

•

∼=

•

•

Figure 18.7: Removing a disk from a
finger move.

We shall give a slightly simpler version of Casson’s trick; a similar
argument works to make simply-connected the complement of
two embedded surfaces, each with simply-connected complement
but possibly intersecting, instead using finger moves of one of the
surfaces onto the other.

Theorem 18.2.3 (Casson trick). Suppose we have a simply-connected com-
pact 4-manifold N and an immersed D2 in N with boundary embedded in
∂N. If there exists a homology class β ∈ H2(N) such that the intersection
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number [D2] · β = 1, then we may modify D2 rel ∂D2 by finger moves such
that N \ D2 is simply-connected (increasing the number of self-intersections).

Proof. We first show that π1(N \D2) normally generated by meridians.
To see this, note that any loop γ in N \ D2 is nullhomotopic in N
and this null-homotopy generically intersects D2 in finitely many
points away from the points of self-intersection. This shows γ is
freely homotopic in N \ D2 to a wedge of meridians, one for each
intersection point, which proves the claim.

This means that [z] ∈ H1(N \ D2) generates, as all meridians are
conjugate to a fixed one z. Let us now represent β by an immersed
surface B intersecting D2 transversally, and removing disks from B
around the intersection points to obtain B′. Then [∂B′] = [z] since the
signed count of intersection points was 1 and each intersection point
contributes a signed copy of a meridian. Thus [z] is null-homologous
in N \ D2 and we conclude H1(N \ D2) = 0.

Thus π1(N \ D2) is generated by commutators. If a group is
generators by commutators, and by a set of generators I, then it is
generated by conjugates of the commutators of the generators and
their inverses: the basic identity is

[ab, c] = abcb−1a−1c−1a = (abcb−1ca−1)(aca−1c−1) = [b, c]a[a, c]

Thus it is generated by commutators of the form [zw, zw′ ]u. It suffices
to kill the generators up to conjugacy [zw, zw′ ], which is possible
using finger moves as a consequence of the formula [zw, zw′ ] =

[z, zw′w−1
]w.

Casson handles and Freedman’s theorem

One can try to push these techniques to give something like a Whit-
ney trick. It will try to produce an embedded disk out of an im-
mersed one, but only succeeds up to homotopy.

The image of the immersed D2 that is a candidate Whitney disk
might have π1 (from loops over self-intersections). Now apply Cas-
son’s trick and disks, called accessory disks, for the intersection
points (adding pinches if necessary), creating a 2-stage tower of Whit-
ney disks. This kills the original π1 in the Whitney disk, but possibly
adds new π1 in the new accessory disks. However, if we repeat the
above procedure infinitely many times, creating an infinite tower,
no π1 should remain; any potentially non-trivial loop lives in a com-
pact subset and dies when we add the next layer of accessory disks.
This large limiting object is called an Casson handle. Casson gave a
precise definition — something we neglect to do — and proved the
following:
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Theorem 18.2.4 (Casson). For any immersion of D2 in simply-connected
N with ∂D2 ⊂ ∂N embeded, and β ∈ H2(N) such that [D2] · β = 1, there
exists a Casson handle V in N such that (V ∩ ∂N) is a regular neighborhood
of ∂D2 and D2 can be homotoped rel ∂D2 into V.

Lemma 18.2.5. A Casson handle (V, V ∩ ∂N) is properly homotopy
equivalent to (D2 ×R2, S1 ×R2).

The most important theorem in topological 4-manifolds is then
Freedman’s re-embedding theorem, one version of which says, page
79 of [Sco05]:

Theorem 18.2.6 (Freedman). Every Casson handle V contains a topological
2-handle D2 × D2 rel ∂D2 × D2 ⊂ ∂N.

This leads to a version of the Whitney trick for topological 4-
manifolds (with fundamental group and homology restrictions).
Its proof depends heavily on the classical theory of decomposition
spaces, also known as Bing topology. This involves the collapsing of
complicated subsets, and can certainly not be done smoothly. In fact,
Theorem 18.2.6 must be false in the smooth category, because if it
were not, none of the exotic smooth phenomena could occur.
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A first look at surgery theory
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Diffeomorphisms and
algebraic K-theory





20
Algebraic K-theory

Takeaways:
· Algebraic K-theory is a generaliza-

tion of the study of vector bundles
on spaces or schemes by group
completing and splitting cofiber
sequences.

· It may be constructed by group
completion (via Γ-spaces).

· By looking at cells or using the
group completion theorem, we show
this recovers K0 and K1.

Our next goal is to prove that the surjective map

π0(Diff∂(Dn))� Θn+1

is also injective. We shall not follow the original proof, but instead
will ahistorically derive it from “final results” on the relationship
between manifolds and algebraic K-theory. In this lecture we will set
up the statements of these results. The main reference is [Wei13], but
we shall also use [Seg74] and [MS76].

Remark 20.0.1. In these notes we will take classifying spaces of large
categories. The reader should substitute a small version to avoid
set-theoretical issues.

20.1 Algebraic K-theory

Algebraic K-theory can be motivated from several points of view:

(i) It is a natural home for invariants from manifold theory.

(ii) It is the algebro-geometric analogue of topological K-theory.

(iii) It is a general method to simplify the study of two objects by
performing in a homotopy-coherent way two simplifications:
(a) group completion, (b) forcibly splitting cofiber sequences.

We have only seen the torsion of a h-cobordism, so (i) is not very
helpful for us. Instead, let us start with (ii), the historical origin of
algebraic K-theory.

Algebraic K-theory via algebraic vector bundles

Fix a commutative ring R, then a vector bundle over Spec(R) is by
definition a sheaf that locally in the Zariski topology is isomorphic to
O⊕n

Spec(R) for some n ≥ 0. We claim that there is a correspondence:

{vector bundles}/iso ∼= {finitely generated projective R-modules}/iso.
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This correspondence is given by sending a vector bundle E to the
OSpec(R)(Spec(R)) = R-module P of global sections Γ(E). Conversely
a finitely-generated projective R-module P is sent to the sheaf assign-
ing to a basis element Spec(R f ) the localized R f -module Pf . That this
construction works requires some non-trivial commutative algebra,
see Section II.5.2 of [Bou98] or Section I.2 of [Wei13].

To produce the analogue of topological K0, we want to group com-
plete the abelian monoid of isomorphism classes of vector bundles on
Spec(R) under direct sum. This implements (a), and (b) is automatic
because for projective modules every short exact sequence splits. Let
K : AbMon→ AbGr the group completion of abelian monoids (i.e. the
left adjoint to the inclusion of abelian groups into abelian monoids).
For an abelian monoid M, this is explicitly given by the quotient
of the free abelian group on the elements of M, by the equivalence
relation [m] ∼ [n] if there exists a q ∈ M such that m + q = n + q.

R K0(R)

field Z

PID’s, e.g. Z Z

Z[
√
−5] Z⊕Z/2Z

Table 20.1: Some examples of K0’s of
rings.

Definition 20.1.1. We define the 0th algebraic K-theory of a ring R to be

K0(R) := K({fin.gen. projective R-modules}/iso,⊕)

This construction is related to our earlier definition of K1 in terms
of group homology by exact sequences, e.g. the localization long
exact sequence for Z(p) (all primes exact p inverted)

K1(Fp)→ K1(Z(p))→ K1(Q)→ K0(Fp)→ K0(Z(p))→ K0(Q),

which you can find as (6.6) on page 449 of [Wei13]
It was long believed that this is the beginning of a long exact se-

quence of homotopy groups of a fiber sequence of spaces K(Fp) →
K(Z(p)) → K(Q) with additional structure (to make π0 an abelian
group). This goal was achieved by Quillen, who gave several con-
structions of K(R).

Desiderata

At this point it is helpful to discuss how we will eventually recognize
that we have the “right” construction of an algebraic K-theory space
whose homotopy groups are the algebraic K-theory groups. It should
satisfy many if not all of the following desiderata:

(i) Its π0 and π1 recover K0 and K1 as defined before. There is
also a notion of K2 due to Milnor for local rings, which we
would like to recover as well, see Section III.5 of [Wei13].

(ii) There is a standard list of desired formal properties we
wouldd like the algebraic K-theory groups to have, see Chap-
ter V of [Wei13]: localization, cofinality, resolution, approxima-
tion, devissage.
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(iii) It should be an algebro-geometric version of the spaces BU
and BO in topological K-theory.

(iv) It should satisfy a homotopy-theoretic version of the universal
property of group completion of abelian monoids.

All of these are true for the construction of an algebraic K-theory
space that we will describe, once made precise, though we shall
not discuss (iii) again. This leads one to motivic homotopy theory,
e.g. [Lev08].

20.2 Group completion

We shall describe a construction which will evidently satisfy desider-
ata (i) and (iv).

The group-completion construction of K(R)

We start by recalling the notion of a Γ-space [Seg74], where Γ is the
category of pointed finite sets with skeleton given by n̄ = {∗, 1, . . . , n}
(warning: this is opposite of Segal’s convention, but in my opinion
more intuitive). This is a simplicial space X : Γ → Top such the
map X(n) → X(1) × · · · × X(1) induced by the n projections n̄ =

{∗, 1, . . . , n} � 1̄ ∼= {∗, i} sending all elements except i to the
base point, is a weak equivalence for all n (including n = 0, so that
X(0) ' ∗).

You should think of this as essentially a commutative unital
monoid structure on X(1); the unit is the degeneracy X(0) → X(1)
induced by 0̄ = {∗} → 1̄ = {∗, 1}, and the multiplication is
X(1)× X(1)← X(2)→ X(1) with the left a weak equivalence and the
right induced by c : {∗, 1, 2} → {∗, 1} given by all non-base points to
1. The commutativity follows from the commutative diagram

{∗, 1, 2} {∗, 1, 2}

{∗, 1}.

swap

c c

Example 20.2.1. If M is a commutative unital monoid, then XM(n) :=
Mn is a Γ-space, maybe more conveniently written as S 7→ MS\{∗}.
The maps induced by various operations of pointed finite sets are as
follows:

projection {∗, 1}� {∗} projection M→ ∗
combination {∗, 1, 2}� {∗, 1} multiplication M2 → M

permutation {∗, 1, . . . , n} → {∗, 1, . . . , n} permutations of terms Mn → Mn

inclusion {∗} → {∗, 1} unit ∗ → M.
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Example 20.2.2. For a ring R, we can define a Γ-space XR by letting
XR(n) be the classifying space of the category of n-tuples of finitely
generated projective left R-modules and isomorphisms. The maps
induced by various operations of pointed finite sets are induced by
the following functors as follows:

projection {∗, 1}� {∗} projection (P) 7→ ∗
combination {∗, 1, 2}� {∗, 1} direct sum (P, Q) 7→ (P⊕Q)

permutation {∗, 1, . . . , n} → {∗, 1, . . . , n} permutation (P1, . . . , Pn) 7→ (Pσ(1), . . . , Pσ(n))

inclusion {∗} → {∗, 1} adding trivial module ∗ 7→ (0).

Given a Γ-space X : Γ → Top, we can precompose with the oppo-
site of the functor ∆→ Γop sending [n] ∼= {0, . . . , n} to n̄ by sending it
to the set of gaps {i < i + 1 | 0 ≤ i ≤ n− 1} with disjoint base point.
A map f : [n] → [m] is sent to the induced map on gaps as in Figure
20.1. This gives a simplicial space B•X.

• • • • •

• • • • •[4]

[4]

θ ∗ ∗
• • • • •

4 intervals + ∗

• • • • •

4 intervals + ∗

4̄

4̄

θ∗

Figure 20.1: The functor ∆ → Γop

on morphisms. On the left hand
side, a morphism in ∆ is written
downwards in terms of arrows. On the
right hand side, a morphism in Γ is
written upwards in terms “mergings”
of intervals encoded by blocks. Two
intervals here are merged into the base
point.

Example 20.2.3. For XM it is indeed the bar construction, e.g. Bk(XM) =

Mk, and you should imagine the intervals being labeled by M. Then
di, induced by skipping i, so merges two intervals if i 6= 0, k and then
is given by multiplication.

The fact that X was a Γ-space implies that each map Bn(X) →
B1(X)n which is induced by the inclusion of {i, i + 1} into {0, . . . , n}
(or of one interval into n intervals), is a weak equivalence. A simpli-
cial space with this property is called a Segal space.

Theorem 20.2.4 (Segal). BX := |B•(X)| is an infinite loop space (the 0th
space of an Ω-spectrum).

Before sketching the proof, we make some observations. Firstly,
the inclusion

X(1)× ∆1 ↪→ |B•(X)| =
(⊔

n≥0
X(n)× ∆n

)

sends X(1)× ∂∆1 to the contractible space X(0), and so the adjoint
may be extended unique up to homotopy to a map X(1)→ ΩBX. We
want to construct a map from BX to a loop space, etc.
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To see this, note that BX is again the first space of a Γ-space. As-
signing to each pointed finite set S the functor XS : T 7→ X(S ∧ T)
gives a Γ-object in Γ-space. Thus, realizing in the T-direction we get a
Γ-space B(1)X : S 7→ BXS.

This satisfies B(1)(X)(1) ' BX, so that we have a map BX →
ΩB(B(1)X). Iterating this construction we get

X(1)→ ΩBX → Ω2B(B(1)X)→ Ω3B(B(2)X)→ · · ·

and we note that B(k)X is levelwise path-connected if k ≥ 1.

Lemma 20.2.5. If X is a levelwise path-connected Γ-space, then X(1) →
ΩBX is a weak equivalence.

Proof sketch. Consider the simplicial space shB•(X) given by p 7→
Bp+1(X), i.e. precomposing with ∗ t − : ∆→ ∆, which maps to B•(X).
It is a result of Segal, proven inductively by a quasifibration glueing
lemma, that if E• → B• is a map of proper simplicial spaces such that
for each injective morphism θ : [q]→ [p] in ∆, we have that The restriction to injective morphisms

is possible since we quickly shift to the
semi-simplicial space ∆op

inj → ∆op →
Top, and its thick geometric realization.Ep Eq

Bp Bq

θ∗

homotopy cartesian, then so is

E0 |E•|

B0 |B•|.

In our case E• = shB•(X) and B• = X, and the second diagram
would become

X(1) |shB•(X)| ' ∗

X(0) ' ∗ BX,

where |shB•(X)| is contractible by an extra degeneracy argument
(indeed, every shift is). The diagram being homotopy cartesian is
equivalent to the sequence of weak equivalences

X(1) ' hofib(X(1)→ X(0))

' hofib(|shB•(X)| → BX)

' hofib(∗ → BX) ' ΩBX.
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In the setting of Γ-spaces, we may replace the levels of the sim-
plicial spaces with products of X(1) up to weak equivalence. Now
observe that θ∗ for θ injective is a composite of face maps di. Each
di acts on only two terms and since products preserve homotopy
cartesian squares, we are reduced to showing that

X(1)2 X(1)

X(1) ∗

π

c

is homotopy cartesian, with π projection on the second factor and
c is the composition map of the Γ-space. To check it is homotopy
cartesian, it suffices to check the map on vertical homotopy fibers
is a weak equivalence. This map is given by multiplication by some
element. Since X(1) is path-connected and X(1) is unital up to homo-
topy, this is always a weak equivalence.

Remark 20.2.6. In fact, this proof only
needs that the abelian monoid structure
induced on π0(X(1)) is a group, i.e. has
inverses.

In general, it is not true that X(1) → ΩBX is a weak equivalence.
Instead it is an interesting map called the group completion map for
reasons that will soon become clear when we reach Theorem 20.2.10.

Definition 20.2.7. The group completion algebraic K-theory is given by

KΩB(R) := ΩBXR.

Corollary 20.2.8. KΩB(R) is the infinite loop space associated to a spec-
trum.

i 1 2 3 4 5

Ki(Z) Z/2 Z/2 Z/48 0 Z

Table 20.2: The algebraic K-theory
groups Ki(Z) := πi(K(R)) for 1 ≤ i ≤ 5.
K0 ∼= Z already appeared in Table 20.1.

Example 20.2.9. We claim that π0(ΩBXR) ∼= K0(R). To see this, note
that π0(ΩBXR) ∼= π1(BXR) and BXR has a single 0-cell and 1-cells
given by 0-cells in X(1), i.e. finitely-generated projective R-modules
P. Thus π1 is generated by homotopy classes of loops γP. The 2-cells
come from 1-cells of X(1) and 0-cells of X(2), and thus implement
either γP ' γP′ if P ∼= P′ and γP⊕Q ' γP ∗ γQ.

Algebraic K-theory and homology of general linear groups

To see that our previous definition of K1 in terms of group homology
arises naturally from KΩB, we will find a commutative unital monoid
MR (so strictly associative and strictly unital) such that BXMR ' BXR.

To do so, consider the category with objects pairs (Rn, π) of a
finitely generated free R-modules and a projection, and morphisms
R-linear isomorphisms between the images. By direct sum, this
becomes a homotopy commutative unital monoid. We have BXR '
BXMR , and BXMR is the isomorphic to the ordinary bar construction
BMR. The point of this is to apply the following theorem [MS76],
usually called the group completion theorem.
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Theorem 20.2.10 (McDuff-Segal). If M is a homotopy commutative unital
monoid, then we have that

H∗(ΩBM) ∼= H∗(M)[π0(M)−1].

The idea of its proof is to do a variation of the proof of Lemma
20.2.5, using homology instead of homotopy. Just like a square being
homotopy cartesian means that the maps on homotopy fibers over all
base points are weak equivalences, it being homology cartesian means
they are homology equivalences.

Proof sketch of Theorem 20.2.10. Let us specialize to the case that
π0(M) ∼= N0 for ease of notation. We shall use a result about ho-
mology fibrations analogous to the one about quasi-fibrations used
in Lemma 20.2.5. It says that if E• → B• is a map of proper simplicial
spaces such that for each injective θ : [q]→ [p] in ∆ the diagram

Ep Eq

Bp Bq

θ∗

θ∗

homology cartesian, then so is the diagram

E0 |E•|

B0 |B•|.

In our case, pick m1 in the path-component of M corresponding to
1, and let M∞ be the homotopy colimit over m1 · − : M → M. Even
though we have used up to left M-module structure, this is still a
right M-module and its homology is colimH∗(M) ∼= H∗(M)[π−1

0 ].
Then we can consider the simplicial space

[p] 7−→ M∞ ×Mp

using the right M-module action on M∞ (called the two-sided bar
construction and usually denoted B(M∞, M, ∗)), which maps to B•M
by sending M∞ to a point.

We want to apply the above result. Since geometric realization
commute with filtered homotopy colimits, we have that

B(M∞, M, ∗) ' hocolim B(M, M, ∗) ' ∗,

the last step by an extra degeneracy argument. Furthermore B0 =

∗, so like in Lemma 20.2.5, we would end up proving that M∞ is
homology equivalent to ΩBM, as desired.
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As before we only need to check the following diagram is homol-
ogy cartesian:

M∞ ×M M∞

M ∗,

a

π

with π projection and a acting on the right, is homology cartesian.
Checking on fibers over M, it suffices that for every m ∈ M, the map
− ·m : M∞ → M∞ is a homology isomorphism. This is true since M is
homotopy commutative, whence − ·m is homotopic to m · − on M. If
m is the nth component, acting by it is equal to (m1 · −)n, which was
inverted.

Remark 20.2.11. The conditions for this theorem can weakened
(e.g. π0 only needs to admit a calculus of right fractions), and the
consequences often stronger (the map M∞ → ΩBM is acyclic, i.e. the
map is an isomorphism for local coefficients coming from the target)
[RW13, MP15].

If Mfree
R denotes the topological submonoid of those components

corresponding to the free modules, then we have that

H∗(Mfree
R )[π−1

0 ] ∼= colim
n→∞

H∗

(⊔
n≥0

BGLn(R)

)
.

There is an inclusion Mfree
R ↪→ MR, inducing a map

H∗(Mfree
R )[π−1

0 ]→ H∗(MR)[π
−1
0 ],

which will not be an isomorphism in degree 0 as there are more
projective modules than just the free ones. However, it is an isomor-
phism onto those components that are in its image. This is because
inverting just direct sum by free modules also inverts direct sum
by projective modules, as every projective is a summand of a free
module.

Since KΩB(R) is an infinite loop space, π1 of each of its compo-
nent (say the one corresponding to the equivalence class of the free
module [0]) is equal H1 of that component. Hence we conclude that

π1(KΩB(R)) ∼= colim
n→∞

H1(BGLn(R)).

Thus KΩB(R) satisfies (i) and at least part of (iv), the latter in the
sense that ΩB creates an infinite loop space, the homotopy-theoretic
version of an abelian group. A universal property in the homotopy
category is described in Theorem IV.1.5 of [Wei13].
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The theorems of Igusa and Waldhausen

Takeaways:
· Algebraic K-theory may also be

constructed by the S•-construction,
which may be applied to a category
of retractive finite spaces over X to
obtain A(X).

· If X is path-connected, this can be
rewritten in terms of matrices.

· Including finite sets over X into
retractive finite spaces over X, we
get a map QX+ → A(X) whose
homotopy fiber is ΩWhDiff(X).

· Igusa and Waldhausen proved that
there is a highly-connected map
H(M) → ΩWhDiff(X) with domain
the moduli space of h-cobordisms
starting at M.

Today will be a “story-time” lecture. This means we will not prove
many of the results stated, but outline a theory. We will apply it in
the next lecture to prove that the surjective map π0(Diff∂(Dn)) �
Θn+1 is also injective. Our references are [Hat78, Wal85, Wei13].

21.1 The S•-construction

Waldhausen generalized algebraic K-theory from rings to categories
C which have the additional structure of a Waldhausen category
[Wal85] (see also Section IV.8 of [Wei13], which also discusses the
delooped G•-construction by Gillet-Grayson in Section IV.9 and
which some people find more intuitive because its π0 is K0). This is
the most convenient construction for desiderata (ii) (technical tools)
and (a higher-categorical version of) (iv) (a universal property) from
last lecture.

The S•-construction

A Waldhausen category is a category with the minimal data neces-
sary to construct algebraic K-theory. Specializing to C = P(R), the
category of finitely generated projective R-modules, we recover K(R).
The example of C to keep in mind is the category FinSet∗ of pointed
finite sets.

Definition 21.1.1. A Waldhausen category is a pointed category C

with two classes of arrows c(C) and w(C) of cofibrations and weak
equivalences. These should satisfy the following properties:

(i) Isomorphisms are cofibrations and weak equivalences.

(ii) Cofibrations and weak equivalences are closed under composi-
tion.

(iii) The map from the initial object is a cofibration.
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(iv) Cofibrations are preserved by cobase change: for each commu-
tative diagram with horizontal map a cofibration

B A

C

the pushout A ∪B C exists and the map C → A ∪B C is a
cofibration.

(v) Left properness: if in a commutative diagram

A B C

A′ B′ C′

' ' '

all vertical arrows are weak equivalences, and left horizontal
maps are cofibrations, then A ∪B C → A′ ∪B′ C′ is also a weak
equivalence.

Definition 21.1.2. Let Ar([n]) be the category of arrows in the linear
category [n] given by 0 → 1 . . . → n. That is, the object are mor-
phisms (i → j) and a morphism (i → j) → (k → l) is given by a
commutative diagram

i j

k l.

Definition 21.1.3. We define a category Sn(C) as the full subcategory
of functors F : Ar([n]) → C on those objects F such that F(i → i) = ∗,
all horizontal maps F(i → j) → F(i → k) are cofibrations and each
square

F(i→ j) F(i→ k)

F(j→ j) ∼= ∗ F(j→ k)

is a pushout square.

For example, the objects of S2(C) look like

∗ F(0→ 1) F(0→ 2)

∗ F(1→ 2)

∗
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with the square a pushout square. In general the top line F(0 → j)
gives a filtration of the corner F(0 → n), with filtration quotients
F(j → j + 1) appearing just above the diagonal with ∗’s. In fact,
you can think of S•-construction as a space of filtrations with chosen
subquotients (which a priori are only defined up to isomorphism).

By using the fact that [n] 7→ Ar([n]) is a cosimplicial category, we
see that [n] 7→ Sn(C) is a simplicial category. We have not yet used
the weak equivalences, so let’s do so:

Definition 21.1.4. Let C be a Waldhausen category, then we define the
Waldhausen algebraic K-theory to be

KS•(C) := Ω|wS•(C)|,

where wSn(C) is the subcategory of Sn(C) with same objects but only
those morphisms that are natural transformations consisting of weak
equivalences.

The category of projective modules

We may apply this to the category P(R) of finitely-generated pro-
jective R-modules, with cofibrations the monomorphisms with
projective cokernel and weak equivalences the isomorphisms. Let
us denote the resulting K-theory space by KS•(R). Results of Quillen
and Waldhausen imply the following:

Theorem 21.1.5 (Quillen-Waldhausen). If R is a ring, then we have that

KΩB(R) ' KS•(R).

Proof sketch. There is a simplicial map (it is convention to use i in-
stead of w when the weak equivalences are the isomorphisms)

|iSn(P(R))| → XR(n)

by sending F to the “filtration quotients” (F(0 → 1), F(1 →
2), . . . , F(n − 1, n)) (the diagonal just above the ∗’s). Waldhausen
proved using his additivity theorem that this becomes a weak equiva-
lence upon realizing the [n]-direction.

The category of finite sets

We may also apply the S•-construction to FinSet∗, with cofibrations
the injections and weak equivalences the isomorphisms. Let FinSet
denote the category of finite sets of order n with isomorphisms, then
we have that

|iSn(FinSet∗)| → (BFinSet)n
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is an isomorphism, because short exact sequences of finite sets aren’t
just split but canonically so! It is clearly true that BFinSet ' ⊔n≥0 BΣn

by restriction to a skeleton. We conclude that

KS•(FinSet∗) ' ΩB

(⊔
n≥0

BΣn

)
.

In Chapter 32, we will prove — when talking about cobordism
categories — the following as the special case of a 0-dimensional
cobordism category. This uses that finite sets are exactly the compact
0-dimensional manifolds. For a reference in the algebraic K-theory
literature, see Theorem IV.4.9.3 of [Wei13].

Theorem 21.1.6 (Barratt-Priddy-Quillen-Segal). There is a weak equiva-
lence

ΩB

⊔
q≥0

BΣp

 ' Ω∞S,

where S denotes the sphere spectrum. In particular, we have that Ki(FinSet∗)

is isomorphic to the ith stable homotopy group of spheres.

That is, the sphere spectrum is the algebraic K-theory of finite sets.

21.2 Algebraic K-theory of spaces

We shall discuss the algebraic K-theory of spaces A(X), first using
the S•-construction and then a version of group completion for path-
connected X. We then construct the map QX+ → A(X), whose
homotopy fiber is ΩWhDiff(X).

Algebraic K-theory of spaces via S•-construction

Let X be a space. Eventually this will be our manifold.

Definition 21.2.1. A retractive finite space over X is a space Y with
cofibration i : X ↪→ Y and retraction r : Y → X, i.e. r ◦ i = idX, such
that the pair (Y, X) is homotopy equivalent to a relative finite CW
pair. A map of retractive finite spaces over X is a continuous map
that is the identity on X and compatible with the retractions.

We can define a Waldhausen category R f (X) of retractive finite
spaces over X by taking the cofibrations to be the Hurewicz cofibra-
tions, and the weak equivalences to be the homotopy equivalences rel
X (or equivalently weak equivalences, since the objects are homotopy
equivalent to a relative CW pair). Note that the category would not
be pointed without the retraction, as it provides the maps exhibit-
ing X itself (with identity cofibration and retraction) as the terminal
object.
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Definition 21.2.2. We define the algebraic K-theory of spaces A(X) of
X to be

A(X) := KS•(wR f (X)).

Intuitively algebraic K-theory homotopy-coherently (a) group
completes, and (b) splits cofiber sequences. In the previous lecture
we focused our attention on (a), as cofiber sequences were already
split in our examples. This is of course not true in retractive spaces,
and forcing the splitting of cofiber sequences allows the computation
π0(A(X)) ∼= Z[π0(X)]. Let us discuss this is some examples using
the following lemma, which follows from a consideration of the
1-skeleton of KS•(wR f (X)):

Lemma 21.2.3. The group π0(A(X)) is generated by symbols [Y] with Y a
retractive finite space over X, under the equivalence relation that [Y] = [Y′]
if Y ' Y′ over X, and [Y′] = [Y] + [Y′′] if there is a cofiber sequence
Y ↪→ Y′ → Y′′ ∼= Y′/Y.

Example 21.2.4. In π0(A(∗)) each disk satisfies 0 = [Dk] = [Sk−1] +

[Sk], because Dk is weakly equivalent to ∗ and by splitting the inclu-
sion of the boundary. Thus we have that [Sk] = (−1)k[S0]. This leads
to the identification of π0(A(∗)) with the relative Euler characteristic;
e.g. we have that the class [T2] represented by a based torus is equiv-
alent to [S1 ∨ S1 ∨ S2] by splitting the inclusion of the 1-skeleton, and
this is −[S0]− [S0] + [S0] = −[S0], and −1 is indeed equal to χ(T2, ∗).

Example 21.2.5. In π0(A(S1)), S1 t ∗ admits many retractions to S1,
rθ for θ ∈ S1. However, all represent the same class: for θ0, θ1 ∈ S1,
take S1 t I with rI : I → S1 having both θ0 and θ1 in its image. Then
there is a zigzag of weak equivalences over X

(S1 t ∗, rθ0)→ (S1 t I, rI)← (S1 t I, rθ1).

This generalizes to say that relative CW complexes with homotopic
attaching maps represent the same class in π0(A(S1)).

Next, one may be concerned that apart from the class of S1 ∨ S2,
π0(A(S1)) contains another class from a non-trivial loop in S1, e.g.
S1 ∪S1 D2. However, this does not admit a retraction to S1.

A group completion construction of A(X)

Waldhausen also proved there is an analogue of the group comple-
tion construction when X is path-connected. This uses the Kan loop
group GX, weakly equivalent to ΩX but in fact topological group,
Section VI.5 of [GJ09].

Then we may consider the space of continuous pointed maps∨
n Sk ∧GX+ →

∨
n Sk ∧GX+. Let us take the subspace haut∗,GX

(∨
n Sk ∧ GX+

)
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of GX-equivariant pointed homotopy automorphisms. If k ≥ 2, ap-
plying π0 gives an isomorphism with GLn(Z[π1]): there are weak
equivalences

map∗,GX

(∨
n

Sk ∧ GX+,
∨
n

Sk ∧ GX+

)
' map∗

(∨
n

Sk,
∨
n

Sk ∧ GX+

)

∼= ∏
n

Ωk

(∨
n

Sk ∧ GX+

)
,

and the latter has π0 given by HomAb(Z
n, Z[π1]

n) ∼= HomZ[π1]-Mod(Z[π1]
n, Z[π1]

n).
We now want to let k → ∞, in which case we can give a differ-

ent description. Consider the symmetric spectrum Σ∞GX+. Since
Σ∞ : Top+ → Sp is defined as Y 7→ S ∧ Y and symmetric spectra has
a symmetric monoidal structure for which S is the unit, Σ∞GX+ is a
unital monoid in symmetric spectra. Thus we can define left modules
over it, and set GLn(Σ∞GX+) to be the space of homotopy invertible
ΣGX+-module maps from

∨
n Σ∞GX+ to itself. As before

mapΣ∞GX+

(∨
n

Σ∞GX+,
∨
n

Σ∞GX+

)
' mapSpectra

(∨
n

S,
∨
n

Σ∞GX+

)
'∏

n
Ω∞(Σ∞GX+)

n,

and we may define GLn(Σ∞GX+) by picking the components corre-
sponding to GLn(Z[π1]). By the Freudenthal suspension theorem we
conclude that

GLn(Σ∞GX+) ' hocolim
k→∞

haut∗,GX

(∨
n

Sk ∧ GX+

)
.

We shall use the notation BGLn(Σ∞GX+) for hocolim Bhaut∗,GX

(∨
n Sk ∧ GX+

)
,

even though the left hand side is not a topological monoid (only an
E1-space). These classifying spaces form a topological monoid with
multiplication map induced by wedging maps together. The follow-
ing is proven in Section 2.2 of [Wal85].

Theorem 21.2.6 (Waldhausen). If X is path-conected, there is a weak
equivalence

ΩB

(⊔
n≥0

BGLn(Σ∞GX+)

)
' KS•(wR f (X))).

The map QX+ → A(X)

We can form the wreath product topological group Σn o GX and
include this into haut∗,GX

(∨
n S0 ∧ GX+

)
as “permutation matrices”
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with entries in GX. By increasing the dimension of the sphere in the
target and group completion we get a map

ΩB

(⊔
n≥0

B(Σn o GX)

)
→ ΩB

(⊔
n≥0

BGL(Σ∞GX+)

)
,

and by Waldhausen’s theorem the target is weakly equivalent to
A(X). On the other hand, by a labeled version of the Barratt-Quillen-
Priddy-Segal theorem we have that the source is weakly equivalent
to QX+ := Ω∞Σ∞X+, see Exercise IV.7.7 of [Wei13]. We thus obtain a
map

QX+ → A(X),

and from the construction, it is clear that this is induced by a map of
spectra

Σ∞X+ → A(X),

which one should think of as being a delooping of the inclusion of
the (1× 1)-matrices.

There is an alternative construction of this map, which uses a
Waldhausen category of retractive finite spaces over X which are
weakly equivalent to X t {finite set} rel X, and retraction providing
the finite set up to homotopy with a labeling by elements of X. This
is particularly easy in the case X = ∗, in which case we may instead
use actual finite sets and the map is induced upon S•-construction by
the inclusion of Waldhausen categories

FinSet∗ ↪→ R f (∗).

The Whitehead space

We can now define the Whitehead space.

Definition 21.2.7. The smooth Whitehead spectrum WhDiff(X) of X is
given by the cofiber of the map

Σ∞X+ → A(X).

From this we obtain the smooth Whitehead space

ΩWhDiff(X) := Ω∞+1WhDiff(X),

which is weakly equivalent to the homotopy fiber of QGX+ →
A(X). Note that taking Ω∞+1 does not discard any information: the
map QGX+ → A(X) on π0 is simply the identity map Z → Z, so
WhDiff(X) is 0-connected.



172 alexander kupers

Waldhausen’s splitting theorem

A priori, the relation between ΩWhDiff(X), QGX+ and A(X) may
be complicated. However, using the Bökstedt trace (or equivalently
Goodwillie linearization of A(−)) we can map back to ΣX+. This
uses THHS, which may easily be defined for ring spectra symmetric
spectra using the cyclic bar construction, under cofibrancy conditions.
This is the geometric realization of the simplicial object

[p] 7→ Bcyc
p (R) := R∧p+1,

with differentials induced by thinking of [p] as (p + 1) points on the
circle:

THHS(R) := |Bcyc
• (R)|.

• R
•
R

•
R

•R

•R

•
R

•
R

•
R

•
R

• A

Bcyc
9 (R; A)

d1

multiply

• R
•
R

•
R

•R

•R

•
R •

R

•
R

• A

Bcyc
8 (R; A)

Figure 21.1: The cyclic bar construction
with coefficients.

We can generalize the cyclic bar construction of R to have coeffi-
cients in a bimodule A, see Figure 21.1:

Bcyc
p (R; A) := R∧p ∧ A.

Then we have that Bcyc
• (R; R) = Bcyc(R), while Bcyc

• (R; S) is the
double bar construction B(S, R, S).

Remark 21.2.8. We can also take the
cyclic bar construction of an associative
dg-algebra R with values in a dg-
bimodule A, in the case ChZ. Then
the resulting chain complex is quasi-
isomorphic to the Hochschild chain
complex HH(R; A).

The Bökstedt trace is a generalization of the Dennis trace K∗(R)→
HH∗(R) (upgrading from base Z to base S). The latter is given by
noting that there is a simplicial map1

1 This is the ordinary trace when p = 1.

Bp(GLn(R)) = GLn(R)p → Bcyc
p (R) = Rp+1

(M1, . . . , Mp) 7→ ∑
i1,...,ip

M1
i1,i2 M2

i2,i3 · · ·M
p−1
ip−1,ip

Mp
ip ,i1

.
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We thus get a map

tr : A(X)→ THHS(Σ∞GX+),

whose target is weakly equivalent Σ∞LX+, where LX denotes the
free loop space. This is a generalization of Goodwillie’s theorem that
HH∗(C∗(ΩX)) ∼= H∗(LX) when X is path-connected [Goo85]. We
can then evaluate the free loops at 1 ∈ S1 to map to Σ∞X+. One may
check that the composite map

Σ∞X+ → A(X)→ THHS(Σ∞GX+) ' Σ∞LX+ → Σ∞X+

is the identity: the trace restricted to (1× 1)-matrices is essentially
the identity. As a consequence, we obtain Waldhausen’s splitting
theorem:

Theorem 21.2.9 (Waldhausen). There is a weak equivalence

A(X) 'WhDiff(X)×QX+.

21.3 Moduli spaces of h-cobordisms

We now explain the relationship between algebraic K-theory of
spaces and h-cobordisms.

Concordance diffeomorphisms

The s-cobordism theorem classifies h-cobordisms of dimension n ≥ 6.
In particular, it says that given a closed (n− 1)-dimensional manifold
M, we have that

{h-cobordisms starting at M}/diffeomorphism rel M ∼= Wh1(π1(M)).

Following the philosophy of this course, we next want to know
the automorphisms of the h-cobordisms. Since by composition of h-
cobordisms we can move between different isomorphism classes, the
homotopy type of the automorphisms is independent of the choice
and we may as well take the trivial one. Then an automorphism is a
diffeomorphisms of M× I which fixes only M× {0} pointwise. Let us,
for later use, define a version when M has non-empty boundary ∂M.

Definition 21.3.1. The concordance diffeomorphism group C(M) is given
by

C(M) := Diff(M× I rel M× {0} ∪ ∂M× I).

Note that restriction to M× {1} gives a homomorphism C(M) →
Diff∂(M) whose fiber over the identity is Diff∂(M × I). Thus in the
case of M = Dn, we have up to weak equivalence a fiber sequence

Diff∂(Dn+1)→ C(Dn)→ Diff∂(Dn).
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Thus through understanding the concordance diffeomorphisms
C(Dn) we get close to diffeomorphisms of disks.

The conclusion is that the moduli space H(M) of h-cobordisms start-
ing at M may be described up to weak equivalence as

H(M) 'Wh1(π1(M))× BC(M),

as indeed a homotopy class of maps X → Wh1(π1(M)) × BC(M)

classifies a bundle of h-cobordisms over X with incoming bound-
ary trivialized as X × M. However, there is also a direct geometric
description:

Definition 21.3.2. H(M) is the simplicial set with k-simplices given
by bundles W → ∆k of smooth manifolds with boundary, with
an embedding M × ∆k → W over ∆k, exhibiting W as a bundle of
h-cobordisms starting with M.

Stabilization

There is a map on bundles of h-cobordisms, which takes the fiberwise
product with an interval I. This induces a map H(M) → H(M× I),
where since M × I has boundary we use relative h-cobordisms:
the cobordism must be one of manifolds with boundary and the
boundary cobordism is trivialized as a product. On concordance
diffeomorphisms this may be described by Figure 21.2.

•M× {0}

M× I

(M× 0)× I ∪ (M× I)× {0, 1}

M× I2

Figure 21.2: The stabilization map on
concordance diffeomorphisms.

Definition 21.3.3. We define the stable h-cobordism space as

H(M) := hocolimk→∞ H(M× Ik).

This is weakly equivalent to Wh1(π1)× hocolimk→∞BC(M× Ik).

The stable parametrized h-cobordism theorem and Igusa stability theorem

The following are the main theorems of [Igu88] and [WJR13a].

Theorem 21.3.4 (Igusa). Let M be of dimension m, then the map H(M)→
H(M) is min

(
m−1

3 , m−5
2

)
-connected. It is already surjective on homotopy

groups πk for k ≤ m−5
2 .
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Recall an n-connected is an isomorphism on πi for i < n. Thus,
this becomes an isomorphism on π0 when m ≥ 7 and isomor-
phism on π1 when m ≥ 9, but eventually the range of homotopy
groups in which it is an isomorphism will grow with slope 1/3. The
s-cobordism theorem and work of Hatcher-Wagoner-Igusa show that
π0 and π1 stabilize a bit earlier; π0 when m = 6, and π1 when m = 7
[HW73, Igu84].

Thus it makes sense to want to compute H(M) if one is interested
in families of h-cobordisms. The stable computation is a result of
Waldhausen, Theorem 0.3 of [WJR13a]:

Theorem 21.3.5 (Waldhausen). There is a natural weak equivalence

H(M) ' ΩWhDiff(M).

It should not be obvious how to use this compute H(M), or even
recover the s-cobordism theorem. In the next lecture we will explain
how to do this, and we compute π1(H(M)) ∼= π0(C(M)).
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The Hatcher-Wagoner-Igusa sequence

Takeaways:
· To obtain computations in terms of

Whitehead groups, one compares
A(X) to K(Z[π1]).

· This gives a way to compute
π0(C(M)).

In the previous lecture we started the theorems of Igusa and Wald-
hausen. Today we use them to prove π0(Diff∂(Dn)) → Θn+1 is
bijective is n ≥ 7, as an application of the more general Hatcher-
Wagoner-Igusa sequence. The classical references are [HW73, Igu84],
but we follow [Jah10]. We also use some results from [Wal78].

22.1 The s-cobordism theorem

Our goal in this first section will be to see how the Igusa-Waldhausen
theorems allow for a computation of π0(H(X)), as a practice for the
computation of π1(H(X)) ∼= π0(C(X)) in the next section. We shall
assume throughout that X is path-connected.

Setting up the sequence

Recall that there was a weak equivalence

ΩB

(⊔
n≥0

BGLn(Σ∞GX+)

)
'−→ A(X).

This may be extended to a homotopy commutative diagram

ΩB
(⊔

n≥0 B(Σn o GX)
)

ΩB
(⊔

n≥0 BGLn(Σ∞GX+)
)

A(X)

ΩB
(⊔

n≥0 B(Σn o π1)
)

ΩB
(⊔

[P] BGL(P)
)

K(Z[π1]),

'

'

where the [P] range over isomorphism classes of finitely generated
projective Z[π1]-modules, and GL(P) are the automorphisms as a
Z[π1]-module. The right hand vertical map may also be constructed
as induced by the map of Waldhausen categories

R f (X)→ Ch
f
Z[π1]

,
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given by the relative equivariant chains of the cover corresponding
to π1(X): define Ỹ as the pullback of the universal cover along Y →
X → Bπ̃1, let X̃ be the lift to Ỹ of the subspace X̃, and take C∗(Ỹ, X̃)

as a chain complex of Z[π1]-modules.
We may identify both terms in the left column using the general-

ized Barratt-Quillen-Priddy-Segal theorem: ΩB(
⊔

n≥0 B(Σn o G)) '
QBG+ where QY+ := Ω∞Σ∞Y+. If we then complete the top row one
step to the right, and take the homotopy fibers (over 0) in the first
two vertical directions, we obtain a commutative diagram with rows
and columns fiber sequences

ΩQ(Bπ1/X) F

QX+ A(X) WhDiff(X)

Q(Bπ1)+ K(Z[π1]).

From the vertical fiber sequences, we get two long exact sequence
of homotopy groups with a map between them. We may identify
some of these homotopy groups with higher algebraic K-theory
groups, and also use πn(QY+) ∼= πs

n(Y+), the ith (reduced) stable ho-
motopy group of the pointed space Y+. If we then add the cokernels
of the horizontal maps, we get:

...
...

...

πs
n+1(Bπ1/X) πn(F ) Fn(X) 0

0 πs
n(X+) πn(A(X)) πn(WhDiff(X)) 0

πs
n((Bπ1)+) Kn(Z[π1]) Wn(π1) 0

...
...

...

where we define

Wn(π1) := coker(πs
n((Bπ1)+)→ Kn(Z[π]))

Fn(X) := coker(πs
n+1(Bπ1/X)→ πn(F )).

Note that the left vertical column might not be not exact. By taking
the long exact sequence of a short exact sequence of chain complexes,
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we see whether or not this is the case depends on the injectivity of
the left horizontal maps (one out of three is always injective).

The s-cobordism theorem

As the map QX+ → A(X) is a π0-isomorphism, the first possibly
non-trivial homotopy group πn(WhDiff(X)) is n = 1. Let K(Z[π1])free

be the subspace consisting of those path-component corresponding to
the free modules in K0(Z[π1]).

Lemma 22.1.1. The maps QX+ → Q(Bπ1)+ and A(X) → K(Z[π1])free

are 2-connected, i.e. an isomorphism on πn for n ≤ 1, and surjection on π2.

Proof. The first claim follows from the easy fact that X → Bπ1 is
2-connected, and Q preserving connectivity. Because πn(QY+) ∼=
πs

n(Y+), this may be deduced from the Atiyah-Hirzebruch spectral
sequence for the generalized homology theory πs

∗(−) applied to the
pointed space Y+

E2
pq = Hp(Y; πs

q)⇒ πs
p+q(Y+)

with πs
q the qth stable homotopy group of spheres (so the E2-page

consists of reduced homology groups). If we run these spectral
sequence for both X and Bπ1, the fact that X → Bπ1 is 2-connected
will imply that the map πs

n(X+) → πs
n(Bπ1) is an isomorphism for

n ≤ 1 and a surjection for n = 2, as desired.
The second claim follows from the fact that the map π0 : ∏n Ωk(

∨
n Sk ∧

GX+) →
⊕

n Z[π1]
n is 1-connected (considering the target as a dis-

crete space), and we then apply B, increasing connectivity by 1.
Applied ΩB(

⊔
n≥0−) preserves connectivity. It may be regarded as a

special case of Proposition 1.1 of [Wal78].

We may compute that πs
1(X+) ∼= π1((Bπ1)+) ∼= πab

1 ⊕Z/2Z using
the Atiyah-Hirzebruch spectral sequence (there is no differential
into the πab

1 -term because you can map out to H1
∼= πab

1 ), while
πs

2(Bπ1/X) vanishes because the map X → Bπ1 is 2-connected.
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The conclusion is that for n = 1 the diagram simplifies to

0 0 0

0 πs
2(Bπ1/X) ∼= 0 π1(F ) ∼= 0 F1(X) ∼= 0 0

0 πs
1(X+) ∼= πab

1 ⊕Z/2Z π1(A(X)) π1(WhDiff(X)) 0

0 πs
1((Bπ1)+) ∼= πab

1 ⊕Z/2Z K1(Z[π1]) W1(π1) 0

0 0 0

0

∼= ∼= ∼=

Let us use this to reprove the s-cobordism theorem.

Corollary 22.1.2. Let X be a closed smooth manifold of dimension n. Then
we have that π0(H(X)) ∼= π1(WhDiff(X)) ∼= Wh1(Z[π1]) if n ≥ 6.

Proof. The identification π0(H(X)) ∼= π1(WhDiff(X)) uses the combi-
nation of Igusa and Waldhausen’s theorems (with improved range).
It remains to identify

W1(π) := coker
(

πab
1 ⊕Z/2Z→ K1(Z[π])

)
with Wh1(π1), but this is easy once one notes that [g] ∈ πab

1 goes to
the image of the (1× 1)-matrix in K1(Z[π1]) and the non-trivial ele-
ment of Z/2Z goes to −1. Identifying the map with the inclusion of
(1× 1)-matrices, we thus get exactly the ±g in our original definition
of Wh1(π1).

22.2 The Hatcher-Wagoner-Igusa sequence

Next we consider n = 2. In that case we can use the computations of
the previous section to write

...
...

...

πs
3(Bπ1/X) π2(F ) F2(X) 0

0 πs
2(X+) π2(A(X)) π2(WhDiff(X)) 0

πs
2((Bπ1)+) K2(Z[π1]) W2(π1) 0

0 0 0
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We shall just take Wh2(π1) to be W2(π1):

Definition 22.2.1. We set Wh2(π1) := coker (πs
2((Bπ1)+)→ K2(Z[π1])).

Remark 22.2.2. This is enough to obtain
an interesting result, as we shall later
see that Wh2(Z/2Z) ∼= Z/2Z.

It remains to do the following computations:

(a) identify π2(F ),
(b) identify πs

3(Bπ1/X) and show the map πs
3(Bπ1/X) → π2(F ) is

injective,

(c) show the image of K3(Z[π1]) → π2(F ) contains a particular
element,

(d) show that the map πs
2((Bπ1)+)→ K2(Z[π1]) is injective.

We start with (a).

Lemma 22.2.3. We have that π2(F ) ∼= H0(π1; (π2 ⊕Z/2Z)[π1]).

Proof. By the group completion theorem, in the commutative dia-
gram

colimn→∞BGLn(Σ∞
+GX) A(X)

colimn→∞BGLn(Z[π1]) K(Z[π1])free,

the vertical maps have the same relative homology (when restricting
the right hand side to a path component). Since the right map is
2-connected, its relative π3 (which is π2 of the homotopy fiber F )
equals its relative H3 by the Hurewicz theorem and the fact that the
spaces involved are simple, so π1 acts trivially on higher homotopy
groups.

We may compute relative H3 using the left hand side, obtaining an
isomorphism

π2(F ) ∼= colimn→∞H3(BGLn(Σ∞
+GX), BGLn(Z[π1])).

This may in turn be computed by a relative Serre sequence for the
vertical maps in

BGLn(Σ∞
+GX) BGLn(Z[π1])

BGLn(Z[π1]) BGLn(Z[π1])

id

id

From now on we suppress the colimit as n→ ∞ from the notation
(this is harmless as a consequence of homological stability). The left
map is obtained by applying B to the map

GLn(Σ∞
+GX)→ GLn(Z[π1]).

The fiber of this map over all components of GLn(Z[π1]) are weakly
equivalent, since all components of QGX+, and may identified this
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with ∏n2 Q0GX+. The action here is given by GLn(Z[π1]) is given by
conjugation, upon writing this as Mn(Q0GX+). Thus we obtain the
spectral sequence

E2
pq = Hp(BGLn(Z[π1]); Hq(∗, BMn(Q0GX+)) ∼=

Hp(BGLn(Z[π1]); Hq−1(BMn(Q0GX+))

Hp+q(BGLn(Σ∞
+GX), BGLn(Z[π1])).

Thus we see that the only non-trivial contribution to H3 is

H0(GLn(Z[π1]); H2(BMn(Q0GX+))) ∼= H0(GLn(Z[π1]); π1(Mn(Q0GX+)))

∼= H0(GLn(Z[π1]); Mn(π
s
1(GX+))).

The trace tr : Mn(πs
1(GX+)) → πs

1(GX+) does not factor over
the GLn(Z[π1])-coinvariants, but it does when we take the quotient
of the latter by g · a · g−1 − a for g ∈ π1 and a ∈ πs

1(GX+) (think
about the case n = 1). In fact, it is a matter of elementary linear
algebra that after taking this quotient, the trace induces an isomor-
phism, see Lemma 22.2.4. So the only contribution to relative H3 is
H0(π1, πs

1(GX+)), where the action of g is by g : a 7→ g · a · g.
Let us finally compute πs

1(GX+) using the Atiyah-Hirzebruch
spectral sequence to be

⊕
γ∈π1

H1(GXγ) ⊕
⊕

γ∈π1
Z/2Z. Using

H1(GXγ) ∼= π2, we may identify by translation with (π2 ⊕Z/2Z)[π1]

and compute π2(F ) as H0(π1; (π2 ⊕Z/2Z)[π1]).

Lemma 22.2.4. For A a Z[G]-module, we have that the trace induces an
isomorphism H0(GLn(Z[G]); Mn(A)) → H0(G; A), where the action of
GLn(Z[G]) is by conjugation.

Proof. Evey element of Mn(A) is a sum of aijδij. Since conjugation
can interchange basis vectors, we have that aeii ∼ ae11, and con-
jugation by a diagonal matrix with first diagonal entry g and the
remainder are 1’s gives ae11 ∼ g · ·g−1e11.

Similarly every aeij for i 6= j is equivalent to ae12 and conjugating
with 1 0

1 1
idn−2


shows that ae12 is equivalent to −ae11 − ae21 + ae22 + ae12, which is in
turn equivalent to 0.

Remark 22.2.5. We basically proved Proposition 1.2 of [Wal78],
once one remarks that the quotient of πs

1(GX+) by g · a − a · g is
HH0(Z[π1], πs

1(GX+)), with HH denoting Hochschild homology.
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The computation of πs
3(Bπ1/X) is easier, (b).

Lemma 22.2.6. We have that πs
3(Bπ1/X) ∼= H0(π1; π2[1]), thinking of

1 ∈ π1.

Proof. We have that

πs
3(Bπ1/X) ∼= H3(Bπ1/X) ∼= π3(Bπ1, X)/π1

∼= H0(π1, π2(X)).

The identification as a subset H0(π1; (π2 ⊕Z/2Z)[π1]) follows by
identifying QBX+ → A(X) with the inclusion (1× 1)-matrices.

We will not prove (c) and (d), as this gets too much into the details
for a lecture, as both are proven by naturality and particular compu-
tations. For (c), the claim is that H0(π1; Z/2Z[1]) is in the image of
K3(Z[π1]) → π2(F ). This follows by naturality using ∗ → X → ∗,
and a computation in the case ∗ = X. For (d), one proves the case
π1 = Z/2Z first. See pages 250–252 of [Jah10].

Definition 22.2.7. We define Wh+
1 (π1, Z/2Z⊕ π2) as

Wh+
1 (π1, Z/2Z⊕ π2) := F2(X)

∼= H0(π1; (π2 ⊕Z/2Z)[π1])/H0(π1; (π2 ⊕Z/2Z)[π1])).

So our diagram becomes

πs
3((Bπ1)+) K3(Z[π1]) W3(π1) 0

0 H0(π1; π2[1]) H0(π1; (π2 ⊕Z/2Z)[π1]) F2(X) 0

0 πs
2(X+) π2(A(X)) π2(WhDiff(X)) 0

0 πs
2((Bπ1)+) K2(Z[π1]) Wh2(π1) 0

0 0 0

(∗)

where (∗) hits at least H0(π1; Z/2Z[1]). So using that we have a
short exact sequence of chain complexes in a range, and applying the
Igusa-Waldhausen theorems identifying π1(H(X)) with π0(C(X))

for X a manifold of dimension ≥ 7, we recover a result of Hatcher-
Wagoner [HW73] with corrections by Igusa [Igu84]:

Theorem 22.2.8. If n ≥ 7 we have an exact sequence:

K3(Z[π1])→Wh+
1 (π1, Z/2Z⊕π2)→ π1(H(X)) ∼= π0(C(X))→Wh2(π1)→ 0.

(22.1)
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Isotopy classes of diffeomorphisms of disks

Having proven the Hatcher-Wagoner-Igusa sequence, we apply it to
isotopy classes of diffeomorphisms of disks. Takeaways:

· π0(C(M)) vanishes if M is simply-connected of dimension ≥ 7 (in
fact n ≥ 5).

· If an element of π0(Diff+(Sn)) is in the kernel of the map to Θn+1,
it is pseudo-isotopic to the identity. Using the above, this means it
is isotopic to the identity as long as n ≥ 5.

· Θn+1 is a finite abelian group for n ≥ 5.

23.1 Pseudoisotopy implies isotopy

Recall that a diffeomorphism f of closed M is isotopic to the identity
if there is diffeomorphism ft : M × [0, 1] → M × [0, 1] commuting
with the projection to [0, 1], such that f0 = id and f1 = f . The notion
of pseudo-isotopy drops the condition that ft commutes with the
projection.

Definition 23.1.1. A diffeomorphism f of closed M is pseudo-isotopic
to g if there is diffeomorphism F : M× [0, 1] → M× [0, 1] such that
F(M× {i}) = M× {i} for i = 0, 1, F|M×{0} = id and F|M×{1} = g.

The following was first proven by Cerf, who also improved the
range to n ≥ 5, [Cer70].

Lemma 23.1.2. If M is simply-connected of dimension n ≥ 7, then
π0(C(M)) = 0.

Proof. Using the Hatcher-Wagoner-Igusa sequence, this reduces to
algebra. It is clear from the definition that the Wh+

1 -term H0(π1, (π2 ⊕
Z/2Z)[π1])/H0(π1, (π2 ⊕ Z/2Z)[1]) vanishes with π1 is trivial,
as we take a quotient of a group by itself. For Wh2(∗), we need to
explain how to compute the map

πs
2(∗+) ∼= K2(FinSet∗)→ K2(Z).
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This is done by a Postnikov tower argument applied to the K-
theory spaces. First, we kill π0 by picking a component. We may
compute K2 by killing π1 and computing H2. On the level of groups,
killing π1 amounts to passing to the maximal perfect subgroup Gn of
Σn, resp. GLn(Z). These are given by An and SLn(Z) for n as n→ ∞.

We thus need to compute both groups and the map

H2(BAn)→ H2(BSLn(Z))

as n→ ∞. They are isomorphisms by Lemma 23.1.3.

We’ll compute the map on K2 using central extensions, see Section
III.5.3 of [Wei13] or the notes [Pra15].

Lemma 23.1.3. For n � 0, we have that Z/2Z ∼= H2(BAn) →
H2(BSLn(Z)) ∼= Z/2Z is an isomorphism.

Remark 23.1.4. We thus compute
K2(Z) ∼= Z/2Z, as listed in Table 20.2.Proof. The H2 of a perfect group Gn is related to the universal central

extension G̃n of Gn by the following short exact sequence

1→ H2(Gn)→ G̃n → Gn → 1

of groups, where G̃n has the property that each projective complex
representation of Gn lifts uniquely to G̃n or equivalently has the
property that it has a unique map to every other central extension
(the existence of this universal extension requires the perfectness, see
Lemma III.5.3.2 of [Wei13]).

Remark 23.1.5. One should think of
this proof of this lemma as studying the
composition

K(FinSet∗)→ K(Z)→ K(Rtop) = ko.

Alternatively, given presentations,
we could in principle have proven
H2(An) → H2(SLn(Z)) is an isomor-
phism using Hopf’s formula without
resorting to topological K-theory.

In particular, we may attempt to construct an approximation to G̃n

by mapping to a group which we know has a central attention taking
the pull back. For example, we have the map An → SOn(R) by acting
on the permutation representation. The group SOn(R) has a Z/2Z

central extension Spinn(R), and it is a fact that the pullback of this
to An is the universal central extension Ãn. In particular, there is an
isomorphism

Z/2Z ∼= H2(BAn)→ H2(BSOn(R)) ∼= Z/2Z.

Firstly, one computes H2(BAn) ∼= Z/2Z by using the identification
with πs

2(∗+) and computing this using stable homotopy theory1. Sec- 1 Using the Pontryagin-Thom theorem,
one may also use framed manifolds or
framed immersions, see e.g. [?]

ondly, one shows that the map is surjective by using the construction
of Spinn(R) to show that the pullback to An is a non-trivial central
extension.

Since the map An → SOn(R) factors over SLn(Z), we conclude
that H2(BAn) → H2(BSLn(Z)) is injective. But it is also true that
H2(BSLn(Z)) ∼= Z/2Z, see e.g. Section III.5 of [Wei13], so it has to
be an isomorphism. I do not know a non-involved proof of this; the
standard one uses Steinberg symbols.
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Let us explicitly state the consequences in turns of pseudo-
isotopies.

Corollary 23.1.6. If M is simply-connected of dimension m ≥ 5, then f is
pseudo-isotopic to g if and only if f is isotopic g.

Proof. The direction⇐ is obvious, so let us prove⇒. If F : M× I →
M× I is a pseudo-isotopy from f to g, then F′ := ( f × idI)

−1 ◦ F is a
pseudo-isotopy from f−1 ◦ g to id. This is exactly an element of C(M).
But π0(C(M)) = 0 under the assumptions of the corollary, so there
is a path F′t of concordance diffeomorphisms from F′ to idM×I . It we
restrict F′t to M× {1}, we obtain an isotopy from F′0|M×{1} = f−1g to
F′1|M×{1} = idM. Composing with f , we obtain an isotopy from g to
f .

23.2 Application to diffeomorphisms of disks

The group of homotopy spheres

Before, we defined the set Θn+1 as the set of oriented homotopy
(n + 1)-spheres up to orientation-preserving diffeomorphism or
equivalently (when n ≥ 4) up to h-cobordism.2 We showed before 2 One of the big open questions of 4-

manifold topology (that is, when n = 3)
is whether D4 admits a unique smooth
structure.

that connected sums of path-connected oriented manifolds is well-
defined up to diffeomorphism, so this induces an abelian monoid
structure on Θn+1.

Lemma 23.2.1. If n ≥ 4, Θn+1 is an abelian group.

Proof. Take Σ× I and removed a neighborhood of ∗ × I. The result is
a (n + 2)-dimensional manifold whose boundary is diffeomorphic to
Σ#Σ̄, where Σ̄ denotes Σ with opposite orientation. Removing a little
disk from a point in its interior gives an h-cobordism from Sn+1 to
Σ#Σ̄, so the inverse of Σ is Σ̄.

Given a f ∈ Diff+(Sn), we get Sn+1
f be the homotopy sphere

obtained by using f as an attaching map

Sn+1
f := Dn+1 ∪ f Dn+1.

Lemma 23.2.2. The map π0(Diff∂(Dn)) → Θn+1 given by [ f ] 7→ Sn+1
f is

a homomorphism.

Proof. Let f , g ∈ Diff∂(Dn). If we take the connected sum along the
equator away from the support of the diffeomorphisms, the clutching
function for Sn+1

f #Sn+1
g is obtained by juxtaposing f and g. By an

Eckmann-Hilton argument juxtaposition induces the same operation
on π0 as composition.
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This means that to show π0(Diff∂(Dn)) → Θn+1 is injective, it
suffices to show its kernel is trivial.

Proposition 23.2.3. For f ∈ Diff+(Sn), the homotopy sphere Sn+1
f is

diffeomorphic to Sn+1 if and only if f is pseudo-isotopic to the identity.

Proof. For⇐, a pseudoisotopy F from f to the identity may be used
to constructed a diffeomorphism Sn+1

f → Sn+1 by inserting F on the

cylinder between a little disk around the origin in the first Dn+1, and
the second Dn+1:

g : Sn+1
f
∼=Dn+1 ∪ f Dn+1 → Sn+1

x 7→


x if x ∈ Dn+1

1/2 ⊂ first Dn+1,

F(2r− 1, θ) if x = (r, θ) ∈ first Dn+1 and r > 1/2,

x if x ∈ second Dn+1.

For⇒, suppose we are given a diffeomorphism g : Sn+1
f → Sn+1.

We shall get a bit more control on it, and the pseudo-isotopy will
appear. Firstly, without loss of generality g is orientation-preserving.
Both Sn+1

f and Sn+1 come with embeddings of Dn+1 t Dn+1; the first a

small disk around the origin in the first Dn+1, the second equal to the
second Dn+1. Consider the composition

Dn+1 t Dn+1 ↪→ Sn+1
f → Sn+1

whose isotopy class is given by an element of π0 of the configuration
space of two points in Sn+1 with labels in the oriented frame bundle
of TSn+1. This is path-connected, so we may find an isotopy to the
standard inclusion Dn+1 t Dn+1 ↪→ Sn+1, and by isotopy extension we
may assume that the following diagram commutes

Dn+1 t Dn+1

Sn+1
f Sn+1.

g

Thus g may be interpreted as a diffeomorphism ḡ : Sn × I → Sn × I
which coincides with the identity on Sn × {0} and f−1 on Sn × {1}.
Compose f × idI to get the desired pseudo-isotopy F.

We obtain the following for n ≥ 7 (but let’s state it with the
improved n ≥ 5 range due to Cerf):

Theorem 23.2.4. If n ≥ 5, the surjective map

π0(Diff∂(Dn))� Θn+1

is also injective. That is, π0(Diff∂(Dn)) ∼= Θn+1.
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Proof. If [ f ] ∈ π0(Diff∂(Dn)) ∼= π0(Diff+(Sn)) is in the kernel
of π0(Diff∂(Dn)) � Θn+1, it is pseudo-isotopic to the identity
by Proposition 23.2.3 and hence isotopic to the identity Corollary
23.1.6. Thus [ f ] is equal to the identity element of π0(Diff+(Sn)) ∼=
π0(Diff∂(Dn)).

23.3 Facts about Θn+1

Kervaire and Milnor studied Θn+1 in detail [KM63]. Firstly, they
showed that every homotopy (n + 1)-sphere admits a stable framing,
though not necessarily uniquely so. We will give the proof in the easy
cases. The remaining cases use results of Rokhlin and Adams on the
J-homomorphism.

Lemma 23.3.1. For n + 1 ≡ 0, 3, 4, 5, 6, 7 (mod 8), every homotopy
(n + 1)-sphere admits a stable framing.

Proof. The stable tangent bundle is classified by an element τ of
πn+1(BSO). This group vanishes if n ≡ 3, 5, 6, 7 (mod 8). It is
Z if n ≡ 0, 4 (mod 8). In that case the homotopy group corre-
spond rationally to a dual of p(n+1)/4. In particular τ 6= 4 implies
that the 〈p(n+1)/4(TΣ), [Σ]〉 6= 0. All the lower degree Pontrya-
gin classes have to vanishes since they live in a zero cohomology
group, so p(n+1)/4(TΣ) is a non-zero rational multiple of the L-genus
L(n+1)/4(TΣ). By the Hirzebruch signature theorem we have that
〈L(n+1)/4(TΣ), [Σ]〉 = σ(Σ), which hence must also be non-zero. But
the signature must be zero, as there is no cohomology in the relevant
degrees. We conclude that τ = 0.

Thus, we may map an element Σ ∈ Θn+1 to the union p(Σ)
over all its stable framings of the framed bordism class in the
framed bordism group Ωfr

n+1. The group Ωfr
n+1 may be identified

with πs
n+1 by the Pontryagin-Thom theorem. This map becomes

a well-defined group homomorphism if we quotient by p(Sn+1):
ϕ : Θn+1 → πs

n+1/p(Sn+1). Its kernel bPn+2 := ker(ϕ) consists of
those homotopy (n + 1)-spheres which admit a stable framing such
that they bound a some stable framed manifold. We trivially get a
short exact sequence

0→ bPn+2 → Θn+1 → Θn+1/bPn+2 → 0

where the right term is finite since it is a subset of the finite group
πs

n+1/p(Sn+1).
What is the advantage of bPn+2? Any embedded sphere in the

bounding manifold B for Σ ∈ bPn+2 will have trivial normal bundle,
so is suitable for surgery. This allows one to simplify the bounding
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manifold. If we can reduce it to a contractible manifold, we can
use the h-cobordism theorem to show that Σ ∼= Sn+1. When B is
of odd dimension — n is even — there is no obstruction to making
B contractible. When B is even dimension — n = 2k + 1 is odd —
there is an obstruction and you only make B k-connected. However,
Kervaire and Milnor were able to show that the obstruction group is
finite, so that we can conclude:

Theorem 23.3.2 (Kervaire-Milnor). Θn+1 is finite if n ≥ 5.

Corollary 23.3.3. If n ≥ 5, the group π0(Diff∂(Dn)) is finite abelian.
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The results of Kervaire-Milnor





25
The Hatcher spectral sequence and the Farrell-Hsiang
theorem

Takeaways:
· Rationally, A(∗) is weakly equiva-

lent to K(Z).
· There is a spectral sequence comput-

ing π∗(BDiff∂(Dn))⊗Q in terms of
π∗(C(Dn × Ik)) with d1-differential
involving an involution correspond-
ing to flipping the h-cobordism.

· Using this, we show that in a range
π∗(BDiff∂(Dn)) ⊗ Q vanishes
when n is even, and is given by
K∗+1(Z)⊗Q when n is odd.

Last lecture we finished the proof that π0(Diff∂(Dn)) ∼= Θn+1 for
n ≥ 5. We will use this to compute π∗(Diff∂(Dn)) ⊗ Q, a result
originally due to Farrell and Hsiang. Instead of the original proof, we
shall give one using the Hatcher spectral sequence. Our references
are [FH78, Hat78].

25.1 Concordance diffeomorphisms of Dn, rationally

Recall that the topological group C(M) of concordance diffeo-
morphisms is given by those diffeomorphisms of M × I that fix
t(M) := M× {0} ∪ ∂M× I pointwise.

Let us specialize to M = Dn. Restricting a concordance diffeo-
morphism of Dn to the upper boundary Dn × {1}, gives the fiber
sequence

Diff∂(Dn+1)→ C(Dn)→ Diff∂(Dn). (25.1)

• •I

Dn

If our eventual goal is to compute π∗(Diff∂(Dn)) ⊗Q, it is thus
a good idea to compute π∗(C(Dn))⊗Q first. Using (25.1), this will
serves as a reality check for Theorem 25.4.2.

Let us compute π∗(C(Dn))⊗Q. The Igusa-Waldhausen theorems
imply that there is an isomorphism1 1 Note that C(Dn) is both a topolog-

ical group and an En-algebra, so its
homotopy groups are abelian when
n ≥ 1.
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π∗(C(Dn))⊗Q ∼= π∗+2(WhDiff(Dn))⊗Q (25.2)

for ∗ ≤ min
( n−7

3 , n−9
2
)

(called the concordance stable range).2 We may 2 This range may be improved using
Morlet’s disjunction theorem, see e.g.
[RW15].

replace WhDiff(Dn) with WhDiff(∗), as the Kan loop group GX only
depends on the weak homotopy type of X and thus WhDiff(−) is a
weak homotopy invariant on path-connected spaces. One may also
compare the Waldhausen categories R f (−), by applying the covariant
functoriality by taking pushouts to maps mutually inverse up to
weak equivalence. This proof also works for spaces X that are not
path-connected, see Proposition 2.1.7 of [Wal85].

To compute the right hand side, we recall from the Waldhausen
splitting theorem, here Theorem 21.2.9, stated in terms of spectra

A(∗) ' S×WhDiff(∗).

We also recall the fact that S → A(∗) is a π0-isomorphism. It is
well-known that π∗(S) ⊗Q ∼= 0 unless ∗ = 0, so that to compute
π∗+2(WhDiff(∗))⊗Q, it suffices to compute π∗(A(∗))⊗Q and discard
the Q in degree 0.

Let Mn(QS0)id denote the component of GLn(S) corresponding to
the identity matrix. By construction, there is fiber sequence

Mn(QS0)id → GLn(S)→ GLn(Z),

with fiber taking over the identity in GLn(Z).
Since all components of QS0 are weakly equivalent, this is weakly

equivalent to an n2-fold product of Q0S0. Since Q0S0 is rationally
weakly contractible, so is Mn(QS0)id. Thus, when we take a disjoint
union over n ≥ 0 and apply ΩB we obtain a rational weak equiva-
lence

ΩB
(⊔

n≥0 BGLn(S)
)

A(∗)

ΩB
(⊔

n≥0 BGLn(Z)
)

K(Z).

'

'Q

'

Remark 25.1.1. This generalizes to
a map A(Bπ1) → K(Z[π1]) that is a
rational isomorphism away from π0,
as in general this map need not be
surjective on π0 (it only hits the path
components corresponding to finitely
generated free modules).

This discussion is summarized by the following rational computa-
tion of WhDiff(∗):

Proposition 25.1.2. There is an isomorphism

π∗(WhDiff(∗))⊗Q ∼=

0 if ∗ = 0

K∗(Z)⊗Q otherwise.

Remark 25.1.3. The rational algebraic K-theory groups of Z appearing
in Proposition 25.1.2 were computed by Borel using analysis on the
Borel-Serre compactification of SLn(Z)\SLn(R)/On(R). In the end,
he reduced it to a computation Lie algebra cohomology, whose result
is as follows [Bor74, Jan16]:3 3 In previous chapters, we have already

computed or stated K0(Z) ∼= Z,
K1(Z) ∼= Z/2Z, K2(Z) ∼= Z/2Z, which
is consistent with Borel’s computation.
See also Table 20.2.
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K∗(Z)⊗Q ∼=

Q if ∗ = 0 or ∗ ≥ 5 satisfies ∗ ≡ 1 (mod 4)

0 otherwise.

25.2 Block diffeomorphisms

To get at Diff∂(Dn) instead of C(Dn), we use a different approach.
This uses the simplicial group of block diffeomorphisms:

Definition 25.2.1. Let M be a smooth manifold, then the block diffeo-
morphisms Diffb

∂(M) is the simplicial group with k-simplices given by
the set of diffeomorphisms f : M× ∆k → M× ∆k such that (i) for each
face σ ⊂ ∆k we have f (M × σ) = M × σ, and (ii) f fixes ∂M × ∆k

pointwise.

Example 25.2.2. We have that π0(Diffb
∂(M)) equals the set of pseudo-

isotopy classes of diffeomorphisms of M rel boundary.

This simplicial group is built to be more easily studied by the
surgery-theoretic techniques. These techniques are developed to
classify manifolds or isotopy classes of diffeomorphisms, and block
diffeomorphisms can be studied by these techniques because each of
its homotopy groups may be identified with π0 of a different space.
Let us explain this.

All simplicial groups are Kan, so an element of πk(Diffb
∂(M)) is

represented by a diffeomorphism f : M × ∆k → M × ∆k that is the
identity on ∂M × ∆k ∪ M × ∂∆k, i.e. an element of Diff∂(M × ∆k).
Two representatives f0, f1 are equivalent if there is a diffeomorphism
of M × ∆k × I that is face-preserving and the identity on all of the
boundary except M × ∆k × {0, 1}, on which it is f0 and f1. This is
equivalent to f0 and f1 being pseudo-isotopic, an thus we have that

πk(Diffb
∂(M)) ∼= π0(Diffb

∂(M× ∆k)).

Recalling that the topological group Diff∂(M) was weakly equiva-
lent to the simplicial group SDiff∂(M) with k-simplices given by the
set of diffeomorphisms f : M× ∆k → M× ∆k preserving the map to
∆k and fixing ∂M× ∆k we obtain an inclusion

SDiff∂(M) ↪→ Diffb
∂(M).

From now we will write Diff∂(M) instead of SDiff∂(M), so as to
make the notation more uniform.

Let us now restrict to M = Dn for n ≥ 5. Then we see that

πk(Diffb
∂(Dn)) ∼= π0(Diffb

∂(Dn+k) ∼= π0(Diff∂(Dn+k)) ∼= Θn+k+1,

the latter following from pseudoisotopy-implies-isotopy. Hence the
homotopy groups of the block diffeomorphisms of Dn are finite by
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Theorem 1.2 of Kervaire-Milnor [KM63], as long as n + k + 1 ≥ 5.
We conclude from this that each path component of Diffb

∂(Dn) is
rationally weakly contractible. Let us now consider the quotient
Diffb

∂(Dn)/Diff∂(Dn). Since Diff∂(Dn) ⊂ Diffb
∂(Dn), the action is free

and we have a fiber sequence

Diff∂(Dn)→ Diffb
∂(Dn)→ Diffb

∂(Dn)/Diff∂(Dn).

When n ≥ 5, the middle term is rationally weakly contractible and
the inclusion Diff∂(Dn) ↪→ Diffb

∂(Dn) is a π0-isomorphism. Hence we
may conclude that the right term is a rational classifying space of the
left term:

Proposition 25.2.3. For n ≥ 5, there is a rational weak equivalence

BDiff∂(Dn) 'Q Diffb
∂(Dn)/Diff∂(Dn).

25.3 The Hatcher spectral sequence

We shall describe a spectral sequence due to Hatcher computing the
homotopy groups Diffb

∂(M)/Diff∂(M) in terms of homotopy groups
of C(M× Ik), see Proposition 2.1 of [Hat78]. We then describe it in the
concordance stable range.

The construction of the spectral sequence

To describe it, we need some new definitions.

Definition 25.3.1. Dk(M) is the quotient of the simplicial group of
diffeomorphisms of M× Ik rel ∂M× Ik which on M× ∂Ik preserve the
projection to Ik, by those diffeomorphisms preserving the projection
to Ik everywhere.

Remark 25.3.2. Written out in symbols, we might denote Dk(M) by

Diff∂(M× Ik over ∂Ik)/ΩkDiff∂(M).

Using the Dk(M) we may provide a filtration of the homotopy
groups of Diffb

∂(M)/Diff∂(M). To do this, we use that there is a
map πi+j(Dk(M)) → πi(Dk+j(M)) by interpreting a Ii+j-indexed
family of diffeomorphism of M × Ik as an Ii-indexed family of
diffeomorphism of M × Ik+j. There is also a map π0(Dk(M)) →
πk(Diffb

∂(M)/Diff∂(M)). We define the ascending filtration of
πk(Diffb

∂(M)/Diff∂(M)) as the image of the vertical maps in

0 πk(D0(M)) πk−1(D1(M)) · · · π0(Dk(M))

πk(Diffb
∂(M)/Diff∂(M))

(25.3)
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We claim this is the E∞-page of the spectral sequence associated to
an exact couple.

Remark 25.3.3. Let us recall how one checks this is the case. With
our grading convention, an exact couple is a pair of bigraded abelian
groups D∗,∗ and E∗,∗ with morphisms i, j, k of various bidegrees:

Di,k Di−1,k+1

Ei−1,k,

i
(−1,1)

j

(0,−1)

k

(0,0)

with the dashed line indicating that the target is a different bidegree
(it should really map to Di−1,k). We require that this diagram is exact,
i.e. ker(j) = im(i), etc.

We may then note that d := j ◦ k maps E∗,∗ into a chain complex
and take homology to obtain a new exact couple (E′)∗,∗ = H(E∗,∗),
(D′)∗,∗ = id(i), i′ = i|D′ , and j′, k′ defined appropriately (see page 38

of [McC01]). Iterating this, and calling E∗,∗ E1
∗,∗, (E′)∗,∗ E2

∗,∗, etc., we
obtain a spectral sequence. It is a priori unclear whether it converges
to something. There are two natural conditions for the target: D−∞ =

colimiD∗,∗ or D∞ = limi D∗,∗, with natural increasing filtration
FkD∞ = im(D∗,k → D−∞) and decreasing filtration FkD−∞ =

ker(D∞ → D∗,k) respectively.
In the case that in the diagram · · · → D∗+1,k−1 → D∗,k vanishes

for k � 0, the limit vanishes (as does a lim1-term, which one should
always take into account when taking limits of abelian groups).
Thus in this case D−∞ is the natural candidate. General convergence
results of Boardman [?] (see also pages 76–78 of [McC01]) imply
that the spectral sequence indeed converges when there are at most
finitely many differential into or out of a given entry.

Definition 25.3.4. Ck(M) is the quotient of the simplicial group of
the diffeomorphisms M× Ik × I rel ∂M× Ik × I which on M× t :=
M× Ik × {0} ∪M× ∂Ik × I preserve the projection to Ik × I, by the
subgroup preserving the projection to Ik × I everywhere.

Remark 25.3.5. Written out in symbols, we might denote Ck(M) by

Diff∂(M× Ik × I over @)/Ωk+1Diff∂(M).

Inclusion of concordance diffeomorphisms, which are the identity
on M× @, gives a map C(M× Ik)→ Ck(M).

Lemma 25.3.6. The map C(M× Ik)→ Ck(M) is a weak equivalence.
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Proof. Using a smooth retraction r : Ik × I → t, we may constructed
a map ρ from Ck(M) to the group of diffeomorphisms of M× Ik × I
preserving the projection to Ik × I everywhere:

ρ( f ) : (m, t) 7→ (π1 ◦ f (m, r(t)), t).

This shows Ck(M) is isomorphic to the quotient of C(M× Ik) by
the intersection C(M× Ik) with the subgroup of diffeomorphisms of
M× Ik × I preserving the projection to Ik × I. But this subgroup is
weakly contractible, by “pushing the non-trivial part out through the
upper boundary.”

Restricting elements of Ck(M) to M × Ik × {1} induces a fiber
sequence

Dk+1(M)→ Ck(M)→ Dk(M),

and the long exact sequences of homotopy groups of these fiber
sequences assemble into collection of groups:

πi(Dk(M)) πi−1(Dk+1(M))

πi(Ck(M)).

i

jk

where the map i is indeed the map πi(Dk(M)) → πi−1(Dk+1(M))

described before. This is almost an exact couple, except that it is not
exact at π0(Dk). To fix this, we make the following definition

Di,k :=

πi(Dk(M)) if i ≥ 0

πk+i(Diffb
∂(M)/Diff∂(M)) if i < 0

Ei,k :=

πi(Ck(M)) if i ≥ 0

0 otherwise,

with the obvious extension of i, j and k: in particular, the extension of
i to D0,k → D−1,k+1 is the map π0(Dk(M))→ πk(Diffb

∂(M)/Diff∂(M))

is induced by inclusion. To check exactness of this couple, we only
need to remark two things. Firstly, each πk(Diffb

∂(M)/Diff∂(M)) is
represented by an element of πk(Diffb

∂(M)) ∼= π0(Diffb
∂(M× Ik)), and

so may be hit by an element of π0(Dk(M)). Secondly, the kernel of
π0(Dk+1(M)) → πk(Diffb

∂(M)/Diff∂(M)) consists of elements repre-
sented by f such that there is a diffeomorphism of M × Ik × I that
equals f on M× Ik × {1}, i.e. if f in the image of π0(Ck(M)) under j.

In this case D∞ and lim1
i D∗,∗ vanish, while D−∞ is isomorphic

to π∗(Diffb
∂(M)/Diff∂(M)). The induced filtration on D−∞ is exactly

the one from (25.3). We thus get a spectral sequence which con-
verges since it is first quadrant. The E1-page is Ei,k ∼= πi(Ck(M)) ∼=
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πi(C(M× Ik)). By construction the d1-differential is the map k ◦ j. This
is easily seen to be given by the map

d1 : πq(C(M× Ip))→ πq(C(M× Ip−1))

given by restriction to the upper boundary M× Ip × {1}.
The conclusion is the following, called the Hatcher spectral sequence,

see Section 2 of [Hat78]:

Proposition 25.3.7 (Hatcher). There is a spectral sequence

E1
pq = πq(C(M× Ip))⇒ πp+q+1(Diffb

∂(M)/Diff∂(M)),

which d1-differential given by restriction to the upper boundary.

The differential

The homotopy groups of C(M) have at least two additions (three if
n ≥ 1). The first comes from the group structure and the second is
concatenation (a third one is ordinary addition on homotopy groups):

f ∗ g : (m, t) 7→

 f (m, 2t) if t ≤ 1/2

g(m, 2t− 1) ◦ f (m, 1) if t > 1/2.

They are equal by an Eckmann-Hilton argument.
If f ∈ C(M× Ip) is in the image of the stabilization map σ : C(M×

Ip−1)→ C(M× Ip) i.e. f = σ(g), then we see in Figure 25.1 that

d1([ f ]) = d1(σ∗[g]) = [g ∗ ḡ] = [g] + [ḡ].

Here ḡ is given by applying to g the involution on C(N) (with N =

M× Ip−1) given by

g 7→ ḡ := (g|N×{1} × idI)
−1 ◦ g ◦ (idN × τ),

where τ(t) = 1 − t (this is easier on C0(M), where it simply is
flipping). Intuitively, on the level of moduli spaces of h-cobordisms
this amounts to switching the direction of the h-cobordism.

g

•

σ d1

•

g ∗ ḡ

Figure 25.1: The stabilization map
on concordance diffeomorphisms
composed by restriction to the upper
boundary.

Lemma 25.3.8. We have that [σ(g)] = −σ∗[ḡ].
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Proof. One uses C0(M) instead. Then Figure 25.2 repeats the argument-
by-picture given by Hatcher. The left homotopy is given by bending
straight, ending up in the subgroup of diffeomorphisms preserving
the projection to I (the final factor in M × I × I in the definition of
C0(M× I). The right homotopy is given by noting that this is a con-
catenation of two elements, homotopic to respectively σ(g) and σ(g)
as we have adding a part that preserving the projection to I.

∗ ∼ ∼ σ(g) ∗ σ(g)

Figure 25.2: The picture proof of
Lemma 25.3.8. This is happening in
C0(M), otherwise we’d have to be the
identity at the bottom.

25.4 The Farrell-Hsiang theorem

Let us now specialize this to M = Dn and work rationally. Using
Proposition 25.2.3, we then obtain a spectral sequence

E1
pq = πq(C(Dn × Ip))⊗Q⇒ πp+q+1(BDiff∂(Dn))⊗Q.

For q in the concordance stable range, i.e. below a horizontal line
in the spectral sequence, we can identify each column as πq(C(Dn))⊗
Q ∼= Kq+2(Z)⊗Q by (25.2) and Proposition 25.1.2.

To understand d1 in this range, it remains to determine the invo-
lution on these homotopy groups. Farrell and Hsiang computed the
action of the involution is on Ki(Z) ⊗Q (here it is dualization, on
GLn(Z) given by transpose inverse).

Lemma 25.4.1. The involution on Ki(Z)⊗Q acts by −1, except for i = 0
when it is given by the identity.

It turns out that the involution on Ki(Z)⊗Q equals the involution
on πi−2(C(Dn)) ⊗ Q up to a sign (−1)n+1 (indeed from Lemma
25.3.8 we know the involution changes by a sign depending when we
stabilize).

We conclude that on the E1-page the 0th column is a (+1)-eigenspace
is n is even and a (−1)-eigenspace when n is odd. After that the
columns alternate, by Lemma 25.3.8. From this, we see that the d1-
differential is alternatively an isomorphism or 0. On the one hand,
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when n is even we have that the first differential d1 : E1q → E0q is
given by

d1(σ∗[ f ]) = [ f ] + [ f̄ ] = [ f ]− (−1)n+1[ f ] = [ f ] + [ f ] = 2[ f ],

so all columns cancel pairwise. On the other hand, when n is odd,
the first d1-differential is 0 and all columns except the 0th column
cancel pairwise. See Figure 25.3.
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Figure 25.3: The E1-page of the
spectral sequences converging to
πp+q+1(BDiff∂(Dn))⊗Q, with q in the
concordance stable range.

Theorem 25.4.2 (Farrell-Hsiang). In the concordance stable range, we have
that

π∗(BDiff∂(Dn))⊗Q ∼=

0 if n is even

K∗+1(Z)⊗Q if n is odd.

Note this computation is compatible with (25.1) and (25.2), as it
should be. In particular, when n is odd we have that π∗(BDiff∂(Dn))⊗
Q is 0 except when ∗ = 4i for i > 0, in which case it is Q.

Remark 25.4.3. At the time of the
proof in [FH78], the Waldhausen
splitting theorem was not yet proven,
so the computation of WhDiff(∗) was
a lot harder. They also discussed
aspherical manifolds. The techniques
were generalized by Burghelea [Bur79].





Part V

Topological manifolds and
smoothing theory





26
Topological manifolds and handles

26.1 The theory of topological manifolds

The theory of topological manifolds is modeled on that of smooth
manifolds, using the existence and manipulation of handles. Hence
the final definitions, tools and theorems that we want for topological
manifolds are similar to those of smooth manifolds.

To obtain this theory, we intend to bootstrap from smooth or PL
manifolds, a feat that was first achieved by Kirby and Siebenmann
[KS77, Essay IV]. They did this by understanding smooth and PL
structures on (open subsets of) topological manifolds. To state the re-
sults of Kirby and Siebenmann, we define three equivalence relations
on smooth structures on (open subsets of) a topological manifold M,
which one should think of as an open subset of a larger topological
manifold.

To give these equivalence relations, we have to explain how to pull
back smooth structures along topological embeddings of codimen-
sion 0. In this case a topological embedding is just a continuous map
that is a homeomorphism onto its image, and a typical example is
the inclusion of an open subset. If Σ is a smooth structure on M and
ϕ : N → M is a codimension 0 topological embedding, then ϕ∗Σ
is the smooth structure given by the maximal atlas containing the
maps ϕ−1 ◦ φi : Rn ⊂ UI ↪→ ϕ(N) → N for those charts φi of Σ with
φi(Ui) ⊂ ϕ(N) ⊂ M. Note that if N and M were smooth, ϕ is smooth
if and only if ϕ∗ΣM = ΣN .

Definition 26.1.1. Let M be a topological manifold.

· Two smooth structure Σ0 and Σ1 are said to concordant if there is a
smooth structure Σ on M× I that near M× {i} is a product Σi ×R.

· Σ0 and Σ1 are said to be isotopic if there is a (continuous) family of
homeomorphisms φt : [0, 1] → Homeo(M) such that φt = id and
φ∗1 Σ0 = Σ1 (i.e. the atlases for Σ0 and Σ1 are compatible).

· Σ0 and Σ1 are said to be diffeomorphic if there is a homeomorphism
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φ : M→ M such that φ∗Σ0 = Σ1.

Remark 26.1.2. By the existence of smooth collars, Σ0 and Σ1 are
concordant if and only if there is a smooth structure Σ on M× I so
that Σ|M×{i} = Σi, where implicitly we are saying that the boundary
of M is smooth.

Note that isotopy implies concordance and isotopy implies diffeo-
morphism. Kirby and Siebenmann proved the following foundational
results about smooth structures:

· concordance implies isotopy: If dim M ≥ 6, then the map

{smooth structures on M}
isotopy

−→ {smooth structures on M}
concordance

is a bijection. Hence also concordance implies diffeomorphism:

isotopy

diffeomorphism concordance

· concordance extension: Let M be a topological manifold of dimen-
sion ≥ 6 with a smooth structure Σ0 and U ⊂ M open. Then any
concordance of smooth structures on U starting at Σ0|U can be
extended to a concordance of smooth structures on M starting at
Σ0.

· the product structure theorem: If dim M ≥ 5, then taking the carte-
sian product with R induces a bijection

{smooth structures on M}
concordance

−×R−→ {smooth structures on M×R}
concordance

.

These theorems can be used to prove a classification theorem for
smooth structures.

Theorem 26.1.3 (Smoothing theory). There is a bijection

{smooth structures on M}
concordance

τ−→ {lifts of TM : M→ BTop to BO}
vertical homotopy

.

These techniques are used as follows: every point in a topological
manifold has a neighborhood with a smooth structure. This means
we can use all our smooth techniques locally. Difficulties arise when
we want to move to the next chart. Using the above three theorems, it
is sometimes possible to adapt the smooth structures so that we can
transfer certain properties. We will do this for handlebody structures
in this lecture and microbundle transversality in the next lecture.
Perhaps the slogan to remember is a sentence in Kirby-Siebenmann
(though we will replace “PL” by “smoothly”):
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The intuitive idea is that ... the charts of a TOP manifolds ... are as good
as PL compatible.

Let me try to somewhat elucidate one of harder parts of proving
these results: it appears in the product structure theorem (which also
happens to be the theorem we will use most in later lectures). The
proof of this theorem is by induction over charts, and the hardest
step is the initial case M = Rn. We prove this by showing that for
n ≥ 6, both Rn and Rn+1 have a unique smooth structure up to
concordance; a map between two sets containing a single element
is of course a bijection. To produce a concordance from any smooth
structure of Rn to the standard one, we will need both the stable
homeomorphism theorem and Kister’s theorem. Let us state these results.

Definition 26.1.4. A homeomorphism f : Rn → Rn is stable if it is
a finite composition of homeomorphisms that are identity on some
open subset of Rn.

Remark 26.1.5. Using the topological version of isotopy extension
[EK71], one may prove that f is stable if and only if for all x ∈ Rn

there is an open neighborhood U of x such that f |U is isotopic to a
linear isomorphism.

The following is due to Kirby [?].
Remark 26.1.6. In fact, the stable
homeomorphism theorem is true in
all dimensions. The case n = 0, 1 are
folklore, n = 2 follows from work by
Radó [Rad24], n = 3 from work by
Moise [Moi77], and the cases n = 4, 5
are due to Quinn [?].

Theorem 26.1.7 (Stable homeomorphism theorem). If n ≥ 6, then every
orientation-preserving homeomorphism of Rn is stable.

Lemma 26.1.8. A stable homeomorphism is isotopic to the identity.

Proof. If a homeomorphism h is the identity near p ∈ Rn, and
τp : Rn → Rn denotes the translation homeomorphism x 7→ x + p,
then τ−1

p hτp is the identity near 0. Thus the formula

[0, 1] 3 τ 7→ τ−1
τ·phττ·p

gives an isotopy from h to a homeomorphism that is the identity near
0.

Next suppose we are given a stable homeomorphism h, which by
definition we may write as h = h1 · · · hk with each hi a homeomor-
phism that is the identity on some open subset Ui Then applying the
above construction to each of the hi using pi ∈ Ui, shows that h is
isotopic to a homeomorphism h′ that is the identity near 0.

Finally, let σr : Rn → Rn for r > 0 denote the scaling homeomor-
phism given by x 7→ rx then

[0, 1] 3 τ 7→

σ−1
1−τh′σ1−τ if τ ∈ [0, 1)

id if τ = 1
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gives an isotopy from h′ to the identity (note that for continuity in the
compact open topology we require convergence on compacts).

Thus the stable homeomorphism theorem implies that Homeo(Rn)

has two path components: one contains the identity, the other the
orientation-reversing map (x1, x2, . . . , xn) 7→ (−x1, x2, . . . , xn). We
will combine this with Kister’s theorem [Kis64]. This result uses the
definition of a topological embedding, which in this case — when the
dimensions are equal — is just a continuous map that is a homeomor-
phism onto its image.

Theorem 26.1.9 (Kister’s theorem). Every topological embedding Rn ↪→
Rn is isotopic to a homeomorphism. In fact, the proof gives a canonical such
isotopy, which depends continuously on the embedding.

In the next section, we shall give a proof of this theorem. It is
proven by what may be described impressionistically as a “conver-
gent infinite sphere jiggling” procedure. Combining Kister’s theorem
with Theorem 26.1.7 and Lemma 26.1.8 we obtain:

Corollary 26.1.10. If n ≥ 6, every orientation-preserving topological
embedding Rn ↪→ Rn is isotopic to the identity.

Corollary 26.1.11. For n ≥ 6, every smooth structure Σ on Rn is concor-
dant to the standard one.

Proof. Any smooth chart for the smooth structure Σ can be used to
obtain a smooth embedding φ0 : Rn

std ↪→ Rn
Σ, which without loss of

generality we may assume to be orientation-preserving (otherwise
precompose it with the map (x1, x2, . . . , xn) 7→ (−x1, x2, . . . , xn)). A
smooth embedding is in particular a topological embedding and
by Corollary 26.1.10, it is isotopic to the identity. Pulling back the
smooth structure along this isotopy gives us a concordance of smooth
structures starting at the standard one and ending at Σ.

Remark 26.1.12. In particular, for n ≥ 6 there is a unique smooth
structure on Rn up to diffeomorphism, as concordance implies
isotopy implies diffeomorphism. The smooth structure on Rn is in
fact unique in all dimension except 4. The stable homeomorphism
theorem and Kister’s theorem are true even in dimension 4, but
concordance implies isotopy fails.

Remark 26.1.13. The proof of the stable homeomorphism theorem
is beautiful, but has many prerequisites. It relies on both the smooth
end theorem and the classification of PL homotopy tori using PL
surgery theory [KS77, Appendix V.B] [?, Chapter 15A], and uses a
so-called torus trick to construct a compactly-supported homeomor-
phism of Rn agreeing with the original one on an open subset.



lectures on diffeomorphism groups of manifolds, version february 22, 2019 209

26.2 Existence of handle decompositions

As an application of the product structure theorem, we will prove
that every topological manifold of dimension ≥ 6 admits a handle
decomposition [KS77, Theorem III.2.1]. The definition of handle
attachments and handle decompositions for topological manifolds
are as in Definition ?? except φ now only needs to be a topological
embedding.

This definition involves topological manifolds with boundary,
which are locally homeomorphic to [0, ∞) × Rn−1 and the points
which correspond to {0} ×Rn−1 form the boundary ∂M of M. A
neighborhood of this boundary is a product.

Definition 26.2.1. A collar for ∂M in M is a map ∂M× [0, ∞) ↪→ M
that is the identity on the boundary and a homeomorphism onto its
image.

It is elementary that every topological manifold with boundary
admits a collar, see e.g. [?]. Suppose one has a map e : M′ ↪→ M of a
topological manifold with boundary M′ into a topological manifold
M of the same dimension that is a homeomorphism onto its image.
Using a collar for M′, we may isotope the map e such that its bound-
ary ∂M′ has a bicollar in M, i.e. there is a map ∂M×R ↪→ M that is
the identity on ∂M × {0} and is a homeomorphism onto its image.
This isotopy is given by “pulling M back into its collar a bit.”

Remark 26.2.2. Not every map e : M′ ↪→ M as above admits a bicollar,
e.g. the inclusion of the closure of one of the components of the
complement of the Alexander horned sphere, see Remark 28.1.3.

Theorem 26.2.3. Every topological manifold M of dimension n ≥ 6 admits
a handle decomposition.

Proof. Let us prove this in the case that M is compact. Then there
exists a finite cover of M by closed subsets Ai, each of which is
contained in an open subset Ui that can be given a smooth structure
Σi (these do not have to be compatible). For example, one may obtain
this by taking a finite subcover of the closed unit balls in charts.

By induction over i we construct a handlebody Mi ⊂ M whose
interior containss

⋃
j≤i Aj, starting with M−1 = ∅. So let i ≥ 0 and

suppose we have constructed Mi−1, then we will construct Mi. By
the remarks preceding this theorem we assume that there exists a
bicollar Ci of ∂(Mi−1 ∩Ui) in Ui. In particular Ci is homeomorphic to
∂(Mi−1 ∩Ui)×R and being an open subset of Ui with smooth struc-
ture Σi, admits a smooth structure. Thus we may apply the product
structure theorem to ∂(Mi−1 ∩ Ui) ⊂ Ci, and modify the smooth
structure on Ci by a concordance so that ∂(Mi−1 ∩ Ui) becomes a
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smooth submanifold. By concordance extension we may then extend
the concordance and resulting smooth structure to Ui. We can then
use the relative version of the existence of handle decompositions
for smooth manifolds to find a Ni ⊂ Ui obtained by attaching han-
dles to Mi−1 ∩Ui, which contains a neighborhood of Ai ∩Ui. Taking
Mi := Mi−1 ∪ Ni completes the induction step.

26.3 Remarks on low dimensions

What happens in dimensions n ≤ 4? The cases n ≤ 3 and n = 4 are
quite different. In dimensions n ≤ 3, results of Radó and Moise say
that every topological manifold admits a smooth structure unique up
to isotopy [?]. Informally stated, topological manifolds are the same
as smooth manifolds.

Dimension 4 is more complicated. A result of Freedman uses an
infinite collapsing construction to show that an important tool of high
dimensions, the Whitney trick, still works for topological 4-manifolds
with relatively simple fundamental group [?]. This means that the
higher-dimensional theory to a large extent applies to topological
4-manifolds [FQ90]. One important exception is that they may no
longer admit a handle decomposition, though in practice one can
work around this using the fact that a path-connected topological
4-manifold is smoothable in the complement of a point, see Section
8.2 of [FQ90].

In dimension 4, smooth manifolds behave differently. For example,
n = 4 is the only case in which Rn admits more than one smooth
structure up to diffeomorphism. In fact, it admits uncountably many.
Furthermore, these can occur in families: in all dimensions 6= 4 a
submersion that is topologically a fiber bundle is smoothly a fiber
bundle by the Kirby-Siebenmann bundle theorem [KS77, Essay II],
but in dimension 4 there exists a smooth submersion E → [0, 1]
with E homeomorphic to R4 × [0, 1] such that all fibers are non-
diffeomorphic smooth structures on R4 [?]. See also [?]. Hence the
product structure theorem is false for 3-manifolds, as it also involves
4-manifolds. In particular, it predicts two smooth structures on
S3, but the now proven Poincaré conjecture says there is only one.
However, it may not be the right intuition to think that there are
different exotic smooth structures on a given manifold, but that many
different smooth manifolds happen to be homeomorphic.



27
Kister’s theorem and microbundles

In this section we give a proof of Kister’s theorem on topological self-
embeddings of Rn, which we use in two places: (i) to prove the initial
case of the product structure theorem, and (ii) to prove Theorem
27.2.6 about the existence of Rn-bundles in microbundles. The proof
is rather elementary, and a close analogue plays an important role in
the ε-Schoenflies theorem used in [EK71] to prove isotopy extension
for locally flat submanifolds.

The goal is to compare the following two basic objects of manifold
theory:

(i) The topological groups

{CAT-isomorphisms (Rn, 0)→ (Rn, 0)}

with CAT = Diff or Top. In words, these are the diffeomorphisms,
homeomorphisms and PL-homeomorphisms of Rn fixing the
origin. These are denoted Diff(n) and Top(n) respectively.

(ii) The topological monoids

{CAT-embeddings (Rn, 0)→ (Rn, 0)}

with CAT = Diff or Top. In words, these are the self-embeddings
of Rn fixing the origin, either smooth or topological. These is no
special notation for them, so we use EmbCAT

0 (Rn, Rn).

Remark 27.0.1. We can include these spaces into the topological
groups or monoids of CAT-isomorphisms or CAT-embeddings that
do not necessarily fix the origin. A translation homotopy, i.e. deform-
ing the embedding or isomorphism φ through the family

[0, 1] 3 τ 7→ φ− τ · φ(0),

shows that these inclusions are homotopy equivalences.

The reason there is no special notation for the self-embeddings is
the following theorem.
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Theorem 27.0.2. The inclusion

{CAT-isomorphisms (Rn, 0)→ (Rn, 0)} ↪→ {CAT-embeddings (Rn, 0)→ (Rn, 0)}

is a weak equivalence if CAT is Diff or Top.

In this section we prove this theorem, and the smooth case will
serve as an explanation of the proof strategy for the topological case.

Remark 27.0.3. The PL version of Theorem 27.0.2 is also true [KL66].

27.1 Topological self-embeddings of Rn

We next repeat the entire exercise in the topological setting. We want
to show that the inclusion

Top(n) ↪→ EmbTop
0 (Rn, Rn)

is a weak equivalence. As before it suffices to find a lift

Sk Top(n)

Dk+1 EmbTop
0 (Rn, Rn)

gs

g(2)s

after homotoping the diagram. That is, we want to deform the family
gs, s ∈ Dk+1 to homeomorphisms staying in homeomorphisms if we
already are in homeomorphisms. Here it is helpful to remark that
since a topological embedding is a homeomorphism onto its image, it
is a homeomorphism if and only if it is surjective.

Our strategy is outlined by the following diagram:

gs our original family

g(1)s image equals an open disk

g(2)s surjective

canonical circle jiggling

zooming in

The important technical tool replacing Taylor approximation is the
following “sphere jiggling” trick. Let Dr ⊂ Rn denote the closed disk
of radius r around the origin.

Lemma 27.1.1. Fix a < b and c < d in (0, ∞). Suppose we have f , h ∈
EmbTop

0 (Rn, Rn) with h(Rn) ⊂ f (Rn) and h(Db) ⊂ f (Dc). Then there
exists an isotopy φt of Rn such that

(i) φ0 = id,
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(ii) φ1(h(Db)) ⊃ f (Dc),

(iii) φt fixes pointwise Rn \ f (Dd) and h(Da).

This is continuous in f , h and a, b, c, d.

Proof. Since h(Rn) ⊂ f (Rn), it suffices to work in f -coordinates. Our
isotopy will be compactly supported in these coordinates, so we can
extend by the identity to the complement of f (Rn) in Rn.

We will now define some subsets in f -coordinates and invite the
reader to look at Figure 27.1. Let b′ be the radius of the largest disk
contained in h(Db) (in f -coordinates, remember) and a′ the radius of
the largest disk contained in h(Da). Our first attempt for an isotopy
is to make φt piecewise-linearly scale the radii between a and d such
that c moves to b′. This satisfies (i), (ii) and fixes Rn \ f (Dd). In words
it “pulls h(Db) over f (Dc). It might not fix h(Da).

This can be solved by a trick: we conjugate with a homeomor-
phism, described in h-coordinates as follows: piecewise-linearly
radially scale between 0 and b by moving the radius a to radius a′′,
where a′′ is the radius of the largest disk contained in f (Da′). In
words, we temporarily decrease the size of h(Da) to be contained
in f (Da′), do our previous isotopy, and restore h(Da) to its original
shape.

The continuity of this construction depends on the continuity
of b′, a′ and a′′, which we leave to the reader as an exercise in the
compact-open topology.

Theorem 27.1.2. The inclusion

Top(n) ↪→ EmbTop
0 (Rn, Rn)

is a weak equivalence.

Proof. Following the strategy outlined before, we have two steps.

(i) Our first step involves making the image of gs into a (possibly infi-
nite) open disk. Let Rs(r) be the piecewise linear function [0, ∞)→
[0, ∞) sending i ∈ N0 to the radius of the largest disk contained
in gs(Di). Then we can construct an element of EmbTop

0 (Rn, Rn)

given in radial coordinates by hs(r, ϕ) = (Rs(r), ϕ). This satisfies
hs(Rn) ⊂ gs(Rn), hs(Di) ⊂ gs(Di) for all i ∈ N0 and has image an
open disk. It is continuous in s.

Our goal is to deform hs to have the same image as gs in infinitely
many steps. For t ∈ [0, 1/2] we use the lemma to push hs(D1) to
contain gs(D1) while fixing gs(D2). For t ∈ [1/2, 3/4] we use the
lemma to push the resulting image of hs(D2) to contain gs(D2)

while fixing gs(D3) and the resulting image of hs(D1), etc. These
infinitely many steps converge to an embedding since on each
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h(Da)

h(Db)
h(Da′′)

•

f (Dc)

f (Dc)

f (Db′)

f (Da′)•

•

•

Figure 27.1: The disks appearing in
Lemma 27.1.1. The dotted disks are
derived from the marked intersection
points.

compact only finitely many steps are not the identity. The result
is a family Hs(−, t) in EmbTop

0 (Rn, Rn) such that Hs(−, 1) has the
same image as gs. It is continuous in s since hs is. So step (i) does
this:

G(1)
s (x, t) := Hs(Hs(−, 1)−1gs(x), 1− t)

For t = 0, this is simply gs(x). For t = 1, this is Hs(−, 1)−1(gs(x)),
which we denote by g(1)s and has the same image as hs(x), i.e. a
possibly infinite open disk. Note that if gs were surjective, then so
G(1)

s (x, t) for all t.

(ii) There is a piecewise-linear radial isotopy Ks moving hs(x) to the
identity. It is given by moving the values of Rs at each integer i to i.
We set

G(2)
s (x, t) := Ks(−, 1− t)−1g(1)s (x)

so that for t = 0 we have get g(1)s and for t = 1 we get g(2)s with
image Rn. Note that if g(1)s were surjective, then so G(2)

s (x, t) for all
t.
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27.2 Microbundles

Let us reinterpret smooth tranversality in terms of normal bundles.
Recall that f : M → N was transverse to a smooth submanifold
X ⊂ N if for all x ∈ X and m ∈ f−1(x) we have that T f (TMm) +

TXx = TNx. This is equivalent to the statement that T f : TMm →
νx := TNx/TXx is surjective. The vector bundle ν := TN|X/TX over
X is the so-called normal bundle.

In the topological world the notion of a vector bundle is replaced
by that of a microbundle, due to Milnor [Mil64].

Definition 27.2.1. An n-dimensional microbundle ξ over a space B is a
triple ξ = (X, i, p) of a space X with maps p : X → B and i : B → X
such that

· p ◦ i = id

· for each b ∈ B there exists open neighborhoods U ⊂ B of b and
V ⊂ p−1(U) ⊂ X of i(b) and a homeomorphism φ : Rn ×U → V
such that {0} ×U → Rn ×U → V coincides with i and Rn ×U →
V → B coincides with the projection to U. More precisely, the
following diagrams should commute

Rn ×U V

U U

φ

ι i|U

Rn ×U V

U U

π2

φ

p

Two n-dimensional microbundles ξ = (X, i, p), ξ ′ = (X′, i′, p′) over
B are equivalent if there are neighborhoods W of i(B) and W ′ of i′(B)
and a homeomorphism W →W ′ compatible with all the data.

Example 27.2.2. If ∆ : M → M × M denotes the diagonal, and
π2 : M × M → M the projection on the second factor, then (M ×
M, ∆, π2) is the tangent microbundle of M.

To show it is an m-dimensional microbundle near b, pick a chart
ψ : Rn → M such that b ∈ ψ(Rn). Since the condition on the existence
of the homeomorphism φ in the definition of a microbundle is local,
it suffices to prove that the diagonal in Rn has one of these charts.
Indeed, we can take U = Rn, V = Rn × Rn and φ : Rn × Rn →
Rn ×Rn given by (x, y) 7→ (x + y, y).

Example 27.2.3. Every vector bundle is a microbundle. If M is a
smooth manifold, the tangent microbundle is equivalent to the
tangent bundle. This is a consequence of the tubular neighborhood
theorem.

Kister’s theorem allows us to describe these microbundles in more
familiar terms. To give this description, we use that microbundles
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behave in many respects like vector bundles. For example, any
microbundle over a paracompact contractible space B is trivial, i.e.
equivalent to (Rn × B, ι0, π2). This is Corollary 3.2 of [Mil64]. The
following appears in [Kis64] and is a consequence of Theorem 26.1.9.

Definition 27.2.4. An Rn-bundle over a space B is a bundle with fibers
Rn and transition functions in the topological group consisting of
homeomorphisms of Rn fixing the origin.

Remark 27.2.5. Warning: an Rn-bundle
need not contain a disk bundle, in
contrast with the case of vector bundles
[?]. Even if there exists one, it does not
need to be unique [?].

We say that two Rn-bundles ξ0, ξ1 over B are concordant if there
is an Rn-bundle ξ over B × I that for i ∈ {0, 1} restricts to ξi over
X× {i}.

Theorem 27.2.6 (Kister-Mazur). Every n-dimensional microbundle
ξ = (E, i, p) over a sufficiently nice space (e.g. locally finite simplicial
complex or a topological manifold) is equivalent to an Rn-bundle. This
bundle is unique up to isomorphism (in fact concordance).

Proof. Let us assume that the base is a locally finite simplicial com-
plex. The total space of our Rn-bundle E will be a subset of the total
space E of the microbundle, and we will find it inductively over the
simplices of B.

We shall content ourselves by proving the basic induction step,
by showing how to extend E from ∂∆i to ∆i, see Figure ??. So sup-
pose we are given a Rn-bundle E∂∆i inside ξ|∂∆i . For an inner collar
∂∆i × [0, 1] of ∂∆i in ∆i, the local triviality allows us to extend it to
E∂×[0,1] inside ξ|∂∆i×[0,1]. Since ∆i is contractible, we can trivialize the
microbundle ξ|∆i and in particular it contains a trivial Rn bundle
E∆i ∼= Rn × ∆i. By shrinking the Rn, we may assume that its restriction
to ∂∆i × [0, 1] is contained in E∂∆i×[0,1]. Thus for each x ∈ ∂∆i, we get a
map φx : [0, 1] → Emb0(R

n, Rn). Using the canonical isotopy proved
by Kister’s theorem 26.1.9, we can isotope this family continuously
in x to φ̃x satisfying (i) φ̃x(0) is a homeomorphism, (ii) φ̃x(1) = φx(1).
Thus the replacement of E∆i |∆i×[0,1] ⊂ E∂∆i×[0,1] by φ̃ ◦ φ−1(E∆i |∆i×[0,1]),
is an extension of E∂∆i to ∆i.
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Topological transversality

28.1 Locally flat submanifolds and normal microbundles

The appropriate generalization of a smooth submanifold to the
setting of topological manifolds is given by the following definition.

Definition 28.1.1. A locally flat submanifold X of a topological manifold
M is a closed subset X such that for each x ∈ X there exists an open
subset U of M and a homeomorphism from U to Rm which sends
U ∩ X homeomorphically onto Rx ⊂ Rm.

Locally flat submanifolds are well behaved: every locally flat
submanifold of codimension 1 admits a bicollar, the Schoenflies the-
orem for locally flat Sn−1’s in Sn says that any locally flat embedded
Sn−1 in Sn has as a complement two components whose closures are
homeomorphic to disks [?]. Moreover, there is an isotopy extension
theorem for locally flat embeddings [EK71].

Remark 28.1.2. Every locally flat submanifold of codimension 1

admits a bicollar. This may be used to give a different version of
the proof of Theorem 26.2.3, by noting that all Mi constructed have
locally flat boundary ∂Mi in M. Generalize Theorem 26.2.3 to the
relative case: if M is of dimension ≥ 6 and contains a codimension
zero submanifold A with handle decomposition and locally flat
boundary ∂A, then we may extend the handle decomposition of A to
one of M.

Remark 28.1.3. This is not the only
possible definition: one could also
define a “possibly wild” submanifold
to be the image of a map f : X → M,
where X is a topological manifold X
and f is a homeomorphism onto its
image.

Examples of such possibly wild
submanifolds include the Alexander
horned sphere in S3 and the Fox-Artin
arc in R3. These exhibit what one may
consider as pathological behavior:
the Schoenflies theorem fails for the
Alexander horned sphere (it is not the
case that the closure of each component
of its complement is homeomorphic
to a disk). The Fox-Artin arc has a
complement which is not simply-
connected, showing that there is no
isotopy extension theorem for wild
embeddings.

See [?] for more results about wild
embeddings. We do note that there
exists a theory of “taming” possibly
wild embeddings in codimension 3, see
[Las76, Appendix]. This theory may be
summarized by saying that the spaces
(really simplicial sets) of locally flat and
possibly wild embeddings are weakly
equivalent.

Definition 28.1.4. A normal microbundle ν for a locally flat submanifold
X ⊂ N is a (n − x)-dimensional microbundle ν = (E, i, p) over X
together with an embedding of a neighborhood U in E of i(X) into N.
The composite X ↪→ U ↪→ N should be the identity.

Does a locally flat submanifold always admit a normal microbun-
dle? This is true in the smooth case, as a consequence of the tubular
neighborhood theorem.
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Lemma 28.1.5. Any smooth submanifold X of a smooth manifold N has a
normal microbundle.

Remark 28.1.6. In fact, one can define smooth microbundles, requiring
all maps to the smooth and replacing homeomorphisms with diffeo-
morphisms. A smooth submanifold has a unique smooth normal
microbundle.

However, the analogue of Lemma 28.1.5 is not be true in the
topological case, and there is an example of Rourke-Sanderson in
the PL case [RS67]. However, they do exist after stabilizing by taking
a product with Rs [?]. The uniqueness statement uses the notion
of concordance. We say that two normal mircobundles ν0, ν1 over
X ⊂ N are concordant if there is a normal bundle ν over X× I ⊂ N × I
restricting for i ∈ {0, 1} to νi on X× {i}.

Theorem 28.1.7 (Brown). If X ⊂ N is a locally flat submanifold, then there
exists an S � 0 depending only on dim X and dim N, such that X has a
normal microbundle in N ×Rs if s ≥ S, which is unique up to concordance
if s ≥ S + 1.

Remark 28.1.8. By the existence and uniqueness of collars, normal
microbundles do exist in codimension one. Kirby-Siebenmann proved
they exist and are unique in codimension two (except when the am-
bient dimension is 4) [?], the case relevant to topological knot theory.
Finally, in dimension 4 normal bundles always exist by Freedman-
Quinn [FQ90, Section 9.3]. One can also relax the definitions and
remove the projection map but keep a so-called block bundle struc-
ture. Normal block bundles exist and are unique in codimension ≥ 5
or ≤ 2, see [?].

28.2 Topological microbundle transversality

We will now describe a notion of transversality for topological mani-
folds, which generalizes smooth transversality and makes the normal
bundles part of the data of transversality.

Definition 28.2.1. Let X ⊂ N be a locally flat submanifold with nor-
mal microbundle ξ. Then a map f : M → N is said to be microbundle
transverse to ξ (at ν) if

· f−1(X) ⊂ M is a locally flat submanifold with a normal microbun-
dle ν in M,

· f gives an open topological embedding of a neighborhood of the
zero section in each fiber of ν into a fiber of ξ.

See Figure ?? for an example. We now prove that this type of
transversality can be achieved by small perturbations, as we did in
Lemma 12.2.6 for smooth transversality.
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Remark 28.2.2. One can also define smooth microbundle transver-
sality to a smooth normal microbundle. This differs from ordinary
transversality in the sense that the smooth manifold has to line up
with normal microbundle near the manifold X, i.e. the difference
between the intersection “at an angle” of Figure ?? and the “straight”
intersection of Figure ??. Smooth microbundle transversality implies
ordinary transversality, and any smooth transverse map can be made
smooth microbundle tranverse. This is why one usually does not
discuss the notion of smooth microbundle transversality.

Remark 28.2.3. There are other notions of transversality that may be
more well-behaved; in particular there is Marin’s stabilized transver-
sality [?] and block transversality [RS67]. A naive local definition is
known to be very badly behaved: a relative version is false [?].

The following is a special case of [KS77, Theorem III.1.1].

Theorem 28.2.4 (Topological microbundle transversality). Let X ⊂ N
be a locally flat submanifold with normal microbundle ξ = (E, i, p). If
m + x − n ≥ 6 (the excepted dimension of f−1(X)), then every map
f : M→ N can be approximated by a map which microbundle transverse to
ξ.

Proof. The steps of our proof are the same as those in Lemma 12.2.6.
Again, we actually need to prove a strongly relative version. That is,
we assume we are given Cdone, Dtodo ⊂ M closed and Udone, Vtodo ⊂
M open neighborhoods of Cdone, Dtodo respectively such that f is
already microbundle transverse to ξ at νdone over a submanifold
Ldone := f−1(X) ∩Udone in Udone (note that Cdone ∩ Dtodo could be
non-empty). We invite the reader to look at Figure ?? again. It will be
helpful to let r := n− x denote the codimension of X.

Then we want to make f microbundle transverse to ξ at some ν on
a neighborhood of Cdone ∪ Dtodo without changing it on a neighbor-
hood of Cdone ∪ (M \Vtodo). We will also ignore the smallness of the
approximation, as it is a theorem that a strongly relative result always
implies an ε-small result, see Appendix I.C of [KS77].

Step 1: M open in Rm, X = {0}, ξ is a product, N = E = Rr We want
to apply the relative version of smooth transversality (with the
small smooth microbundle transversality improvement mentioned
in Remark 28.2.2). To do this we need to find a smooth structure
Σ on M such that for some open neighborhood WΣ of f−1(0) ∩
Cdone ⊂ M, the microbundle νdone ∩WΣ over Ldone ∩WΣ is smooth
and f : MΣ → Rn is transverse at νdone ∩WΣ to 0 near Cdone.

This uses a version of the product structure theorem. The version
we stated before said that concordance classes of smooth structures
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on M×R are in bijection to concordance classes of smooth struc-
tures on M. We need a local version, specializing [KS77, Theorem
I.5.2]:

Suppose one has a topological manifold L of dimension ≥ 6, an
open neighborhood E of L× {0} ⊂ L×Rs, a smooth structure Σ on
E, D ⊂ L× {0} closed and V ⊂ E an open neighborhood of D. Then
there exists a concordance of smooth structures on E rel (E \V) from
Σ to a Σ′ that is a product near D. See Figure ??.

We want to substitute the data (L, E, s, Σ, D, V) of this theorem by
the data (Ldone, E(νdone), r, Σ′, Ldone ∩ Cdone, V′) with Σ′ and V′

to be defined. Thus here we get the condition that dim(Ldone) =

m− r = m+ x− n ≥ 6. For this substitution to make sense, we must
have that Edone is an open subset of Ldone ×Rr, which comes from
the open inclusion (p, f ) : E(νdone) ↪→ Ldone ×Rr. In terms of the
latter coordinates f is simply the projection π2 : Ldone ×Rr → Rr.
Since E(νdone) ⊂ M ⊂ Rm, it inherits the standard smooth
structure. The set V′ will be an open neighborhood of Ldone in
E(νdone) with closure also contained in E(νdone).

Then the application of the local version of the product structure
theorem gives us a smooth structure on V′, which can be extended
by the standard smooth structure to M since we did not modify it
outside V′. In this smooth structure Ldone is smooth and νdone is
just the product with Rn. This implies that f is a now smooth, as it
is given by the projection (Ldone)Σ ×Rr → Rr.

To finish this step, outside a small neighborhood of Ldone we
smooth f near Dtodo without modifying outside Vtodo and then
apply a relative version of transversality with the same constraints
on where we make the modifications.

Step 2: M open in Rm, ξ trivializable Since ξ is trivializable we may
assume E(ξ) contains Rr × X. If we substitute

· M′ = f−1(Rr × X),

· C′done = (Cdone ∪ f−1(X× (Rr \ int(Dn)))) ∩ f−1(Rr × X),

· D′todo = Dtodo ∩ f−1(Rr × X),

we reduce to the case where ξ is a product and Y = Rr × X.

Then we have that f : M → Y is given by ( f1, f2) : M → Rr × X.
Consider the map f1 : M → Rr. Then ( f1)

−1({0}) ∩ Udone =

f−1(X) ∩ Udone is a locally flat submanifold Ldone with normal
microbundle and f1 embeds a neighborhood of the 0-section of
the fibers of νdone into Rr, the fiber of projection to a point. By the
previous step we thus can make f1 microbundle transverse to ξ
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near Cdone ∪ Dtodo by a small perturbation to some f ′1, while fixing
it on a neighborhood of Cdone ∪ (M \Vtodo).

A minor problem now appears when we add back in the com-
ponent f2: even though f ′ := ( f ′1, f2) has ( f ′)−1(X) a locally flat
submanifold with normal bundle, f ′ may not embed neighbor-
hoods of the 0-section of fibers of this normal bundle into fibers
of Rr × X → Rr. This would be resolved if we precomposed f2

by a map that near Cdone ∪ Dtodo collapses a neighborhood of the
0-section into the 0-section in a fiber-preserving way, extending by
the identity outside a closed subset containing this neighborhood.
Such a map can easily be found, see e.g. Lemma III.1.3 of [KS77].

Step 3: General case This will be an induction over charts, literally the
same as Step 3 for smooth transversality. We can find a covering
Uα of X so that each ξ|Uα is trivializable. Since X is paracompact
(by our definition of topological manifold), we can find a locally
finite collection of charts {φb : Rm ⊃ Vβ ↪→ M} covering Vtodo, such
that (i) Dm ⊂ Vβ, (ii) Dtodo ⊂

⋃
β φβ(Dm) and (iii) for all β there

exists an α with f (φβ(Vβ)) ⊂ Uα.

Order the β, and write them as i ∈ N from now on. By induction
one then constructs a deformation to fi transverse on some open
Ui of Ci := C ∪ ⋃j≤i φj(Dm). The induction step from i to i + 1
uses step (2) using the substitution M = Vi+1, Cdone = φ−1

i+1(Ci),
Udone = φ−1

i+1(Ui), Dtodo = Dm and Vtodo is int(2Dm).

Then a deformation is given by putting the deformation from fi to
fi+1 in the time period [1− 1/2i, 1− 1/2i+1]. This is continuous as
t→ 1 since the cover was locally finite.

Remark 28.2.5. We could have used the local version of the product
structure version in place of the ordinary product structure theorem
and concordance extension in the proof of Theorem 26.2.3.

Remark 28.2.6. The case m + x − n < 0 of Theorem 28.2.4 may be
proven similarly, and does not require the local product structure
theorem.

If re-examine the proof to see how important the role of the nor-
mal bundle ξ to X is, we realize that we only used that X is paracom-
pact and that X is the zero-section of an Rn-bundle. The microbundle
transversality result with these weaker assumptions on X will be
used in the next lecture.

Remark 28.2.7. Theorem 28.2.4 does not prove that if M and X are
locally flat submanifolds and X has a normal microbundle ξ, then M
can be isotoped to be microbundle transverse to ξ. The reason is that
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the smoothing of f in step (1) destroys embeddings, as locally flat
embeddings are not open.

However, an embedded microbundle transversality result like
this is true. The proof in [KS77, Theorem III.1.5] bootstraps from
PL manifolds instead, a category of manifolds in which it does not
even make sense to talk about openness (PL maps should always
be considered as a simplicial set). One additional complication is
that finding adapted PL structures requires a result of taming theory,
which says that for a topological embedding of a PL manifold of
codimension ≥ 3 into a PL manifold, the PL structures on the target
can be modified so that the embedding is PL. This is applied to both
X and N.



29
The Kirby-Siebenmann bundle theorem

Takeaways:
· Proper smooth submersions are

smooth manifold bundles.
· Smooth submersions that are

topological manifold bundles are
smooth manifold bundles, even
if they are not proper; the Kirby-
Siebenmann bundle theorem.

· This allows us to compute the ho-
motopy type of the space of smooth
structures on a topological manifold
M as a disjoint union of quotient
spaces Homeo(M)/Diff(MΣ) for
different smooth structures Σ on M.

Having finished the algebraic K-theory part, we now works towards
smoothing theory and proving the weak equivalence

Θn × BDiff∂(Dn) ' ΩnTop(n)/O(n).

The main tools are the Kirby-Siebenmann bundle theorem and Gro-
mov’s h-principle machinery. We start with the former, Essay II of
[KS77]. For bundles, a good reference is [Hus94].

29.1 Bundles and submersions

We start with a preliminary discussion of the relationship between
smooth manifold bundles and smooth submersions.

Manifold bundles

For a topological group G, the classifying space BG classifies prin-
cipal G-bundles; these are maps π : E → B with a free action of
E × G → E of G over B, which are locally trivial in the sense that
each b ∈ B has an open neighborhood U ⊂ B such that there is a
G-equivariant homeomorphism

π−1(U) U × G

B.

∼=

On the overlap of two such neighborhoods we obtain transition
functions ϕij : Ui ∩Uj → G satisfying the cocycle condition.

The classifying space BG is determined up to weak equivalence by
the existence of a universal principal G-bundle EG over BG, which is
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called universal because pullback gives a natural bijection

[X, BG]
∼=−→ {principal G-bundles over X}

isomorphism

[ f ] 7→ [ f ∗(EG)],

as long as X is paracompact. See Chapter 4 and 5 of [Hus94].
For any space Y with G-action, we can define locally trivial Y-

bundles with transition functions in G. One definition of this a map
E′ → B that is isomorphic over B to one constructed from a principal
G-bundle E → B as E ×G Y (I imagine one wants to encode the
principal G-bundle as part of the data, but this will not matter soon).

The action G on Y is said to be faithful (also called effective) if
g · y = y for all y ∈ Y implies g = id. In this case, E may be recovered
from E′ up to isomorphism, and we conclude that there is a bijection

{principal G-bundles over X}
isomorphism

∼=−→ {Y-bundles over X with transition functions in G}
isomorphism

[E→ X] 7→ [E×G Y → X].

Let us specialize to G = Diff∂(M), which has a faithful action on
M itself. No reference has been made so far to smooth structures. We
may as well assume that the base B is a smooth, since any space with
the homotopy type of a finite CW complex is homotopy equivalent
to a smooth manifold. But even if the base B of an M-bundle with
transition functions in Diff∂(M) is a smooth manifold, the total space
E need not be. The reason is that the continuous maps g : U →
Diff∂(M) which appear as transition functions do not need to have
the property that the associated map ḡ : U ×M→ U ×M over U is a
diffeomorphism.

However, using the smoothing results for continuous maps into
mapping spaces with C∞-topology discussed before, we can approx-
imate all transition functions maps for which this is the case. This
is related to the fact that the inclusion SDiff∂(M) ↪→ Sing(Diff∂(M))

of simplicial groups, given by including smooth simplices into all
singular simplices, is a weak equivalence.

Once all the associated maps for the transition functions are
diffeomorphisms, there is a unique smooth structure on E making
the map π : E → B smooth. We conclude that up to isomorphism,
the M-bundles π : E → B with transition functions in Diff(M) over
smooth base B, are in bijection with the following objects:

Definition 29.1.1. A smooth M-bundle over B is smooth map π : E→ B
such that each b ∈ B has a bundle chart: an open neighborhood U ⊂ E
of π−1(b) such that there is a diffeomorphism π−1(U) ∼= U × M
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fitting in a commutative diagram:

π−1(U) U ×M

U U.

π

∼=

π1

The upshot of this discussion is BDiff(M) also classifies smooth
manifold bundles, as long as we map in smooth manifolds.

Submersions

The notion of a smooth manifold bundle is local in the base. We may
also demand locality in the fiber, which leads to the definition of a
smooth submersion.

Definition 29.1.2. A smooth map π : E → B is a smooth submersion
such that each e ∈ E has a submersion chart: an open neighborhood
U ⊂ E of e and an open neighborhood V ⊂ π−1(π(e)) of e such that
there is a diffeomorphism ϕ : U ∼= π(U)×V fitting in a commutative
diagram:

U π(U)×V

π(U) π(U).

∼=

π π1

That π(U) is open follows from the fact π(U)×V is diffeomorphic
to an open subset of E. Note that we may assume that ϕ|π(e)×V = idV

by composing with the diffeomorphism id× ϕ|−1
π(e)×V over π(U).

More generally, one can define a submersion chart for any subset
of a fiber of π; the above definition is for {e} ⊂ π−1(π(e)). For
example, a bundle chart is a submersion chart for an entire fiber with
the additional data of an identification of that fiber with M.

Example 29.1.3. The implicit function theorem says that a smooth map
π : E→ B is a submersion if and only if its derivative Dπ : TE→ TM
is surjective. The definition given above has the advantage of easily
generalizing to topological and PL manifolds.

The union lemma for submersion charts

We want to prove that every compact subset K of a fiber of a sub-
mersion π : E → B admits a submersion chart. This is directly
consequence by induction over a finite cover of K by submersion
charts, of the following union lemma. This lemma is a consequence
of isotopy extension. The best reference for these types of technical
results is [Sie72].
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Lemma 29.1.4. Let π : E → B be a smooth submersion, b ∈ B and
K0, K1 ⊂ π−1(b) compact. If K0 and K1 admit a submersion chart, then so
does K0 ∪ K1.

Proof. For i ∈ {0, 1}, let (Ui, Vi, ϕi) be a submersion chart for Ki;
that is, Ui ⊂ E and Vi ⊂ π−1(b) are open neighborhoods of Ki

with a diffeomorphism ϕi : Ui → π(Ui)× Vi. We may assume that
(ϕi)|π(e)×Vi

= idVi (as explained before), and that the subsets p(Ui)

are both equal to p(Ui) ∩ p(Uj) =: W01 (by restriction).
There exist compact codimension 0 submanifolds Mi ⊂ Vi con-

taining Ki in their interior such that M01 := M0 ∩ M1 is compact
codimension 0 submanifold with corners in V01 := V0 ∩V1. By shrink-
ing W01 if necessary, we may assume that W01 = Rk with b the origin
and that we have ϕ−1

1 (ϕ0(W01 ×M01)) ⊂W01 ×V01.
The latter implies that the map

f := ϕ−1
1 ◦ ϕ0 : W01 ×M01 → U01 →W01 ×V01

is well-defined. It may be interpreted as a k-parameter isotopy of
M01 in V01 indexed by Rk, which equal to the identity at the ori-
gin in the parameter Rk. By isotopy extension there exists a com-
pactly supported ambient isotopy ψ of V01 indexed by Dk such that
f (t, m) = ψt(m). By extension by the identity, after replacing W01 by
Dk, ψ may be interpreted as a compactly-supported diffeomorphism
ψ̄ : U0 → U0 over W01.

If we replace ϕ0 by ϕ̄0 := ψ̄−1 ◦ ϕ0, then the maps ϕ̄0 : W01 ×V0 →
U0 and ϕ1 : W01 ×V1 → U1 agree on W01 ×M01. So, define a new map

ϕ̄ : W01 × (int(M0 ∪M1))→ E

(t, m) 7→

ϕ̄0(t, m) if m ∈ int(M0 ∪M1) ∩M0

ϕ1(t, m) otherwise

This is a smooth immersion over W, that is an embedding at
b ∈ W. By point-set lemma’s, there exists a neighborhood W of b
in W01 and a neighborhood V of K0 ∪ K1 in int(M0 ∪M1), such that
ϕ̄ : W ×V → E is an embedding over W. Let us denote its image by U
and ϕ be ϕ̄|−1

U : U →W ×V. This is the desired submersion chart.

If π : E → B is proper, this means that every fiber has a submer-
sion chart and thus as long as B is path-connected, π is actually a
smooth manifold bundle. This is the Ehresmann fibration theorem:

Corollary 29.1.5. If π : E → B is a proper smooth submersion and B is
path-connected, it is a smooth manifold bundle.

There is also a version when E has non-empty boundary, and
π|∂E : ∂E→ B is a smooth manifold bundle.
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Remark 29.1.6. This may also be proven directly by constructing com-
muting vector fields on E whose projections to B are non-vanishing
and flowing along them. The properness of π comes in when making
sure this flow exists near the fiber.

Remark 29.1.7. This proof only uses the isotopy extension, which also
known for topological and PL-manifolds [EK71, Hud66]. We have
thus also proven an Ehresmann fibration theorem for these types of
manifolds.

29.2 A weak version of the Kirby-Siebenmann bundle theorem

Corollary 29.1.5 is false without properness. The Kirby-Siebenmann
bundle theorem gives a condition under which a smooth submersion
which non-compact fibers is still a smooth manifold bundle.

E

B

π

Figure 29.1: A non-proper submersion
which is not a manifold bundle.

Statement and strategy

This result uses the notion of a topological manifold bundle, which has
bundle charts given by homeomorphisms π−1(U) ∼= U × M and is
classified by a map B → BHomeo(M). We will prove the following
weaker version of Kirby-Siebenmann’s result:

Theorem 29.2.1. If π : E→ B is a smooth submersion which is a topological
manifold bundle, and the dimension d of the fibers of π are of dimension
≥ 6, then it is a smooth manifold bundle.

Remark 29.2.2. Kirby-Siebenmann’s is stronger in the following sense:
(i) they also allow their fibers to have boundary, (ii) our version is
Top  Diff, it also works for PL  Diff or Top  PL, (iii) for
the Top  Diff or Top  PL cases, they improve the dimensional
restriction to d 6= 4 (and d 6= 3 if the boundary of the fibers is non-
empty), and the PL  Diff case there is no dimensional restriction
at all, (iv) the condition of being a topological manifold bundle is
replaced by a weaker technical “engulfing condition.”

Remark 29.2.3. The case d = 4 is false. For example, there is a
smooth submersion R5 → R all of whose fibers are mutually non-
diffeomorphic.

Let us consider the case that E homeomorphic to B×M×R over
B, with M compact. The strategy will be to “roll up” the R-direction
to obtain a topological manifold bundle π̃ : Ẽ→ B homeomorphic to
B×M×R/Z over B, so that π factors as

E Ẽ

B
ππ

τ

Z cover

π̃
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where τ is a fiberwise covering map. Then Ẽ inherits a smooth
structure from E making π̃ a smooth submersion, and since π̃ is
proper it is a smooth manifold bundle by the Ehresmann fibration
theorem. A fiberwise cover space of a smooth manifold bundle is a
smooth manifold bundle, just by lifting the bundle charts.

The fiberwise engulfing condition

Let us obtain a slightly weaker result under slightly weaker assump-
tions. The input is a smooth submersion π : E → B with a contin-
uous map p : E → R. We introduce the notation Fb := π−1(b) and
Fb(x, y) := Fb ∩ p−1([x, y]) (where we shall also allow x, y to be ±∞).

Definition 29.2.4. We say π satisfies the fiberwise engulfing condition
if for any b ∈ B and pair m ≤ n of integers, there exists a smooth
isotopy ht of Fb compactly supported in Fb(m − 1, n + 1) such that
h0 = id and int h1(Fb(−∞, m)) ⊃ Fb(∞, n).

We shall show that the fiberwise engulfing condition implies a
global one:

Proposition 29.2.5. Suppose B is compact and of dimension k. If π satisfies
the fiberwise engulfing condition, then for any pair of integers m ≤ n there
exists a smooth isotopy gt of E over B compactly supported in p−1(m− k−
1, n + k + 1) such that g0 = id and int g1(p−1(−∞, m]) ⊃ p−1(−∞, n].

Remark 29.2.6. The compact support condition in the fiberwise
engulfing condition implies that p is proper on each fiber.

This is a special case of an engulfing condition E [r, c, C] for C ⊂ B
compact, r ∈ (0, ∞] and c > 0:

For any pair m ≤ n of integers with [m− c, n + c] ⊂ [−r + 2, r− 2], there
exists a smooth isotopy gt of E compactly supported in p−1(m− c, n + c)
such that g0 = id and int g1(p−1(−∞, m]) ⊃ p−1(−∞, n] ∩ π−1(C).

For example, the condition in Proposition 29.2.5 is E [∞, k + 1, B].
Here are some facts about this condition, easily verified:

· E [r, c, C] implies E [s, d, D] if r ≥ s, c ≤ d and C ⊃ D.

· E [r, c, C] and E [r, d, D] imply E [r, c + d, C ∪ D] (hint: compose iso-
topies). If C∩D = ∅, E [r, c, C] and E [r, d, D] imply E [r, max(c, d), C∪
D] (hint: shrink the support of the isotopies in the base). Remark 29.2.7. It is instructive to point

out that to obtain E [r, c, C] and E [r, d, D]
imply E [r, c + d, C ∪ D], for integers
m ≤ n, we need gC for m ≤ n + d and
gD for m− c ≤ n to avoid one of them
messing up the condition for the other.
This is the entire point of including the
integer m ≤ n everywhere.

· E [ri, c, C] for a sequence of ri going to ∞ implies E [∞, c, C].

Lemma 29.2.8. Fixing r and assuming the fiberwise engulfing condition,
for each b ∈ B there is an open neighborhood Wb ⊂ B of b such that for any
closed Cb ⊂Wb we have that E [r, 1, Cb] holds.
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Proof. By the union lemma for submersion charts, Lemma 29.1.4, we
can find a submersion chart for Fb[−r, r]; ϕb : Ub → Wb × Vb with
Vb ⊂ Fb containing Fb[−r, r]. We need to produce an isotopy gt for
each m ≤ n with [m − 1, n + 1] ⊂ [−r + 2, r − 2]. But this is done
simply by extending ht on Fb to Ub using the submersion chart, using
a bump function η : Wb → [0, 1] which is 1 on Cb and 0 near ∂Wb.

We now give the proof of Proposition 29.2.5.

Proof of Proposition 29.2.5. By taking a fine enough triangulation and
taking neighborhoods of vertices in the barycentric subdivision,
there exists a cover of B by k + 1 closed subsets Ci, each of which
is a finite disjoint union of closed subsets Cij contained in a Wb.
Lemma 29.2.8, E [r, 1, Cij] holds and hence E [r, 1, Ci] holds. From this
we conclude that E [r, k + 1, B] holds. Since r was arbitrary, we can
conclude E [∞, k + 1, B] from this.

The following is a weak version of the bundle theorem.

Corollary 29.2.9. For any pair m ≤ n of integers there is an open subset
Emn ⊂ E containing p−1([m, n]) such that π|Emn : Emn → B is a smooth
manifold bundle.

Warning: this is not local condition, as Emn constructed locally
need not path together globally.

Proof. From E [∞, k + 1, B], which holds by Proposition 29.2.5, we ob-
tain a diffeomorphism h1 of E over B such that int h1(p−1(−∞, m]) ⊃
p−1(−∞, n]. This is a covering map on Emn defined as follows:

Zmn := h1(p−1(−∞, m]) \ p−1(−∞, m),

Emn :=
⋃

i∈Z

hi
1(Zmn).

Then h1 induces a Z-action on Emn with Zmn a compact fundamental
domain, as h1 has compact support. Thus we obtain factorization

Emn Emn/Z

B

q

π π̃

where q is a covering map and π̃ has compact fibers. We saw before
this implies that π restricted to Emn is a smooth manifold bundle.

29.3 The Kirby-Siebenmann bundle theorem

There are two things to do now: (i) give a condition under which
the fiberwise engulfing condition holds, (ii) deduce the Kirby-
Siebenmann bundle from this.
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Verifying the fiberwise engulfing theorem

We shall now explain how to verify the fiberwise engulfing condition.

Example 29.3.1. We claim that if a fiber Fb is a (smooth) product
M×R with M closed and ||p−π2|| < 1, then Fb satisfies the fiberwise
engulfing condition. To see this, pick m ≤ n, so that p−1([m, n]) is
compact and contained in M× [m− 1 + ε, n + 1− ε]. Now we simply
pull (−∞, m− 1 + ε) over (−∞, n + 1− ε] by a smooth isotopy with
support in [m− 1, n + 1] and take the product with idM, which verifies
the fiberwise engulfing condition.

We now weaken the condition in the Example that Fb is a smooth
product, to the statement that it is just a topological product. For
convenience we take p = π2, as this is enough for our purposes.

Lemma 29.3.2. If the fiber Fb is homeomorphic to M ×R for M a closed
topological manifold of dimension ≥ 5 and p = π2, then Fb satisfies the
fiberwise engulfing condition.

We will approach this differently than Kirby-Siebenmann, using
Siebenmann’s end theorem instead of engulfing. The end theorem
is in the same class of theorems as the h-cobordism theorem and
Waldhausen’s theorem, and concerns the question whether a non-
compact manifold N is the interior of a compact manifold with
boundary [Sie65]. The answer involves a point-set topology condition
on the ends of N called tameness and a finiteness obstruction σ(ε)

valued in K0(Z[π∞
1 (ε)]), where π∞

1 (ε) is the fundamental group at ∞
of that end. We shall not explain what these terms mean, as we only
need the following example:

Example 29.3.3. If N = int(N̄) with N̄ a compact topological manifold
with boundary, then the ends of N are tame, in bijection with the
path components of ∂N. The fundamental group π∞

1 (ε) at ∞ of the
end ε corresponding to ∂i N is π1(∂i(N)). In this case the finiteness
obstructions vanish.

Let CAT = Diff, PL or Top.

Theorem 29.3.4 (Siebenmann). Let N be a CAT-manifold with empty
boundary of dimension n ≥ 6. Then N is interior of a compact CAT-
manifold with boundary N̄ if and only if it has tame ends and for each end ε

the finiteness obstruction σ(ε) ∈ K̃0(Z[π∞
1 (ε)]) vanishes.

The condition of tameness and the construction of σ(ε) are inde-
pendent of CAT, only depending on the existence of a sufficiently
powerful handle theory, which exists for all smooth and PL mani-
folds, and for topological manifolds of dimension 6= 4.
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In this case the N̄ is unique up to h-cobordisms starting at ∂N̄.
In particular, it is unique up to CAT-isomorphism if Wh1(π

∞
1 (ε))

vanishes for all ends. This uses that the h-cobordism is also true for
PL or topological manifolds under the usual dimensional restrictions.
Note that this includes the following claim:

Lemma 29.3.5. If N̄ is a compact manifold with boundary and W is an h-
cobordism starting that ∂N̄, then int(N̄) is CAT-isomorphic to int(N̄ ∪W).

Proof. This is a consequence of an Eilenberg swindle: let W−1 be
the inverse of W — that is, W ∪W−1 ∼= ∂0(W)× I and W−1 ∪W ∼=
∂1(W) × I — which exists by the full strength of the h-cobordism
theorem classifying h-cobordisms in terms of the Whitehead group.
The emphasis here is on the word group, so inverses exist.

Then we have that

W \ ∂1(W) ∼= W ∪ (∂1(N)× I) ∪ (∂1(N)× I) ∪ · · ·
∼= W ∪ (W−1 ∪W) ∪ (W−1 ∪W) ∪ · · ·
∼= (W ∪W−1) ∪ (W ∪W−1) ∪ · · ·
∼= ∂0(W)× [0, ∞)

so that we have

int(N̄ ∪W) = N̄ ∪ (W \ ∂1(W)) ∼= N̄ ∪ (∂0(W)× [0, ∞)) ∼= intN̄.

Proof of Lemma 29.3.2. Suppose that Fb is homeomorphic to M ×R

and of dimension ≥ 6. Fix m ≤ n and consider Ḟb(m− 1, n + 1) :=
p−1((m− 1, n + 1)), the interior of Fb(m− 1, n + 1). As a topological
manifold Fb is the interior of M × [m − 1, n + 1], so its ends are
tame and have vanishing finiteness obstruction. This means that
Ḟb(m − 1, n + 1) is also the interior of a compact smooth manifold
with boundary F̄b(m− 1, n + 1). Forgetting the smooth structure we
obtain a compactification as a topological manifolds, which must
hence be equal to M × [m− 1, n + 1] up to gluing on h-cobordisms.
This implies that F̄b(m− 1, n + 1) there are two boundary components
∂0 F̄b and ∂1 F̄b, the inclusions of which into F̄b(m− 1, n + 1) are weak
equivalences. This means that F̄b(m − 1, n + 1) is an h-cobordism,
and using Lemma 29.3.5 we may assume it has trivial torsion by
gluing on an additional h-cobordism. By the h-cobordism theorem
it is hence a product, and we conclude that F̄b(m − 1, n + 1) ∼=
M′ × [m− 1, n + 1] for some smooth closed manifold M′.

We now apply the same idea as in Example 29.3.1. Since p is
proper, the subset p−1([m, n]) is compact in M′ × [m − 1, n + 1]
and hence contained in M′ × [m − 1 + ε, n + 1− ε]. Now we pull
[m− 1, m− 1 + ε] over [m− 1, n + 1− ε], with compact support, and
take the product with idM. This extends by the identity to a smooth
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compactly-supported isotopy of Fb verifying the fiberwise engulfing
condition.

Remark 29.3.6. Note that it seems as if we have implicitly proven a
weak version of the product-structure theorem; if a topological mani-
fold M×R of dimension ≥ 6 has a smooth structure (M×R)Σ then
it is also smoothly a product with R. However, in applying the end
theorem and s-cobordism theorem to topological manifolds we rely
on a handle theory for topological manifolds, whose existence was
proven using the product-structure theorem by Kirby-Siebenmann.
So this would be circular.

Finishing the proof

The previous section allows us to remove the technical condition
from the statement of the weak bundle theorem:

Lemma 29.3.7. If π : E → B is a smooth submersion which is homeomor-
phic to B×M×R over compact B for some closed topological manifold M
of dimension ≥ 5, then for any pair of integers m ≤ n there exists an open
subspace Emn ⊂ E containing B×M× [m, n] such that π|Emn : Emn → B is
a smooth manifold bundle.

Using this we can finish the proof of the Kirby-Siebenmann bundle
theorem. We repeat its statement:

Theorem 29.3.8. If π : E→ B is a smooth submersion that is a topological
manifold bundle with dimension of dimension ≥ 6, then it is a smooth
manifold bundle.

Proof. Being a smooth manifold bundle is a local condition, so we
may assume B = Dk and that the topological manifold bundle
is trivial: there is a homeomorphism ϕ : E ∼= B × N over B. We
may exhaust the topological manifold N by compact topological
submanifolds Ni with boundary ∂Ni.

Let us pick disjoint collar neighborhoods ∂Ni ×R for these. Taking
Ei := ϕ−1(B× ∂Ni ×R), we obtain a smooth submersion π : Ei → B
whose total space Ei is homeomorphic to B× ∂Ni ×R. By the version
of the weak bundle theorem there is a smooth manifold bundle Ẽi in
this containing ϕ−1(B× ∂Ni × [−1, 1]).

Since B = Dk, this bundle is trivial; letting Ui denote the fiber of Ẽi

over the origin, we get a diffeomorphism between Ẽi and B×Ui over
B. Identifying Ui with a subset of ∂Ni ×R through ϕ and projecting
to R, we get a continuous function p : Ui → R which takes values
in [−1, 1] only on Ui ∩ (∂Ni × [−1, 1]). Perturb with support in
Ui ∩ (∂Ni × [−1, 1]) to a real-valued function p̃i which is smooth
on p̃−1

i ((−1/2, 1/2)) and has 0 as a regular value. We get Ai :=
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p̃−1
i (0) a smooth compact submanifold of Ui. This is the boundary

of the smooth manifold Mi with boundary obtained as the union of
p̃−1

i ((−∞, 0]) and ϕ−1(B× (Ni \ ∂Ni × (−∞,−2])).
Using the Mi we get an exhaustion of E by compact subsets Ei,

whose boundaries are trivializable manifold bundles. Then we may
apply a version of the Ehresmann fibration theorem for smooth
submersion π|Ei\int(Ei−1)

: Ei \ int(Ei−1) → B to see that it is a smooth
manifold bundle with boundary. Trivializing them and glueing, we
obtain a diffeomorphism of E with B × F0 over B. These give the
bundle charts exhibiting π : E→ B as a smooth manifold bundle.





30
Flexibility and smoothing theory

Takeaways:
· Given standard machinery, the

Kirby-Siebenmann bundle theo-
rem is the essential ingredient to
smoothing theory.

· The conclusion is that for an n-
dimensional manifold with bound-
ary M, Sm∂(M) is weakly equivalent
to the space of sections of a bundle
with fiber Top(n)/O(n) over M that
are equal to the point O(n)/O(n)
over ∂M.

· In particular BDiff∂(Dn) is weakly
equivalent to a component of
ΩnTop(n)/O(n).

Today we finish the proof of smoothing theory by using the Kirby-
Siebenmann bundle theorem to show that the functor U 7→ Sm(U)

assigning to a topological n-manifold its space of smooth structures,
fits into Gromov’s framework of flexible invariant sheaves.

Convention 30.0.1. In this section we assume all dimensions are ≥ 6.

30.1 The space of smooth structures

The bundle theorem is meant to be applied to the following object:

Definition 30.1.1. For U a topological manifold, let Sm(U) be the
simplicial set with k-simplices a smooth submersion π : E → ∆k

together with a homeomorphism ϕ : E → ∆k ×U over ∆k. We call it
the space of smooth structures on U.

The bundle theorem then implies that for a k-simplex (E, π, ϕ),
there is a diffeomorphism E ∼= ∆k ×UΣ over ∆k with UΣ some smooth
structure on U, as any smooth manifold bundle over a compact base
is trivializable.

Given a smooth manifold M, we get a map Sing(Homeo(M)) →
Sm(M) by sending a k-simplex h to (∆k ×M, π1, h). We just saw that
all k-simplices are of this form up to diffeomorphism over ∆k. From
this we conclude that if Sm(M)Σ0 denotes those simplices whose
fibers are diffeomorphic to M (a union of path components), then
there is a weak equivalence of simplicial sets

Sm(M)Σ0
∼= Sing(Homeo(M))/SDiff(M).

Since the latter is a quotient of a simplicial group by a simplicial
subgroup, we conclude that Sm(M) is Kan, justifying the use of the
word “space.” More importantly, as Sing(Homeo(M))/SDiff(M) is
a model for the homotopy fiber of BDiff(M) → BHomeo(M), we
conclude that:
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Corollary 30.1.2. We have that hofib(BDiff(M) → BHomeo(M)) is
weakly equivalent a union of path components of Sm(M).

In the next lecture we will explain how the bundle theorem im-
plies an h-principle for Sm(−). This gives a homotopy-theoretic
descriptions of Sm∂(M) in terms of Sm(Rm). Let Top(m) denote the
topological group of homeomorphisms of Rm in the compact-open
topology.

Lemma 30.1.3. We have that Sm(Rm) ' Top(m)/O(m).

Proof. There is a unique smooth structure on Rm (recall m ≥ 6 was
assumed). This means we have that Sm(Rm) is weakly equivalent to
the quotient Homeo(Rm)/Diff(Rm). Now we substitute the notation
Top(m) := Homeo(Rm) and recall that in Lecture 8 we proved that
Diff(Rm) ' O(m).

There are also relative versions when the boundary has a fixed
smooth structure, all submersions are trivialized on the boundary,
and all diffeomorphisms and homeomorphisms fix the boundary
pointwise. We will explore this in more detail in the next lecture, but
we state this now for the following example:

Lemma 30.1.4. We have that Sm∂(Dm)0 ' BDiff∂(Dm).

Proof. This follows from the fact that Homeo∂(Dm) is contractible by
the Alexander trick.

In particular, the promised homotopy theorem description of
Sm∂(Dm) in terms of Sm(Rm) ' Top(m)/O(m) will give the link be-
tween diffeomorphisms of disks and homeomorphisms of Euclidean
space promised by smoothing theory.

30.2 Flexible sheaves

We shall fit Sm(−) into a framework of Gromov [Gro86]. We start by
recording the functoriality of Sm(U) in U. If U and V are topological
manifolds of the same dimension with empty boundary, the space
Emblf(U, V) of topological embeddings is the simplicial set with
k-simplices given by a map ∆k × U → ∆k × V over ∆k that is a
homeomorphism onto its image. No locally flatness assumptions play
a role because we are in codimension 0, but it is good to remember
that in positive codimension they do.

Definition 30.2.1. Let Mfd
Top
n be the simplicially enriched category

with objects n-dimensional topological manifolds with empty bound-
ary, and morphisms from U to V the simplicial set Emblf(U, V).
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We remark that pullback along the embedding makes Sm(U) into
a continuous functor

Sm: (Mfd
Top
n )op → sSet

U 7→ Sm(U).

Since the conditions on smooth submersions and homeomor-
phisms are local, a k-simplex of Sm(U) is uniquely determined by its
restrictions to an open cover U = {Ui} of U. That is, the diagram

Sm(U) ∏i Sm(Ui) ∏i,j Sm(Ui ∩Uj)

is an equalizer diagram. In other words, Sm satisfies the sheaf prop-
erty.

Definition 30.2.2. A continuous functor

Ψ : (Mfd
Top
n )op → sSet

satisfying the sheaf property is called a invariant sheaf on topological
n-manifolds.

We may produce relative versions of the values of Sm or any
invariant sheaf Ψ on topological n-manifolds. To do so, let A ⊂ U
be a closed subset and define Ψ(A ⊂ U) to be colimit over all open
subsets V of U containing A of Ψ(V). This is called the space of germs
of Ψ near A. There is a canonical map ρA : Ψ(U)→ Ψ(A ⊂ U) and for
a ∈ Ψ(A ⊂ U) we define

Ψ(U rel (a, A))) := ρ−1
A (a) ⊂ Ψ(U),

the subspace of elements equal to a near A.

Definition 30.2.3. A invariant sheaf on topological n-manifolds Ψ is
said to be flexible if for all compact subsets L ⊂ K in U, the map

Ψ(K ⊂ U)→ Ψ(L ⊂ U)

is a Kan fibration.

Using the observation that for any compact pair (K, L) and open
subsets (V, W) containing (K, L) there is a finite pair of handlebodies
(N, P) such that K ⊂ N ⊂ V and L ⊂ P ⊂W, and doing an induction
of handles, one proves the following lemma:

Lemma 30.2.4. Ψ is flexible if and only if for all 0 ≤ i ≤ n the map
Ψ(Di × Dn−i ⊂ Rn)→ Ψ(∂Di × Dn−i ⊂ Rn) is a Kan fibration.

Proposition 30.2.5. When the Kirby-Siebenmann bundle theorem holds, Sm
is flexible.
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Proof. A diagram

Λj
i Ψ(Di × Dn−i ⊂ Rn)

∆j Ψ(∂Di × Dn−i ⊂ Rn)

is given by the data of an open U0 ⊂ Rn containing Di × Dn−i and
an open U1 ⊂ Rn containing ∂Di × Dn−i, a manifold bundle E0 → Λj

i
with fiber U0 and a manifold bundle E1 → ∆j with fiber U1. Without
loss of generality E0 both are trivial, since Λj

i and ∆j are contractible.

In that case we are asked to extend the bundle Λj
i × U0 to ∆j,

compatibly with the given extension of Λj
i ×U1 to ∆j ×U1. But of

course the trivial bundle ∆j ×U0 will do.

This also implies that restriction maps between relative versions
are Kan fibrations, using the following lemma:

Lemma 30.2.6. If in a commutative diagram of simplicial sets

A B

C D

all maps are Kan fibrations, the induced map on fibers of the vertical maps is
also a Kan fibration.

30.3 Flexibility and h-principles

The flexibility condition is exactly what is necessary to do handle
induction arguments. The easiest version uses the existence of handle
decompositions, so we will assume that n 6= 4 in which case Kirby
and Siebenmann proved the existence of handle decompositions
for topological n-manifolds. See Appendix V.A of [KS77] for an
explanation how to avoid this, using a technique due to Lashof
[Las70a, Las70b].

The following is the general version of a handle induction argu-
ment.

Proposition 30.3.1. If n 6= 4 and j : Ψ → Φ is a morphism of flexible
invariant sheaves on topological n-manifolds, then

j : Ψ(M rel (k, K))→ Φ(M rel (j(k), K))

is a weak equivalence for all compact topological n-manifolds M, K ⊂ M
compact and k ∈ Ψ(K ⊂ M) a germ, if and only if Ψ(Rn) → Φ(Rn) is a
weak equivalence.



lectures on diffeomorphism groups of manifolds, version february 22, 2019 239

Proof. As in Lemma 30.2.4 one reduces to the case where K is a
handlebody N. We may take a finite handle decomposition of M ex-
tending that of N. The proof proceeds by induction over the number
of handles in M that are not in N. For the induction step, if the filtra-
tion by handles is given by M0 = N ⊂ M1 ⊂ M2 ⊂ . . . ⊂ Mk = M
consider the pair of fiber sequences

Ψ(M rel (cj, Mj)) Φ(M rel (j(cj), Mj))

Ψ(M rel (cj−1, Mj−1)) Φ(M rel (j(cj−1), Mj−1))

Ψ(Dij × Dn−ij rel (cj, ∂Dij × Dn−ij)) Φ(Dij × Dn−ij rel (j(cj), ∂Dij × Dn−ij))

'

where the top map is a weak equivalence by the inductive hypothesis.
This reduces to the case of a single handle M = Di × Dn−i and
K = ∂Di × Dn−i.

This case is proven by induction over i, and it shall be convenient
to replace disks by cubes. Then there is a fiber sequence

Ψ(Ii × In−i rel (c, ∂Ii × In−i ∪ Ii × ([0, 1/2] ∪ {1})× In−i−1))

Ψ(Ii × In−i rel (c, ∂Ii × In−i ∪ Ii × {1} × In−i−1))

Ψ(Ii × [0, 1/2]× In−i−1 rel (c, ∂Ii × [0, 1/2]× In−i−1))

with base isomorphic to Ψ(Ii × In−i rel (c, ∂Ii × In−i)), total space
weakly contractible and fiber isomorphic to Ψ(Ii+1× In−i−1 rel (c, ∂Ii+1×
In−i−1)). There is a similar fiber sequence for Φ and using these iden-
tifications, we get a map of fiber sequence

Ψ(Ii+1 × In−i−1 rel (c, ∂Ii+1 × In−i−1) Φ(Ii+1 × In−i−1 rel (c, ∂Ii+1 × In−i−1)

∗ ∗

Ψ(Ii × In−i rel (c, ∂Ii × In−i) Φ(Ii × In−i rel (c, ∂Ii × In−i),

'

'

with map on bases a weak equivalence by the inductive hypothesis
(the initial case i = 0 being the assumption of the proposition), so
that the map on fibers is also a weak equivalence.

So when one has a flexible invariant sheaf Ψ, the trick is finding a
zigzag of morphisms between flexible invariant sheaves with weakly
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equivalent values on Rn, to a more easily understood one. Gromov
provided a universal map

j : Ψ→ Ψ f

which induces a weak equivalence on Rn, and proved that the val-
ues of Ψ f may be computed in terms of homotopy theory. The an-
swer involves the topological version of the frame bundle of the
tangent bundle: by the Kister-Mazur theorem there is a principal
Top(n)-bundle FrTop(M) over M unique up to isomorphism. Since
homeomorphisms are in particular embeddings, we have an action of
Top(n) on Ψ(Rn).

Lemma 30.3.2. Given a topological manifold M and a choice of FrTop(M),
there is a weak equivalence

Ψ f (M rel (m, ∂M)) ' Γ∂M(M, FrTop(M)×Top(n) Ψ(Rn)).

This may simplified if M admits a smooth structure, since then we
may use the orthonormal frame bundle FrO(M) to get FrTop(M) ∼=
FrO ×O(n) Top(n) and thus

FrTop(M)×Top(n) Ψ(Rn) ∼= FrO(M)×O(n) Ψ(Rn).

Remark 30.3.3. I did not go into much detail because the current
construction is a bit unsatisfactory (requiring us to move away form
simplicial sets, for example). Someone should redo Gromov’s theory
using ∞-categories.

Morlet’s theorem

Applying the general h-principle technology to Sm(−) and recalling
the identification Sm(Rn) ' Top(n)/O(n) from the last lecture, we
obtain the following result:

Theorem 30.3.4. For all topological manifolds M of dimension n 6= 4 there
is a weak equivalence

Sm(M) ' Γ∂M(M, FrTop(M)×Top(n) Top(n)/O(n))

and the left hand side may be identified with a disjoint union of Homeo∂(M)/Diff∂(MΣ)

over smooth structures Σ of M up to concordance.

Remark 30.3.5. Kirby-Siebenmann avoid Lemma 30.3.2 by producing
a length 4 zigzag of geometric spaces connecting the left and right
hand sides of Theorem 30.3.4.

As a corollary of the Alexander trick Homeo∂(Dn) ' ∗, we obtain
the promised identification of BDiff∂(Dn):

Corollary 30.3.6 (Morlet). If n 6= 4 there is a weak equivalence

BDiff∂(Dn) ∼= Ωn
0 Top(n)/O(n).
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Another description of A(∗)

Note that combined with the results of the algebraic K-theory part,
this establish a direct link between homeomorphisms of Rn for n odd
and algebraic K-theory of the integers. Using this, Waldhausen gave a
different expression for A(∗), see page 15 of [Wal82]. Note that there
is a map

S1 × Top(n)→ Top(n + 1)

induced by idRn−1 × rotθ . This sends {1} × Top(n) ∪ S1 × Top(n− 1)
into Top(n), so that there is an induced map

Σ(Top(n)/Top(n− 1))→ Top(n + 1)/Top(n),

making (Top(n + 1)/Top(n))n≥0 into a spectrum.

Theorem 30.3.7 (Waldhausen). The spectrum (Top(n + 1)/Top(n))n≥0

is weakly equivalent to A(∗).





Part VI

Homological stability and
cobordism categories





31
Homological stability for symmetric groups

Takeaways:
· We prove that the homology of the

symmetric group Sn is independent
of n in a range, by studying its
action on a highly-connected semi-
simplicial set.

· Alternatively, one may combine a
transfer argument with the Barratt-
Priddy-Quillen-Segal theorem.

Symmetric groups are the diffeomorphisms groups of compact 0-
dimensional manifolds. Indeed, any such manifold is diffeomorphic
to a disjoint union of finitely points and all permutations are dif-
feomorphisms. Today we will study their homology, as practice
for studying the homology of diffeomorphism groups of higher-
dimensional manifolds later.

31.1 Quillen’s stability argument

The symmetric group Sn is the group of automorphisms of the finite
set {1, . . . , n}. Thus the inclusion {1, . . . , n} ↪→ {1, . . . , n + 1} induces
a homorphism

σ : Sn ↪→ Sn+1.

We claim that this sequence of groups and homomorphisms has a
property called homological stability:

(∗) The relative groups H∗(BSn+1, BSn) of σ vanish if ∗ ≤ n/2. More
concretely, the map σ∗ : H∗(BSn) → H∗(BSn+1) is a surjection for
∗ ≤ n/2 and an isomorphism for ∗ ≤ n/2− 1.

Example 31.1.1. The first time
the abelianization is non-trivial is
H1(BS2) ∼= Z/2Z. In this case, we
indeed have that H1(BS1) → H1(BS2)
is not surjective yet, as (2− 1)/2 < 1,
while H1(BS2)→ H1(BS3) is predicted
to be surjective.

We shall use a strategy of Quillen, which he never published as far
as I know, but which appears in his 1974-I notebook [Qui]. A general
machinery for these types of arguments is worked out in [RWW17].

The strategy is to prove the statement (∗) by induction over n. The
statement is trivial for n = 0. For the induction step from n− 1 to n
we shall find a semi-simplicial set I•(n) with Sn-action satisfying a
number of good properties. A semi-simplicial set is simply a simplicial
set without degeneracies, i.e. substituting for ∆ the subcategory ∆inj

with only injective maps. We may take its thick geometric realization

||I•(n)|| :=

⊔
p≥0

∆p × Ip(n)

 /∼
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and take the homotopy quotient by Sn to obtain a space ||I•(n)|| �Sn.
The space ||I•(n)|| is visibly a CW-complex and hence we may

filter it by skeleta. Since homotopy quotients and geometric realiza-
tion commute up to weak equivalence, we have that ||I•(n)|| �Sn '
||I•(n) �Sn||. Our first assumption on I•(n) shall be:

(a) The group Sn acts transitively on each set Ip(n). This im-
plies that Ip(n) � Sn is the classifying space of the subgroup
StabSn(xp) of Sn, for xp any element of Ip(n).

We thus get a spectral sequence

E1
pq = Hq(BStabSn({1, . . . , p + 1})) =⇒ Hp+q(||I•(n)|| �Sn),

with differential given by ∑i(−1)i(di)∗. It is slightly more convenient
to work relative to the map to ∗ � Sn = BSn, in which the spectral
sequence looks like:

E1
pq =


Hq(BStabSn({1, . . . , p + 1})) if p ≥ 0

Hp(BSn) if p = −1

0 if p < −1

⇒ Hp+q+1(BSn, ||I•(n)|| �Sn), (31.1)

with additional d1-differential d1 : E1
0q → E1

−1,q induced by σ∗.
To make (31.1) useful, we need to establish additional properties:

(b) ||I•(n)|| is (n − 2)-connected. This implies ||I•(n)|| � Sn →
∗ �Sn = BSn is (n− 1)-connected, so that the spectral sequence
converges vanishes in the range ∗ ≤ n− 2.

(c) The stabilizer of a p-simplex xp ∈ Ip(n) is isomorphic to
Sn−p−1. This implies that the E1-page contains the homology
of previous symmetric groups.

(d) All maps di : BSn−p−1 → BSn−p are induced by homomor-
phisms Sn−p−1 → Sn−p which are conjugate to the stabiliza-
tion map. This implies ∑i(−1)i(di)∗ is 0 if p is odd and the
map induced by the σ if p is even, because conjugate maps
induce homotopic maps on the bar construction.

The resulting E1-page can be seen in Figure 31.1. By the inductive
hypothesis, for p > 0 the horizontal maps in the commutative
diagram

H∗(BSn−2p−1) H∗(BSn−2p)

E1
2p,q E1

2p−1,q

σ∗

∼= ∼=

d1

are surjective for q ≤ n−2p−1
2 and an isomorphism for q ≤ n−2p−1

2 − 1.
Thus apart from the (−1)st and 0th column, the E2-page vanishes
in a range below a line of slope 1/2, see Figure 31.2. Thus these
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−1 0 1 2 3

σ∗ 0 σ∗ 0

q/p

Hp+q+1(BSn, ||I•(n)||)
vanishes for p + q ≤ n− 2

Figure 31.1: The E1-page of (31.1) with
properties (a)–(d) filled in.

groups can’t serve as the domain of a higher differential to kill what
remains on the (−1)st and 0th column for q ≤ n−1

2 and q ≤ n−1
2 − 1

respectively. This is enough to show that the the map

d1 = σ∗ : H∗(BSn−1) ∼= E1
0q → E1

−1,q
∼= H∗(BSn)

must have been an isomorphism for q ≤ n−1
2 − 1 and a surjection

for q ≤ n−1
2 . This finishes the proof of the homological stability

argument, up to establishing properties (a)–(d).
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vanishing at E∞ vanishing on E2 by inductive hypothesis

q/p

Figure 31.2: An illustrative E2-page of
(31.1).

31.2 Injective words

The p-simplices semi-simplicial set I•(n) is supposed to encode
the “ways to undo (p + 1)-fold stabilization.” Of course there is no
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canonical such way, but there is once we have picked (p + 1) elements
of {1, . . . , n}. The complex of injective words should be thought of as
the space of such choices and homotopies between them.

Definition 31.2.1. The semi-simplicial set I•(n) of injective words has
p-simplices given by the set of injective maps [p] = {0, . . . , p} →
{1, . . . , n}. We shall write a p-simplex as (m0, . . . , mp).

Property (a) is obvious, and for (c) we identify the stabilizer of
(m0, . . . , mp) with the permutations of {1, . . . , n} fixing {m0, . . . , mp}
pointwise, which is isomorphic to Sn−p−1. Then (d) amounts to
checking whether the inclusions of Sn−p−1 into Sn−p corresponding
to different (n− p− 1)-element subsets are conjugate, and of course
they are. Thus it remains to establish (b). This is again an inductive
argument.

Let’s do some initial cases as practice. Firstly, for n = 1 the semi-
simplicial set I•(1) has a single 0-simplex and no high simplices, so
its geometric realization is non-empty, i.e. (1− 2) = (−1)-connected.
For n = 2, I•(2) has two 0-simplices, (0) and (1), which are con-
nected by two 1-simplices (0, 1) and (1, 0), so ||I•(2)|| is a circle and
in particular 0-connected. See Figure 31.3. Similarly, for n ≥ 2 we
can connect any two 0-simplices with a 1-simplex and ||I•(n)|| is
path-connected.

•
(1)

||I•(1)||

•

•

(1)

(2)
(1, 2)

(2, 1)

||I•(2)||

Figure 31.3: The geometric realization
||I•(n)|| for n = 1, 2.

Lemma 31.2.2. For n ≥ 3, I•(n) is simply-connected.

Proof. Its fundamental groupoid has objects (n), has generating
morphisms γmn for m 6= n. Each 2-simplex is given by (m, n, `) for
m, n, ` distinct, and encodes a relation γn`γmn = γm`. However, it is
clear that using these equations we can shorten any loop until we
reach a term of the form γmnγnm. For convenience take n = 1, m = 3.
Then we have equations

γ31γ13 = γ31γ−1
32 γ12 = id1

where the first comes from γ12 = γ32γ13, and the second comes
from γ12γ31 = γ32 upon multiplying by γ−1

32 from the right and
conjugating by γ−1

12 .

By the previous lemma, for proving the desired connectivity when
n ≥ 3 it suffices to prove that the homology vanishes in a range.
Latter, you may think through the argument in the previous section,
and realize we only needed acyclicity of ||I•(n)||.

Lemma 31.2.3. H̃∗(||I•(n)||) vanishes for ∗ ≤ n− 2.

Proof. The proof is by induction over n. Let C∗(I•(n)) denote the
augmented simplicial chains (i.e.!Z in degree −1 and Z[Ip(n)] in
degree p), so that H∗(C∗(I•(n))) ∼= H̃∗(||I•(n)||).
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Define an increasing filtration FcC∗(I•(n)) of C∗(I•(n)) by letting
Fc to be the span of those p-simplices such that none of the last
p + 1− c elements (mc, . . . , mp) in a p-simplex (m0, . . . , mp) is n. Then
F0 = C∗(I•(n − 1)), and Fc/Fc−1 is a direct sum over all c-element
initial segments (m0, . . . , mc−2, n) of C∗−c(I•(n− c)).

Thus we obtain a spectral sequence converging to H̃∗(||I•(n)||)
with E1-page vanishing in degrees q ≤ n − 3 for p = 0 and q ≤
n − p − 2 for p ≥ 1. We directly obtain that H̃∗(||I•(n)||) vanishes
for ∗ ≤ n − 3. The only group that can contribute to ∗ = n − 2 is
H̃n−2(||I•(n − 1)||). But the inclusion ||I•(n − 1)|| → ||I•(n)|| is
null-homotopic by using the element n to cone it off.

31.3 The transfer

Considering the problem of non-uniqueness of unoding stabilization
can be approached differently; on homology we can just sum over all
choices. This is the transfer map

tr : H∗(BSn)→ H∗(BSn−1).

It is constructed explicitly by noting that BSn has an n-fold cover
with total space BSn−1; take any contractible space E with free
properly discontinuous Sn-action, and consider the map E/Sn−1 '
BSn−1 → E/Sn ' BSn with fiber Sn/Sn−1. Now define a chain
map C∗(BSn)→ C∗(BSn−1) by sending a singular simplex in BSn to
the sum of its lifts.

This is an example of a more general transfer map

trp : H∗(BSn)→ H∗(BSn−p),

construction using an analogous n!/(n− p)!-fold cover. This satisfies
the equation trp ◦ σ∗ = σ∗ ◦ trp + trp−1. The following is Lemma A of
[Dol62].

Lemma 31.3.1 (Dold). The map

Rn :=
⊕

0≤p≤n
π ◦ trp : H∗(BSn)→

⊕
0≤p≤n

H∗(BSn−p)/im(σ∗)

is an isomorphism.

Proof. The proof is by induction over n, with the case n = 0 being
trivial. For the induction step, consider the diagram

H∗(BSn)

H∗(BSn−1)
⊕

0≤p≤n−1 H∗(BSn−1−p)/im(σ∗),

π>0◦Rn

Rn−1

σ∗
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where π>0 projects away the term p = 0. This commutes since
trp ◦ σ∗ = trp−1 (mod im(σ∗)). This shows that σ∗ has a left inverse,
and

H∗(BSn) ∼= H∗(BSn)/im(σ∗)⊕
⊕

0≤p≤n−1

H∗(BSn−1−p)/im(σ∗)

is an isomorphism, proving the induction step.

With respect to these identifications the map σ∗ is just the inclu-
sion of summands. Thus we conclude that σ∗ is split injective. If we
can show that the stable homology of the symmetric groups is finitely
generated in each degree, we obtain a homological stability result
without an explicit range; at some point the split injections have to be
isomorphisms.

This may be deduced from the identification on K(FinSet∗) ' QS0

(to be proven in Chapter 32). since we saw that K(FinSet∗) '
ΩB(

⊔
n BSn) and thus by the group completion theorem the ho-

mology of a component Q0S0 equals the stable homology of BSn.

Lemma 31.3.2. The homology of Q0S0 is finitely generated in each degree.

Proof. It suffices to prove that if a path-connected space X is abelian
and has finitely generated homotopy groups in each degree, then its
homology is finitely generated in each degree. The abelian condition
implies that a Postnikov tower exists, so this may be proven by in-
duction over n for Pn(X) (the space only having the first n homotopy
groups non-zero) using the fiber sequences

Pn(X)→ Pn+1(X)→ K(πn+1(X), n + 2)

and the fact that H∗(K(πn+1(X), n + 2)) is finitely generated in each
degree if πn+1(X) is finitely generated abelian.
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The Barratt-Priddy-Quillen-Segal theorem

Takeaways:
· Unordered onfiguration spaces of

Euclidean spaces provide approxi-
mations to BSn.

· The group completion of
⊔

n≥0 BSn
is given by based loops of the clas-
sifying space of the 0-dimensional
cobordism category.

· By iterated delooping BCob(0, N) '
ΩN−1C(RN), and the latter is
weakly equivalent to ΩN−1SN by a
scanning argument.

We shall now prove the long promised Barratt-Priddy-Quillen-Segal
theorem

ΩB

(⊔
n≥0

BSn

)
' QS0,

using cobordism categories [BP72, Seg73], which we announced
in Theorem 21.1.6. One should think of this as the 0-dimensional
case of results to come. Our proof is modeled on the general scan-
ning approach of [GTMW09, GRW10, Gal11], and [Hat11] gives an
expository account.

32.1 Compact-open configuration spaces

We shall need a type of configuration space with particles that can
disappear at infinity; we shall these compact-open configuration spaces,
in analogy with the compact-open topology where a sequence of
functions converges if and only if converges uniformly on compact
subsets.

For n ≥ 0 the unordered configuration spaces of n particles in a
manifold M are given by

Cn(M) := Emb({1, . . . , n}, M)/Sn.

These spaces are closely related to classifying spaces of symmet-
ric spaces when M = RN (or more generally when M is highly-
connected and high-dimensional):

Lemma 32.1.1. There is a (N − 1)-connected map Cn(RN)→ BSn.

Proof. Consider the space

Emb({1, . . . , n}, R∞) := colimN→∞Emb({1, . . . , n}, RN)

with free properly discontinuous Sn-action. We claim it is weak con-
tractible. This is proven by noting that a map Si → Emb({1, . . . , n}, R∞)
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factors over some Emb({1, . . . , n}, R∞). One then either applies the
proof for finite N below, or just linearly interpolates from a configura-
tions in the image of Si to the configuration in RN+n with ith point at
eN+i. The conclusion of these observations is that the quotient space

Cn(R
∞) := Emb({1, . . . , n}, R∞)/Sn

is weakly equivalent to BSn.
Thus it suffices to show that Emb({1, . . . , n}, RN) is (N − 2)-

connected, because then the inclusion Emb({1, . . . , n}, RN) ↪→
Emb({1, . . . , n}, R∞) is a (N − 1)-connected map between spaces
with a free properly discontinuous Sk-action, and thus the map on
quotient spaces be (N − 1)-connected. To compute the connectivity
of Emb({1, . . . , n}, RN), note that Si → Emb({1, . . . , n}, RN) may be
extended to a map Di+1 → (RN)n. Generically, it is transverse to the
fat diagonal {(x1, . . . , xn) | ∃i, j such that xi = xj} ⊂ (RN)n, a finite
union of submanifolds of codimension N. If i + 1 < N transverse
implies disjoint, so that if i ≤ N − 2 an i-sphere of configurations is
null-homotopic.

We now define a version where particles can disappear outside
a subset N, and then let the size of N go to infinity. If N ⊂ M, we
define

C(M, M \ N) :=

(⊔
n≥0

Cn(M)

)
/∼,

where two configurations ~x and ~y are equivalent if their intersections
with N are equal.

Definition 32.1.2. We define C(RN) to be the colimit

colim
n→∞

C(RN , RN \ Bn(0)),

where Bn(0) ⊂ RN denotes the closed ball of radius n around the
origin. For U ⊂ RN we let C(U) be the image of

⊔
n≥0 Cn(U) in

C(RN).

Example 32.1.3. A sequence ~xi ∈ C(RN) converges if ~xi ∩ Bn(0)
converges for all n. Thus the map [−1, 1]→ C(RN) given by sending
±1 to the empty configuration and any other t to (t/(1− t2), 0, . . . , 0)
is continuous. Similar paths to infinity may be used to show that
C(RN) is path-connected, connecting each configuration to ∅ by
moving all particles to infinity. The same path-connectivity statement
is true for any codimension zero submanifold U ⊂ RN such that
every path-connected contains a path to infinity.

Using an elaboration of this example we shall prove:
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Lemma 32.1.4. We have that C(RN) ' SN , with basepoint given by the
empty configuration.

We shall use the following lemma:

Lemma 32.1.5. If U0 ∪U1 = X is an open cover of X by two subsets, then
the pushout

U0 ∩U1 U0

U1 X

is also a homotopy pushout.

Proof. We use the notion of a Serre microfibration. This is a map of
spaces f : E→ B such in each commutative diagram

Di E

Di × [0, ε]

Di × [0, 1] B

there exists an ε > 0 and a lift. A Serre microfibration with weakly
contractible fibers is a weak equivalence, [Wei05].

Now note that there is the canonical map

π : X̃ := (U0 × {0}) ∪ (U0 ∩U1 × [0, 1]) ∪ (U1 × {1})→ X,

with the domain is a standard model for the homotopy pushout. We
claim that the canonical map

f : U0 ∪ (U01 × [0, 1]) ∪U1 → X

is a Serre microfibration with contractible fibers. The contractibility of
the fibers is obvious; they are either a point or an interval. To see it is
a Serre microfibration think of a map g : Y → U0 ∪ (U01 × [0, 1]) ∪U1

as a pair (g1, g2) of a map g1 : Y → X and a map g2 : Y → [0, 1] such
that g2(y) = 0 if y ∈ X \U1 and g2(y) = 1 if y ∈ X \U0.

Then given a commutative diagram

Di U0 ∪ (U01 × [0, 1]) ∪U1

Di × [0, 1] X

h

f

H

we define two continuous functions µ : [0, 1] → [0, 1/4], λ : [0, 1] →
[3/4, 1] (the first non-decreasing, the second non-increasing) by

µ(t) := max{h2(d) | d ∈ h2(d) ∈ [0, 1/4] ∃(d, s) ∈ Di × [0, t] with H2(d, s) ∈ X \U1},
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λ(t) := min{h2(d) | d ∈ h2(d) ∈ [3/4, 1] ∃(d, s) ∈ Di × [0, t] with H2(d, s) ∈ X \U0},

thought of as “error terms” measuring to what extent the function
(d, t) 7→ (H(d, t), h2(t)) fails to land in U0 ∪ (U01 × [0, 1]) ∪ U1 ⊂
X × [0, 1]. The maximum and minimum are taken over a closed
hence compact subset of Di, so exist. By construction µ(0) = 0 and
λ(0) = 0, and by continuity there exists a ε > 0 such that µ(ε) < 1/4
and λ(ε) > 3/4. Then we define our partial lift on Di × [0, ε] by first
coordinate equal to H and second coordinate by

(d, t) 7→ min
(

0, max
(

1,
h1(d)− µ(t)
λ(t)− µ(t)

))
.

In words, we modify (d, t) 7→ (H(d, t), h2(t)) by translating and
scaling the second values enough to overcome the errors.

Now note that fibers of π are either a point or an interval, see
Figure 32.1. By Weiss’ Lemma it is hence a weak equivalence.

U1

U2

U0 ∩U1 × [0, 1]

π X

Figure 32.1: The map π of Lemma
34.1.5.

Proof of Lemma 32.1.4. There is an open cover of C(RN) by two open
subsets:

(i) U0 is those configuration with no particle at the origin,

(ii) U1 is those configuration with a unique particle closest to the
origin.

Then we have that U0 is contractible by pushing all particles out
to infinity, while U1 is contractible by translating until the unique
particle is at the origin and then pushing all remaining particles.
Their intersection U0 ∩U1 is the subspace of configurations without a
particle at the origin but with a unique one closest to the origin. This
deformation retracts onto SN−1 by moving the unique one to radius
1 by scaling and then pushing the remaining particles to infinity. We
conclude with the help of the previous lemma that C(RN) is weakly
equivalent to the homotopy pushout of the diagram

SN−1 ∗

∗
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which may be computed by replacing the top and bottom maps by
weakly equivalent cofibrations SN−1 ↪→ DN and taking the actual
pushout to get SN .

32.2 The 0-dimensional cobordism category

We now define the 0-dimensional cobordism category.

Definition

A topological category is a category object in Top. As such it has spaces
of ob(C) and mor(C) of objects and morphisms, and continuous
source, target, identity and composition maps.

Definition 32.2.1. Let Cob(0, N) be the topological category with
space of objects given by R and space of morphisms given by the
subspace of those (t, t′,~x) ∈ R2 × C(R × IN−1) satisfying t ≤ t′

and ~x ∈ C((t, t′) × IN−1). The source of (t, t′,~x) is t and the target
is t′. The identity at t is (t, t,∅). Composition is given by union of
configurations.

Remark 32.2.2. One can also define
a version Cobδ(0, N) of Cob(0, N)
where the t ∈ R are discrete. This is
convenient for some arguments, and its
classifying space is weakly equivalent to
BCob(0, N).

t t′
•

•
•

Figure 32.2: A morphism in Cob(0, N)
for N = 2.

Note that particles in the morphism spaces can not disappear to
infinity since they are constrained to the bounded set (t, t′)× IN−1.
By moving to t to 0 and t′ to 1, Lemma 32.1.1 implies the morphism
space admits an (N − 2)-connected map to

⊔
k≥0 BSk.

We want to consider its classifying space BCob(0, N). This is
usually defined to be the geometric realization of the simplicial space
given by the nerve N•Cob(0, N), which has p-simplices given by the
space of a sequence of (p + 1) objects and p morphisms between them:

{t0} {t1} · · · {tp}
(t0,t1,~x01) (t1,t2,~x12) (tp−1,tp ,~xp−1,p)

for t0 ≤ . . . ≤ tp. In general it is the p-fold pullback mor(C)×ob(C)
mor(C)×ob(C) · · · ×ob(C) mor(C).

However, we shall find it convenient to take a slightly different
geometric realization. For that purpose, let us discuss a bit of the
homotopy theory of geometric realization.

A simplicial space X• is said to be proper if the inclusions
⋃

i si(Xp−1) ↪→
Xp are Hurewicz cofibrations.1 A simplicial space X• is proper if it 1 This is the same as being Reedy

cofibrant with respect to the Strøm
model structure.
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is good [Lew82] (this uses the union lemma for cofibrations [Lil73]);
the inclusions si(Xp−1) ↪→ Xp are cofibrations.2 A simplicial space 2 Some of the results used require the

cofibration to have closed image. This
is automatic in the category of CGWH
spaces, —in which one should be
working anyway — so we shall ignore
this.

X• may be considered as a semi-simplicial space by forgetting the
degeneracies, for which we usually use the same notation. Just like
there is a geometric realization |X•| of a simplicial space there is a
thick geometric realization ||X•|| of it considered as a semi-simplicial
space: in the expression

||X•|| :=

(⊔
n≥0

∆n × Xn

)
/∼,

the equivalence relation ∼ just uses the face maps, not the degener-
acy maps. There is a quotient map

||X•|| → |X•|

and Segal proved that if X• is proper this is a weak equivalence
[Seg74]. This is a non-formal statement about the interaction of the
Quillen and Strøm model structures.

Lemma 32.2.3. N•Cob(0, N) is a good simplicial space, and hence proper.

Proof. We have NpCob(0, N) is a disjoint union over n0, . . . , np−1 ∈
N

p
0 of a (p + 1)-tuple (t0, . . . , tp) ∈ Rp+1 and p configurations

of ni particles in (ti, ti+1) × IN−1. By rescaling, we may identify
each of these p spaces of configurations with either ∗ (if ni = 0) or
Ck((0, 1)× IN−1) (if ni > 0).

Under these identifications, the degeneracy map is given by taking
the product of the following map s̃i with a fixed space: s̃i is the
map doubling the ith entry in the subspace (t0, . . . , tp) ∈ Rp+1

with t0 ≤ . . . ≤ tp−1. The map s̃i is easily shown to be a Hurewicz
cofibration and a product of a Hurewicz cofibration with a space
is easily seen to bea Hurewicz cofibration by the product-mapping
space adjunction.

This means that we may also take the thick geometric realization
of N•Cob(0, N), considered as a semi-simplicial space. This is homo-
topically more well-behaved — see Lemma 33.4.5 — and so we shall
use B(−) to denote the thick geometric realization.

Comparison to group completion

We take a unital monoid model for
⊔

n≥0 BSn by taking a Moore
loop version of

⊔
n≥0 Cn(R∞). This is given by letting taking pairs of

τ ≥ 0 and a configuration in C((0, ∞)× IN−1) that is contained in
[0, τ]× IN−1, and taking the colimit as N → ∞. The unit is (0,∅) and
the multiplication is by concatenation.
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There is a simplicial map

N•Cob(0)→ N•M, (32.1)

where we think of M as a topological category with a single object
and morphism space M. This is a good simplicial space by a similar
argument to Lemma 32.2.3, and hence proper, so we might as well
use the thick geometric realization. The map (32.1) is induced by the
functor sending the objects of Cob(0, N) to the unique object and a
morphism (t, t′,~x) to the pair (t′ − t,~x − t · e1). This is a levelwise
weak equivalence.

Lemma 32.2.4. A levelwise weak equivalence of semi-simplicial spaces
induces a weak equivalence upon geometric realization. More generally, a
semi-simplicial map that is (n − p)-connected on p-simplices induces a
n-connected map upon geometric realization.

Proposition 32.2.5. The map BCob(0, N)→ BM is (N − 1)-connected.

The inclusion RN ↪→ RN+1 induces maps of cobordism categories,
and we may define3 3 One can exchange B and the colimit

if desired since geometric realization
commutes with filtered colimits.BCob(0) := colim

N→∞
BCob(0, N).

The map BCob(0, N) → BM is compatible with the map induced by
the inclusion RN ↪→ RN+1 in the sense that there is a commutative
diagram

BCob(0, N)

BM

BCob(0, N + 1),

so that we obtain a map

BCob(0)→ BM

which is a weak equivalence. Using our discussion of K-theory
and the group completion theorem, we may deduce the following
corollary.

Corollary 32.2.6. We have that ΩBCob(0) ' K(FinSet+) and that

H∗(ΩBCob(0)) ∼=
(⊕

n≥0
H∗(BSn)

)
[π−1

0 ],

that is, taking the colimit over stabilization maps.
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Using the homological stability results of the previous lecture, we
may also conclude that H∗(BSn) → H∗(Ω0BCob(0)) is an isomor-
phism for ∗ ≤ n/2 (the injectivity for ∗ = n/2 coming from the
transfer argument). That is, the classifying space of the 0-dimensional
cobordism category may be used to compute the stable homology of
symmetric groups.

32.3 Comparison to configurations in a cylinder

Our starting point are the spaces ΩBCob(0, N), which we saw last
time approximate K(FinSet+) as N → ∞. We start with identifying
BCob(0) with a geometric object. This uses the technique of semi-
simplicial resolution.

Let ∆+ denote the category of possibly empty ordered finite sets
and morphisms order-preserving maps, then an augmented simplicial
space is a functor ∆op

+ → Top. The category ∆+ differs from ∆ by
adding a new isomorphism class of objects ∅, which have a unique
map to every other objects. Thus an augmented simplicial space is
a simplicial space with a map ε : X0 → X−1 called an augmentation,
which coequalizes both face maps d0, d1 : X1 → X0. This induces
a map |X•| → X−1, also denoted ε. The same construction goes
through for semi-simplicial objects.

Definition 32.3.1. A semi-simplicial resolution of a space X is an aug-
mented semi-simplicial object X• with X−1 = X so that ε : ||X•|| →
X−1 = X is a weak equivalence.

Proposition 32.3.2. There is a zigzag of weak equivalences

C(R× IN−1)← · · · → BCob(0, N).

Proof. We shall build a semi-simplicial resolution X• of C(R× IN−1).
Its space of p-simplices Xp is given by

the subspace of C(R× IN−1)×Rp+1 of (~x, t0, . . . , tp) with t0 < . . . < tp
such that ~x is disjoint from the “walls” {ti} × IN−1.

Its geometric realization ||X•|| has points given by a point ~x and
a finite collection of walls disjoint from ~x with non-zero weights
summing to 1. The element ~x is topologized as before, the walls
can move and the weights of the walls can vary (so that the walls
disappear or appear when the weight hits 0).

There is a map
ε : ||X•|| → C(R× IN−1)

which forgets the walls, and this is a Serre microfibration since
configurations of particles disjoint from walls stay so under small



lectures on diffeomorphism groups of manifolds, version february 22, 2019 259
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Figure 32.3: A point in X2 for N = 2,
having 2 + 1 = 3 walls.

perturbations. Furthermore, its fiber ε−1(~x) over ~x is weakly con-
tractible. To see this, we prove that a map f : Si → ε−1(~x) with
K compact is homotopic to one that has walls in a bounded sub-
set B of R. To see this note that the semi-simplicial map given by
ρp : |Sing(X)p| → Xp is a levelwise weak equivalence. We saw last
lecture that a thick geometric realization of a levelwise weak equiv-
alence is a weak equivalence, and thus we may up to homotopy lift
f to a map f̃ : Si → ||[p] 7→ |Sing(X)p|||. But this is homeomorphic
to the geometric realization of a simplicial set, so by simplicial ap-
proximation there exists a triangulation of Si and a homotopy of f̃
to a simplicial map f̄ . Since the triangulation has finitely many non-
degenerate simplices, µ ◦ ρ ◦ f̄ has image given by the union of the
images of µ restricted to finitely many simplices. This lies in a finite
union of bounded subsets and hence is bounded.

We can then find a choice of wall disjoint from C and ~x and load
all the weights unto this wall to obtain a homotopy to a constant map.
Thus the map ||X•|| → C(R× IN−1) is a weak equivalence.

A point in Xp is given by a collection t0 < . . . < tp and an element
of

C((−∞, t0)× IN−1)×
p−1

∏
i=0

C((ti, ti+1)× IN−1)× C((tk, ∞)× IN−1),

see Figure 34.1. We can map Xp to NpCob(0, N) by forgetting the
outer two terms. These outer two terms are contractible, by pushing
the particles in (−∞, t0)× IN−1 or (tk, ∞)× IN−1 out to infinity. Thus
the map X• → N•Cob(0, N) is a levelwise weak equivalence and
hence so is its thick geometric realization.

Note that the inclusion RN ↪→ RN+1 induces a commutative
diagram

C(R× IN−1) ||X•(N)|| BCob(0, N)

C(R× IN) ||X•(N + 1)|| BCob(0, N + 1),

so we may eventually take N to infinity and still get a zigzag of weak
equivalences.
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32.4 A delooping argument

We will now repeat a version of the previous argument to prove the
following:

Proposition 32.4.1. For k > 0 there is a weak equivalence

C(Rk × IN−k) ' ΩC(Rk+1 × IN−k−1).

This uses a consequence of the following delooping result, related
to those discussed when we talked about algebraic K-theory. We call
a semi-simplicial space X• a semi-Segal space if the map Xp → Xp

1 ,
induced by the p inclusions [1] ↪→ [p] sending {0, 1} to {i, i + 1}, is
a weak equivalence (this implies that X0 ' ∗). The following is a
special case of Lemma 3.14 of [GRW10].

Lemma 32.4.2. If X• is a semi-Segal space with X1 path-connected (or more
generally group-like), then X1 ' Ω||X•||.

Proof of Proposition 32.4.1. It suffices to resolve C(Rk+1 × IN−k−1) by a
semi-Segal space X•, such that X1 ' C(Rk × IN−k).

We define X• to be the semi-simplicial space with p-simplices Xp

given by

subspace of C(Rk+1 × IN−k−1)×Rp+1 consisting of (~x, t0, . . . , tp) with
t0 < . . . < tp such that ~x is disjoint from the “walls” Rk × {ti} × IN−k−1.

This clearly is a semi-Segal space with X1 ' C(Rk × IN−k), by
pushing particles in the outer half-planes Rk × (−∞, t0)× IN−k−1 and
Rk × (tp, ∞)× IN−k−1 to infinity.

There is a canonical map ε : ||X•|| → C(Rk+1 × IN−k−1) but to
show that it is a weak equivalence it is helpful to define an inter-
mediary space. The semi-simplicial space X′• has p-simplices given
by

the subspace of C(Rk+1 × IN−k−1) ×Rp+1 × (Rk)p+1 consisting of
(~x, t0, . . . , tp, y0, . . . , yp) with t0 < . . . < tp such that ~x is disjoint from
the subset {yi} × {ti} × IN−k−1 of a wall.

There is a simplicial map X• → X′•, given by p-simplices by the map
Xp → X′p sending (~x, t0, . . . , tp) to (~x, t0, . . . , tp,~0, . . . ,~0). We obtain a
factorization

||X•|| ||X′•||

C(Rk+1 × IN−k−1).

ε ε′

The top map is a levelwise weak equivalence; push Rk outwards
from {yi}. To show that ε′ is also a weak equivalence, we remark that
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Figure 32.4: A point in X1 for N = 2
and k = 2.

it is a microfibration (this is not true for ε since points intersecting
a wall can suddenly appear at infinity) and its fibers are weakly
contractible by a similar argument as in Section 32.3.2.

In fact, it is possible to give maps C(Rk × IN−k) → ΩC(Rk+1 ×
IN−k−1) that are homotopic to those in Proposition 34.2.5 but com-
patible with the inclusions RN ↪→ RN+1. This map is given by
identifying the domain of Ω with [−∞, ∞] and defining its adjoint
[−∞, ∞]× C(Rk × IN−k)→ C(Rk+1 × IN−k−1) by

(s,~x) 7→ (~x + s · ek+1).

Thus we get a sequence of weak equivalences

C(R× IN−1)
'−→ ΩC(R2 × IN−2)

'−→ · · · '−→ ΩN−1C(RN),

and C(RN) was identified with SN in the previous lecture by a
scanning argument. Using Proposition 32.3.2, we thus conclude that

ΩBCob(0, N) ' ΩNSN .

Since the maps are compatible with the inclusion RN ↪→ RN+1, we
get commutative diagrams

ΩBCob(0, N) ΩNSN

ΩBCob(0, N + 1) ΩN+1SN+1

'

'
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where the right vertical arrow is the Freudenthal suspension map.
Recalling the notation QS0 = Ω∞S = colimN→∞ΩNSN , we conclude
that

ΩBCob(0) ' QS0.

Combined with conclusion that ΩBCob(0) ' K(FinSet+) of last
time, this implies the Barratt-Priddy-Quillen-Segal theorem:

Corollary 32.4.3 (Barratt-Priddy-Quillen-Segal). We have that K(FinSet+) '
QS0.

32.5 Application to stable homotopy groups of spheres

One can use the Barratt-Priddy-Quillen-Segal theorem to deduce
some properties of the stable homotopy groups of spheres.

Bounds on torsion

Recall the homological stability result that H∗(BSn) ∼= H∗(Q0S0)

for ∗ ≤ n/2. Since Sn is a finite group and hence has homology
groups which are finite in degree (e.g. using Lemma 32.5.2 below),
this implies that the homology of Q0S0 is finite in each degree. Since
Q0S0 is a homotopy-commutative H-space, the action of π1 on its
higher homotopy groups is trivial and by an induction over the
Postnikov tower, one may recover a theorem of Serre:

Corollary 32.5.1 (Serre). πi(S) is finite for i > 0.

One can better using the following basic lemma:

Lemma 32.5.2. If G has order n, then Hi(BG) is annihilated by n for i > 0.

Proof. Take the n-fold covering space π : EG → BG, then the composi-
tion of π∗ and the transfer tr : Hi(BG)→ Hi(EG) is given by multipli-
cation with n. But this factors over the trivial group Hi(EG).

Since the order of Sn is n!, this shows that no p-torsion can occur
until n ≥ p. This means that H∗(Q0S0) contains no p-torsion for
∗ < p

2 . By a Serre class argument one may show:

Corollary 32.5.3. πi(S) contains no p-torsion for i < p
2 .

This is not optimal as the first odd p-torsion shows up in i = 2p− 3,
a result again due to Serre.

Homology spheres

There is an interesting method to construct elements of the stable
homotopy groups of spheres using homology spheres with finite
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fundamental group: i-dimensional manifolds Σ such that H∗(Σ) ∼=
H∗(Si) and π1(Σ) finite.

Such homology spheres have universal cover Si, which is classified
by a map Σ → BSN with N the order of π1(Σ). We want to map
BSns to K(FinSet+), and to do so we use another construction of
K-theory, the +-construction. This construction takes a path-connected
space X and produces a map X → X+ which is a homology isomor-
phism with all local coefficients and surjective on π1 with kernel the
maximal perfect subgroup of π1(X). It is functorial up to homotopy
and Quillen proved that (BS∞)+ ' Q0S0, where S∞ := colimn→∞Sn.
Applying this to Σ→ BSN we get

Σ+ → (BSN)
+ → (BS∞)+ ' Q0S0,

and since Σ+ has the same homology as Si but is simply-connected, it
has to be weakly equivalent to Si. Thus we have produced an element
of πi(S).

Example 32.5.4. The classical example of a homology sphere is
the Poincaré homology sphere P , given by taking the quotient of
SU(2) ∼= S3 by the binary icosahedral group 2 · I, which has 120
elements. It gives us an element of π3(S), but which element is it?

By construction P+ → (BS120)
+ factors over (B2 · I)+. Since the

map P → B2 · I is 3-connected and the map S3 → P is multiplication
by 120 on top degree, we conclude that H1(B2 · I) = H2(B2 · I) =

0 and H3(B2 · I) = Z/120Z (and its periodic after that). By the
Hurewicz theorem π3(B2 · I)+ ∼= Z/120Z. This means that the
element obtained is at least 120-torsion (note the map π3(P+) →
π3((B2 · I)+) is surjective).

There is a homomorphism Z/3Z → 2 · I, by including an or-
der 3 rotation in the binary tetrahedral group 2 · T and including
that into 2 · I. By construction, upon mapping to S120, this gives a
subgroup conjugate to Z/3Z ↪→ S3 → S120. Since Z/3Z is the
3-Sylow of S3, H∗(BZ/3Z; Z(3))

∼= H∗(BS3; Z(3)) and since the
map H∗(BS3; Z(3)) → H∗(Q0S0; Z(3)) is split injective, we con-
clude that H3(P+) → H3(Q0S0) hits a Z/3Z-summand. Since
π1(S) ∼= π2(S) ∼= Z/2Z, this means that there must be a Z/3Z

in π3(S) (note this verifies for p = 3 the claim that the first odd
p-torsion in the stable homotopy group of spheres shows up in
i = 2p− 3).

In fact, it is known that π3(S) ∼= Z/24Z. The above argument
shows the elements in this group produced from P is non-trivial and
generates a subgroup of order at least 3. I would not be surprised
if the element in π3(S) is a generator, but it is harder construct 2-
torsion in π3(S) through homology because π1(S) and π2(S) start
interfering.
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Homological stability for diffeomorphism of Wg,1’s

Takeaways:
· The diffeomorphism groups of Wg,1

exhibit homological stability.
· Constructing a W1,1 in a Wg,1

amount to finding a hyperbolic sum-
mand in the middle-dimensional
homology, considered as a (−1)n-
quadratic module.

· The simplicial complex of such
hyperbolic summands is highly-
connected. This may be lifted to
a discrete version of the semi-
simplicial space, and then use the
weakly Cohen-Macauleyness to
deduce that the semi-simplicial
space is highly-connected as well.

· The Quillen argument goes through
as expected, with a few changes in
low degrees due to the action not
being transitive.

We shall now prove the results of the previous two lectures for the
high-dimensional manifolds Wg,1 := #g(Sn × Sn) \ int(D2n). Homolog-
ical stability for the diffeomorphism groups of these manifolds is a
result of Galatius and Randal-Williams [GRW18]. We shall prove this
up to proving the connectivity of a certain simplicial complex related
to the algebra of quadratic forms. Assuming this result, we explain
how to lift the high-connectivity of this complex to the connectivity
of semi-simplicial space of thickened cores, and use this to deduce
homological stability.

33.1 Homological stability

As mentioned in the introduction, we are interested in the manifolds
Wg,1 := #g(Sn × Sn) \ int(D2n). These are high-dimensional analogues
of genus g surfaces. We shall take n ≥ 3, so that the dimension is
2n ≥ 6 and the Whitney trick can be used, in contrast to n = 1 where
special low-dimensional techniques apply and n = 2 where nothing
is known.

Removing two disks from Sn × Sn, we obtain a manifold W1,2,
which we may glue to Wg,1 along one of its boundary components
to obtain Wg+1,1. We can extend a diffeomorphism of Wg,1 fixing
the boundary pointwise over W1,2 by the identity, resulting in a
homomorphism

Diff∂(Wg,1)→ Diff∂(Wg+1,1)

which induces a stabilization map on classifying spaces

σ : BDiff∂(Wg,1)→ BDiff∂(Wg+1,1).

Theorem 33.1.1 (Galatius-Randal-Williams). For n ≥ 3, the relative
homology groups H∗(BDiff∂(Wg+1,1), BDiff∂(Wg,1)) of the stabilization
map vanish for ∗ ≤ g−1

2 .
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Remark 33.1.2. A similar statement is true for n = 1, i.e. Wg,1 a genus
g surface with one boundary component, though the range is better.
This is a result due to Harer [Har85], with improvements by Ivanov,
Boldsen and Randal-Williams. See [Wah13] for a survey. Though it
is also based on Quillen’s argument, the connectivity of the relevant
semi-simplicial set is proved in quite a different manner than in the
high-dimensional case.

Remark 33.1.3. A similar result is true when studying N#Wg,1 for N
a 1-connected manifold or even N with π1(N) polycyclic-by-finite. It
is also true with tangential structure, and for homeomorphisms or
PL-homeomorphisms.

33.2 Thickened cores

Producing thickened cores

The manifold W1,1 can be build, up to smoothing corners, by plumb-
ing together two cores; take two cores Dn × Sn and once we pick
Dn ⊂ Sn, identify Dn × Dn in the first copy of Dn × Sn with the
Dn × Dn in the second copy of Dn × Sn using the diffeomorphism
(x, y) 7→ (y, x) of Dn × Dn. Then Wg,1 can be made by taking a g-fold
boundary connected sum of W1,1:

Wg,1
∼= \gW1,1.

Undoing stabilization amounts to picking an embedded copy of a
W1,1 in Wg,1 whose complement is diffeomorphic to Wg−1,1 and such
that a disk D2n−1 in ∂W1,1

∼= S2n−1 is in ∂W = S2n−1. To achieve this
goal, we shall first study the problem of finding an embedded W1,1

in a (n− 1)-connected 2n-dimensional manifold W with boundary
∂W = S2n−1. That is, we leave the connection to the boundary and
the complement for later.

We claim it suffices to find two embedded Sn’s in W, denoted e
and f , with trivial normal bundle and intersecting once transversally
in a single point p. The transversality implies that there exists a chart
φ : W ⊃ U → R2n such that φ(p) = 0, φ(e ∩U) = Rn × {0} and
φ( f ∩U) = {0}×Rn. Pick a trivialization of both normal bundles at p,
νe ∼= e×Rn, ν f

∼= f ×Rn. Using a Riemannian metric that is standard
near 0 in φ-coordinates we get tubular neighborhoods E and F of e
and f with the following properties: they are diffeomorphic to e× Dn

and f × Dn, and furthermore, we have that φ(E ∩U) = Rn × Dn and
φ(F ∩U) = Dn ×Rn. This gives an identification of E ∪ F with the
plumbing W1,1.
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The algebra of thickened cores

We shall now discuss how to use the Whitney trick to build a thick-
ened core from algebraic data.

Pick an orientation on W, so that the intersection product is well-
defined. Note that e and f represent homology classes [e], [ f ] in
Hn(W) satisfying [e] · [ f ] = 1. We can extract more algebraic data out
of E and F, which are in particular immersions Sn × Dn # W. The
set Ifr

n (W) of regular homotopy classes of such framed immersions
has additional functions defined on it. Taking signed intersections of
transverse representatives gives a map

λ : Ifr
n (W)⊗ Ifr

n (W)→ Hn(W)⊗ Hn(W)→ Z

and taking signed transverse self-intersections gives a map

µ : Ifr
n (W)→

Z if n is even,

Z/2Z if n is odd.

Note that taking signed self-intersections requires a choice of
ordering of the self-intersection points. Changing the order can
change the sign by (−1)n·n, and to remove the ambiguity we need
to take the quotient by 2Z when n is odd. A path of immersions
is called a regular homotopy and a generic regular homotopy is a
composition of ambient isotopies, Whitney moves or inverse Whitney
moves (see Section 1.6 of [FQ90]). This implies that µ is well-defined,
as self-intersections always appear in pairs, of opposite orientation is
n is even.

Example 33.2.1. When W = R2, so
n = 1, then Ifr

1 (R
2) may be identified

with the set Z/2Z×Z. The Z/2Z

records whether the immersion is
orientation preserving, while the
Z records “twisting”. This may be
proven by the classification of generic
regular homotopies or by noting that
Smale-Hirsch identifies Ifr

1 (R
2) with

the set of free homotopy classes of
maps of S1 into the frame bundle
Fr(TR2) ∼= R2 ×O(2) [Sma59a]. Note
that while λ vanishes identically, µ does
not.

Using the Whitney trick and the fact that W is simply-connected
of dimension 2n ≥ 6, one may show that if µ(e) = 0 then [e] may be
represented by an embedded framed n-sphere e. If we have another
class [ f ] with µ( f ) = 0 and λ(e, f ) = 1, then by the Whitney trick we
can find second embedded framed n-sphere f which intersects e once
transversally in a single point. Then we can produce a thickened core
as in Section 33.2.

To better study the maps λ and µ, we need to replace the set
Ifr
n (W) by an abelian group. We define the abelian group structure

by taking connected sum, but to get this to be well-defined we need
to identify the framings near a point in the core of each of the two
immersions. To do so, fix a basepoint bW in Fr(W), and let I fr

n (W) be
the set of regular homotopy classes of a : Sn × Dn # W with a path
in Fr(W) from a|Dn×Dn to bW . This gives I fr

n (W) the structure of an
abelian group. Alternatively, one may use Smale-Hirsch to identify it
with a homotopy group πn(Bun(TSn × Dn, TW)).

Example 33.2.2. In the case W = R2,
we have that I fr

1 (R
2) ∼= Z as an abelian

group. Using Smale-Hirsch, which
identifies I fr

1 (R
2) with

π1(O(2)) ∼= Z.

More generally I fr
n (R

2n) ∼= πn(O(2n))
and I fr

n (W) ∼= πn(Fr(TW)), and the
group structure given by connected
sum coincides with the group structure
on the homotopy groups.

Wall identified the algebraic structure on (I fr
n (W), λ, µ) (the

simply-connected case of Theorem 5.2 of [Wal99]).
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Definition 33.2.3. For ε = ±1, an ε-quadratic module is an abelian
group A with a bilinear map

λ : A⊗ A→ Z

such that λ(x, y) = ελ(y, x), and a map µ : A→ Z/(1− ε)Z such that

(i) for a ∈ Z and x ∈ A we have µ(a · x) = a2µ(x),

(ii) for x, y ∈ A we have µ(x + y)− µ(x)− µ(y) ≡ λ(x, y) (mod (1−
ε)Z).

Example 33.2.4. The hyperbolic ε-quadratic module is uniquely
defined by H = Z{e, f } with λ(e, e) = λ( f , f ) = 0, λ(e, f ) = 1, and
µ(e) = µ( f ) = 0.

Example 33.2.5. Let us compute
I fr

n (W1,1). As W1,1 admits a framing,
by Smale-Hirsch, the frame bundle
Fr(TW1,1) is homotopy equivalent to
W1,1 ×O(2n). Thus we conclude that
I fr

n (W1,1) is isomorphic as an abelian
group to

πn(W1,1×O(2n)) ∼= Z{e, f }⊕πn(O(2n)).

The standard embeddings Dn × Sn, Sn ×
Dn ↪→ W1,1 correspond to (e, 0) and
( f , 0). Thus we get an embedding
H → I fr

n (W1,1) of (−1)n-quadratic
modules which is not far from being an
isomorphism.

Lemma 33.2.6. We have that (I fr
n (W), λ, µ) is an (−1)n-quadratic module.

Sketch of proof. The linearity of λ in each entry follows form the fact
that we can always take the tubes along which we take connected
sums disjoint. For the symmetry, we use that the linear isomorphism
of Rn × Rn given by (x, y) 7→ (y, x) preserves orientation if n is
even and reverses orientation when n is odd. This means that upon
switching the two immersions in λ, we have the same intersection
points, with the same orientation if n is even and opposite orientation
if n is odd.

The second condition on µ follows by noting that the self-intersections
of x#y are given by the self-intersections of x, the self intersections of
y and the intersections of x with y (see Figure 33.1). For the first con-
dition, we note that a · x is represented by taking a normal bundle and
creating a parallel copies x1, . . . , xa of x, connected by tubes we can
ignore. For each self-intersection of x, each xi will intersect itself and
the other xj once with the same sign as the self-intersection, and this
thus contributes a2 the amount of the original self-intersection.

Figure 33.1: On the left hand side we
have the connected sum of the two
immersions on the right hand side. Its
self-intersections are the union of the
self-intersections of both immersions,
together with their intersections.

Thus we have reduced the task of finding thickened cores in W to
finding hyperbolic submodules in (I fr

n (W), λ, µ).
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The simplicial complex of hyperbolic summands

Most naturally Kalg
• (W) is not a semi-simplicial set, but a simplicial

complex. A simplicial complex X has a set of vertices and for each
p ≥ 1 a set of p-simplices, consisting of unordered (p + 1)-tuples in
Vp+1 and closed under taking subsets. By picking an arbitrary order-
ing of the vertices, this can be made into a semi-simplicial set and
hence has a thick geometric realization, which up to homeomorphism
is independent of the choice of ordering.

Definition 33.2.7. Let A be an ε-quadratic module. Then the sim-
plicial complex Kalg

• (A) has vertices given by inclusions H ↪→ A of
summands. A (p + 1)-tuples {H0, . . . , Hp} forms a p-simplex if all Hi

are mutually orthogonal.

For later arguments it shall be important that not only that Kalg
• (A)

is highly-connected, so are links of simplices. The link LinkX(σ) of a
p-simplex σ in a simplicial complex X• is the simplicial subcomplex
with q-simplices given by those τ such that τ ∩ σ = ∅ and τ ∪ σ is a
(p + q− 1)-simplex of X.

Definition 33.2.8. A simplicial complex X• is weakly Cohen-Macauley of
dimension ≥ n if ||X•|| is (n− 1)-connected and for each p-simplex σ,
||LinkX(σ)|| is (n− p− 2)-connected.

Remark 33.2.9. It is instructive to compare this definition to the char-
acterization of PL-manifolds of dimension n in terms of simplicial
complexes; a simplicial complex is a PL manifold of dimension n if
the link of each p-simplex is PL (n− p− 1)-sphere.

The following is proven by an argument similar to what we used
to show that semi-simplicial set I•(n) of injective words was highly-
connected, by comparing Kalg

• (A) and Kalg
• (A⊕ H).

Theorem 33.2.10 (Galatius-Randal-Williams). Suppose that there exists
an embedding of g orthogonal copies of H into an ε-quadratic module A,
then Kalg

• (A) is weakly Cohen-Macauley of dimension ≤ g−2
2 .

33.3 Semi-simplicial spaces of thickened cores

As before, let W be a (n− 1)-connected 2n-dimensional manifold with
boundary given by ∂W ∼= S2n−1. We shall define a semi-simplicial
space K•(W) on whose thick geometric realization Diff∂(W) will
eventually act. As a step towards proving that the relevant semi-
simplicial space K•(W) is highly-connected, we also consider a
discretized version Kδ

•(W).
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Definition 33.3.1. Fix an embedding D2n−1 × {1} ↪→ ∂W1,1 which
avoids Sn × {0} and {0} × Sn. Let T1,1 be the manifold with corners
W1,1 ∪ D2n−1 × [0, 1], the thickened core.

Pick once and for all an embedded smooth path γ from {0} ×
{1} ⊂ D2n−1 × {1} to Sn × {0} avoiding (Sn × {0}) ∪ ({0} × Sn) ∪
({0} × [0, 1]). Then

C1,1 := (Sn × {0}) ∪ ({0} × Sn) ∪ ({0} × [0, 1]) ∪ γ

is its core. See Figure 33.2.

T1,1

C1,1

Figure 33.2: The thickened core T1,1 and
its core C1,1, in the case n = 1.

Note that there exists a deformation retraction H : T1,1 × [0, 1] →
T1,1 onto C1,1 which is an embedding for times t < 1, and that up to
smoothing corners T1,1 is diffeomorphic to W1,1.

Fix a boundary collar chart R2n−1 × [0, ∞) ↪→ W. An admissible
embedding of T1,1 into W is an embedding φ : T1,1 ↪→ W such that
there exists an ε > 0 and a, b > 0 such that φ|D2n−1×[0,ε] is given with
respect to the boundary collar coordinates by (x, t) 7→ (ax + b · e1, t).

Definition 33.3.2. The semi-simplicial space K•(W) has p-simplices
given by

Kp(W) ⊂ Emb(T1,1, W)p+1

of ordered (p + 1)-tuples (φ0, . . . , φp) of admissible embeddings, such
that φi(C1,1) ∩ φj(C1,1) = ∅ if i 6= j and bi < bj if i < j. The ith face
map di forgets ϕi.

Some remarks about this semi-simplicial space: the images of the
φi need not be disjoint, only their cores. A priori (φ0, . . . , φp) has two
orderings; the one from its definition as an ordered (p + 1)-tuple and
the other coming from the order in which their cores are attached
along the line R× {0} ⊂ R2n−1 × [0, ∞). We have demanded that
these orderings coincide. In particular, (φ0, . . . , φp) may be recovered
from the unordered set {φ0, . . . , φp}.

We then define the semi-simplicial set Kδ
•(W) by forgetting the

topology on the embedding spaces.

33.4 K•(W) is highly-connected

To prove that Kδ
•(W) is highly-connected, we compare it to the

simplicial complex Kalg
• (I fr

n (W)) of hyperbolic summands in the
ε-quadratic module (I fr

n (W), λ, µ) for ε = (−1)n.

From hyperbolic summands to discrete embeddings

Recall that a p-simplex of Kδ
p(W) is an ordered (p+ 1)-tuple (φ0, . . . , φp)

of embeddings of thickened cores. These must have disjoint cores,



lectures on diffeomorphism groups of manifolds, version february 22, 2019 271

and their order coincides with the order in which they are attached to
the boundary. Thus we can recover the order from the set {φ0, . . . , φp},
and we may regard Kδ

•(W) as a simplicial complex without changing
the homeomorphism type of its thick geometric realization.

Recall that if A is an ε-quadratic module, then the simplicial
complex Kalg

• (A) has vertices given by inclusions H ↪→ A of sum-
mands. A (p + 1)-tuples {H0, . . . , Hp} forms a p-simplex if all Hi

are mutually orthogonal. We saw last lecture that (I fr
n (W), λ, µ)

is an (−1)n-quadratic module, after we pick a basepoint framing
b ∈ Emb(Dn × Dn, W) ' Fr(TW). We pick the one coming from the
boundary collar chart.

There is a simplicial map

I• : Kδ
•(W)→ Kalg

• (I fr
n (W))

sending φ to the hyperbolic summand spanned by the classes of
φ|Sn×{0} and φ|{0}×Sn . The path of framings to the base point is
induced by moving the disk to which we restrict along W1,1 and
D2n−1 × [0, 1] to the boundary collar chart. It is easy to see that
embeddings with disjoint cores gives orthogonal summands, as we
may compute λ geometrically by counting intersection points with
sign.

Lemma 33.4.1. The map I is surjective on vertices, up to changing the
null-homotopies of framings.

Sketch of proof. By the discussion in the previous lecture, from each
hyperbolic summand we may produce an embedded copy of W1,1

whose spheres represent e, f ∈ H except for the path of framings
(which we shall ignore per the statement of the lemma). It remains to
attach W1,1 to the boundary via a “tether” D2n−1 × [0, 1] and produce
the path of framings. Pick any smooth path η from {0} × {1} ∈ ∂W1,1

to the boundary collar chart. Generically it is embedded and avoids
(Sn × {0}) ∪ ({0} × Sn) ∪ γ, so by shrinking W1,1 we may assume
it is disjoint from it. Thicken it by taking a tubular neighborhood,
taking care to make it attach to ∂W1,1 and the boundary collar chart
correctly (as in the definition of an admissible embedding) by picking
an appropriate Riemannian metric to use in the exponentiation. It
may be the case that the framings lie in different path components,
but then just change the orientations.

Using this we prove the following lemma. We remark that a sim-
ilar arguments works for links of simplices of Kδ

•(W), a generality
which we shall use later, but we shall not give the proof in this gener-
ality for the sake of keeping the notation understandable.
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Lemma 33.4.2. Given a commutative diagram

Si ||Kδ
•(W)||

Di+1 ||Kalg
• (I fr

n (W))||

||I• || (33.1)

we may produce a map Di+1 → ||Kδ
•(W)|| whose restriction to the bound-

ary is homotopic to the top horizontal map.

Note we do not claim this map is a lift. This is consequence of
possible getting the framings wrong in Lemma 33.4.1. The follow-
ing argument is a standard argument in the homotopy theory of
simplicial complexes called a lifting argument.

Sketch of proof. By simplicial approximation there exists a pair sim-
plicial complexes (K•, L•) with (||K•||, ||L•||) ∼= (Di+1, Si) and a
commutative diagram of simplicial maps

L• Kδ
•(W)

K• Kalg
• (I fr

n (W))

f•

I•

F•

which upon geometric realization is homotopic to (33.1) through
commutative diagrams.

Let us now for convenience assume that for all vertices in the
image of f , the cores are transverse. This assumption is unnecessary,
since one always arrange it to be true by an initial homotopy (using
the weakly Cohen-Macauleyness), but we shall skip this step for ease
of exposition.

We then try to produce a lift of F one vertex at a time. We shall
fail to produce to the right null-homotopies of framings, but the
statement allows us to ignore this. Pick an enumeration k1, . . . , kN

of the vertices in K• \ L•, i.e. in the interior of Di+1, and suppose we
have produced a lift of the first M of these, k1, . . . , kM. We shall also
suppose these lifts represent the same summand of Hn(W) (i.e. are
the same up to framings), and that all cores are transverse to each
other and the cores of the vertices in the image of L• under f .

For the next vertex kM+1, we can use Lemma 33.4.1 to pick a lift.
By a small perturbation we can make it transverse to the cores of
the ki for i ≤ M and of the vertices in the image of L• under f . This
may be done one core at a time using the fact that transversality is
an open condition. Note the hyperbolic summand F(kM+1) is or-
thogonal to that of F(ki) for all ki in LinkK(kM+1), using the fact that
orthogonality only depends on its image in Hn(W). This means that
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we can use Whitney tricks to make its core disjoint from the cores of
those ki, one core at a time. This requires that all cores are transverse;
to guarantee that doing a Whitney trick does not create new intersec-
tions requires us to find Whitney tricks disjoint from the other cores.
This might be impossible if cores intersect non-transversally, e.g. if
intersections separate on a core the two intersection points we are
trying to cancel. This completes the induction step.

If W contain g disjoint copies of W1,1, then I fr
n (W) contains g

orthogonal copies of H. Using the fact that Kalg
• (W) is then g−2

2 -
connected, the previous lemma implies the following corollary:

Corollary 33.4.3. Suppose that there exists an embedding of g disjoint
copies of W1,1 into W, then Kδ

•(W) is weakly Cohen-Macauley of dimension
≤ g−2

2 .

In particular, this implies that for g−2
2 − p− 2 ≥ −1 the complement

of the cores of a (p + 1)-tuple of admissible embeddings still admits
an embedding of another W1,1 into it, as the link is non-empty.

From discrete embeddings to topologized embeddings

Now that we have established a connectivity result for Kδ
•(W), we

shall leverage it to prove a connectivity result for K•(W). This is
done by comparing discrete and topologized embeddings through a
bi-semi-simplicial space.

Definition 33.4.4. Let K̄•,•(W) be the bi-semi-simplicial space with
(p, q)-simplices given by ordered (p + q + 2)-tuples of (φ0, . . . , φp+q+2)

of admissible embeddings with disjoint cores and compatible order-
ing at the boundary (i.e. forming a p-simplex in Kδ

p+q+1(W)), where
the first p + 1 are topologized and the last q + 1 are discrete. That is,
K̄p,q(W) is topologized as a subspace of Kp(W)× Kδ

q(W).

There are two augmentations

ε : K̄•,•(W)→ K•(W)

δ : K̄•,•(W)→ Kδ
•(W)

given by either forgetting the last q + 1 or first p + 1 admissible
embeddings. There is also an inclusion map ι : Kδ

•(W) → K•(W). By
moving the discrete embedding into the topologized embeddings,
one proves that the following diagram is homotopy-commutative

||K̄•,•(W)|| ||K•(W)||

||Kδ
•(W)||

ε

δ
ι
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so that the map ε factors over a highly-connected space. In particular,
if there exists an embedding of g disjoint copies of W1,1 into W,
the bottom space is g−4

2 -connected. Thus if we can show that ε is
( g−4

2 − 1)-connected, then we can conclude that ||K•(W)|| is g−4
2 -

connected as well. For this it suffices to prove that the map on p-
simplices is ( g−4

2 − p− 1)-connected, using the following lemma used
in Lecture 28:

Lemma 33.4.5. A levelwise weak equivalence of semi-simplicial spaces
induces a weak equivalence upon geometric realization. More generally, a
semi-simplicial map that is (n − p)-connected on p-simplices induces a
n-connected map upon geometric realization.

Since disjointness of cores is an open condition, the map

εp : ||[q] 7→ K̄p,q(W)|| → Kp(W)

is a Serre microfibration. The fiber of ε over a p-simplex (φ0, . . . , φp) ∈
Kp(W) is weakly equivalent to the semi-simplicial set of discrete ad-
missible embeddings whose cores avoid those of the φi. By an argu-
ment as before, this is still g−p−5

2 -connected, and g−p−5
2 ≥ g−4

2 − p− 1.
A generalization of Weiss’ lemma, Proposition 2.6 of [GRW18], says
that:

Lemma 33.4.6. A Serre microfibration f : E → B with (n− 1)-connected
fibers is n-connected.

We conclude from this:

Corollary 33.4.7. Suppose that there exists an embedding of g disjoint
copies of W1,1 into W, then Kδ

•(W) is g−4
2 -connected.

33.5 Quillen’s argument

As announced in the previous lecture, we shall now attempt to run
Quillen’s argument again. The proof shall be analogous but not iden-
tical to that for symmetric groups. We start by considering the action
of Diff∂(Wg,1) on the geometric realization of the semi-simplicial
space K•(Wg,1). To directly copy the argument for symmetric groups,
we would like that

(1) Diff∂(Wg,1) acts transitively on Kp(Wg,1) and the stabilizer of a
p-simplex is isomorphic to Diff∂(Wg−p−1,1).

(2) All face maps are homotopic to σ∗.

(3) ||K•(W)|| is g−4
2 -connected.

We have already established (3) in Corollary 33.4.7, but (1) and (2)
are not true. However, the failures of (1) and (2) will not be hard to
overcome.
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The failure of (1) and (2)

For (1), we firstly note that transitivity fails simply because cores
can be attached along different parts of the boundary and the action
Diff∂(Wg,1) fixes the boundary of Wg,1 so can not map these to each
other. However, Kp(Wg,1) clearly deformation retracts onto the sub-
space K′p(Wg,1) of (p + 1)-simplices with ith thickened core attached
along (x, t) 7→ (1/3 · x + (i + 1) · e1, t).

This does not address all problems: transitivity fails because
the thickened cores are not disjoint, only the cores. But we may
similarly by shrinking the thickened cores onto their cores, produce a
deformation retraction of K′p(W) onto the subspace K′′p (W) where the
thickened cores are disjoint.

The final obstruction is that it is not clear that the complement of
a (p + 1)-simplex is diffeomorphic to Wg−p−1,1. We shall prove this
using the path-connectedness of ||K•(Wg,1)|| for g sufficiently large.

Lemma 33.5.1. Let e0, e1 : T1,1 ↪→ Wg,1 be admissible embeddings that
g ≥ 4. Then there is a diffeomorphism f of Wg,1 such that e1 = f ◦ e0 and f
is isotopic to the identity on ∂Wg,1.

Proof. If e0 and e1 are disjoint, the union of their images together
with a little strip near the boundary is diffeomorphic to W2,1, and
one may construct the desired diffeomorphism by hand. If only their
cores are disjoint, we may shrink them onto the cores and note that
by isotopy extension it suffices to construct f for these embeddings.

For the general, we use that ||Kδ
•(Wg,1)|| is path-connected. The

proof is then by induction over the number of vertices in a path of
1-simplex connecting e0 and e1, using the above argument for the
induction step.

Corollary 33.5.2. Let e0, e1 : T1,1 ↪→ Wg,1 be admissible embeddings that
g ≥ 4. Then the complement of e0 is diffeomorphic to the complement of e1.

Now we may check (2) using the preferred p-simplex given by a
(p + 1)-tuple of standard embeddings of T1,1 into Wg,1.

Finishing the proof

The previous paragraphs implies the following weaker versions of
(1)–(3) hold:

(1) For g− p ≥ 4, Kp(Wg,1) � Diff∂(Wg,1) ' BDiff∂(Wg−p−1,1).

(2) For g − p ≥ 4, the face maps di : Kp(Wg,1) � Diff∂(Wg,1) →
Kp−1(Wg,1) � Diff∂(Wg,1) are homotopic to σ∗.

(3) ||K•(W)|| is g−4
2 -connected.
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The spectral sequence argument will then go as for symmetric
groups, with an offset in the range to accommodate for the offsets.
This proves Theorem 33.1.1:

Theorem 33.5.3 (Galatius-Randal-Williams). For n ≥ 3, the relative
homology groups H∗(BDiff∂(Wg+1,1), BDiff∂(Wg,1)) of the stabilization
map vanish for ∗ ≤ g−1

2 .



34
The homotopy type of the cobordism category

Takeaways:
· One can define right compact-open

spaces of submanifolds using the
existence of tubular neighborhoods,
and then the proof of Barratt-Priddy-
Quillen-Segal goes through without
any real modification.

· The result is that BCob(d) '
Ω∞−1 MTO(d), with MTO(d) the
Thom spectrum of −γ over BO(d).
This generalizes to other tangential
structures.

In the previous lecture we proved homological stability for BDiff∂(Wg,1).
Today we start with the computation of the stable homology. The first
step is computing the homotopy type of the cobordism category
of d-dimensional manifolds, analogous to the proof of the Barratt-
Priddy-Quillen-Segal theorem. This is the subject of this lecture. The
original reference is [GTMW09], but we shall follow [GRW10] and the
exposition in [Hat11].

34.1 Compact open spaces of submanifolds

We shall start by defining the analogue of the spaces C(U) of compact-
open configuration spaces. To do so, we first define spaces of sub-
manifolds analogous to ordinary configuration spaces and compute
their homotopy type. We then describe how to define its “compact-
open variation” Ψd(U) for U ⊂ RN and compute the homotopy type
of Ψd(R

N).

Spaces of submanifolds

Fix a compact d-dimensional manifold M, with empty boundary
for the sake of convenience of exposition. Let us consider the space
Emb(M, RN) of embeddings M ↪→ RN in the C∞-topology. This has
a continuous action of Diff(M) by precomposition.

Lemma 34.1.1. The space Emb(M, RN) is (N/2− d− 2)-connected.

Proof. Given a map H : K → C∞(M, RN), we use h for the associated
map K×M→ K×RN and h̃ for the associated map K×M→ RN , i.e.
h̃ = π2 ◦ h.

Consider a map F : Si → Emb(M, RN) and its associated map
f̃ : Si × M → RN , then we may extend it to a map g̃ : Di+1 × M →
RN , as RN is contractible. Since the embeddings are open in all
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smooth maps, for all t in an ε-neighborhood of Si in Di+1, the map
g(t,−) : M→ RN is an embedding.

Now may make the restriction of g̃ to B1−ε/4(0) ⊂ Ri+1 generic,
the result we again denote by g̃. We may do this an perturbation
that is small enough such that for t ∈ B1−ε/4(0) \ B1−ε/2(0), linear
interpolation between f̃ (t,−) and g̃(t,−) is through embeddings,
again using the fact that embeddings are open in all smooth maps.
We then let h̃ : Di+1 ×M→ RN be defined by

h̃(t, m) =


f̃ (t, m) if 1− ε/4 ≤ ||t|| ≤ 1
1−ε/2−||t||

ε/4 f̃ (t, m) + (1− 1−ε/2−||t||
ε/4 )g̃(t, m) if 1− ε/2 ≤ ||t|| ≤ 1− ε/4

g̃(t, m) otherwise

A generic map Di+1 × M → RN is an embedding if 2(d +

i + 1) < N, i.e. i ≤ N/2 − m − 2, which implies that the map
H : Di+1 → C∞(M, RN) lands in the subspace of embeddings; on
B1(0) \ B1−ε/2(0) it is an embedding by our condition on the small-
ness of the perturbation, and on B1−ε/2(0) it is because the map
B1−ε/2(0)×M → B1−ε/2(0)×RN → RN is an embedding. Since H
extends F, this concludes the proof.

We claim that this makes Emb(M, RN)/Diff(M) an approximation
for BDiff(M), and in particular

colimN→∞Emb(M, RN)/Diff(M) ' BDiff(M).

Note that the space Emb(M, RN)/Diff(M) has points given by a
(unparametrized) submanifolds W ⊂ RN that are diffeomorphic to
M, justifying the slogan “a model for BDiff(M) is given by the space
of submanifolds of R∞ diffeomorphic to M.”

To prove the claim, we need to verify that

π : Emb(M, RN)→ Emb(M, RN)/Diff(M)

is a principal Diff(M)-bundle. As the action is free, it suffices to show
the existence of local sections (as these then give local trivializations).
That is, given a submanifold W ∈ Emb(M, RN)/Diff(M) we need to
find an open subset U of Emb(M, RN)/Diff(M) containing W and a
map s : U → Emb(M, RN) so that π ◦ s = idU . This follows from the
existence of tubular neighborhoods. Pick an embedding ϕ0 : M →
RN whose image is W and a tubular neighborhood Φ0 : νM →
RN extending ϕ0, so that we have a map p0 : Φ0(νM) → W. Let
U be the subset of W ′ ⊂ RN such that W ′ ⊂ Φ0(νM) and the map
p0|W ′ : W ′ →W is a smooth submersion. This is open and the section
s : U → Emb(M, RN) is given by sending W ′ to the embedding
ϕW ′ : M→ RN given by sending m ∈ M to p0|−1

W ′ (ϕ0(m)).
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Compact-open spaces of submanifolds

We want consider submanifolds that are able to disappear partially at
infinity, like how a single particle in a configuration was allowed to
disappear in C(RN). Our only option to allow their diffeomorphism
types to change, and hence we might as well take all submanifolds.

Definition 34.1.2. Let Ψd(R
N) denote the set of closed subsets

W ⊂ RN that are smooth d-dimensional submanifolds, i.e. locally
diffeomorphic to the pair (RN , Rd).

We next define the topology on this set, following Section 2 of
[GRW10]. This is done in three steps:

(1) Using a tubular neighborhood Φ : νW ↪→ RN of W ∈ Ψd(R
N),

let Γc(νW) denote the space of compactly supported smooth
sections and Γc(νW) → Ψd(R

N) as the graph of the section, in-
terpreted as a subspace of RN using Φ. As a first approximation,
topologize Ψd(R

N) so that these are homeomorphisms onto
open subsets. This is denoted Ψd(R

N)cs.

(2) For N ⊂ RN , let Ψd(R
N , RN \ N) be the quotient space of

Ψd(R
N)cs by the equivalence relation where W ∼W ′ if and only

if W ∩ N = W ′ ∩ N.

(3) Let Ψd(R
N) be the colimit of Ψd(R

N , RN \ Bn(0)) as n→ ∞.

Example 34.1.3. When d = 0, we have that Ψ0(R
N) is homeomorphic

to the space C(RN) of compact-open configurations that we used in
the proof of the Barratt-Priddy-Quillen-Segal theorem. This follows
from the fact that (1) produces standard open neighborhoods in the
configuration space, and (2) & (3) mirror the construction of C(RN).

For U ⊂ RN open, let us denote by Ψd(U) the subspace of Ψd(R
N)

of those W such that W ⊂ U. We will occasionally consider Ψd(C)
for C closed for notational convenience, then by definition this is
Ψd(int(C)).

There is an operation on π0(Ψd(R
k × IN−k)) given by juxtaposition:

(W, W ′) is sent to W t (W ′+ ek+1) in Ψ(Rk× [0, 2]× IN−k−1) and then
[0, 2] is reparametrized to I. Indeed, this comes from the structure of
an algebra over the little (N − k)-cubes operad on Ψd(R

k × IN−k).

Lemma 34.1.4. For 0 < k < N, we have that π0(Ψd(R
k × IN−k)) is a

group under juxtaposition.

Proof. For W ∈ Ψd(R
k × IN−k), Sard’s lemma says that the restriction

to W of π : Rk × IN−k → Rk has a regular value. Without loss of
generality this the origin in Rk. By zooming in on the origin, we find
a path in Ψd(R

k × IN−k) from W to the product Rk ×W|0. We claim
that the juxtaposition of Rk ×W|0 with itself admits a path to the
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empty manifold. To see this, note that there is a null-bordism V of
W|0 tW|0 which is embeddable in IN−k+1. This provides a path from
Rk × (W|0 tW|0) to ∅ given by

t 7→
(

Rk−1 × (−∞, t]× (W|0 tW|0)
)
∪
(

Rk−1 × (V + t · ek)
)

.

In fact, it is isomorphic to the group of (d− k)-dimensional mani-
folds in RN−k up to bordisms embedded in RN−k × I.

The homotopy type of Ψd(R
N)

We shall compute Ψd(R
N) by the same lemma we used before:

Lemma 34.1.5. If U0 ∪U1 = X is an open cover of X by two subsets, then
the pushout

U0 ∩U1 U0

U1 X

is also a homotopy pushout.

To phrase the outcome of the computation, we recall the notion of
a Thom space. Suppose we are given a vector bundle ζ over a base B,
i.e. an Rk-bundle p : E → B with transition functions in GLk(R). By
definition this is the associated bundle with fiber Rk of a principal
GLk(R)-bundle Fr(ξ). In fact, we may recover Fr(ξ) as the space
of maps Rk → E that are a linear map onto a fiber of p. Then the
Thom space of ζ is the pointed space given by taking the fiberwise
one-point compactification and collapsing the section at infinity to a
point.

Definition 34.1.6. We have that Th(ζ) is given by Fr(ζ) ×GLk(R) Sk,
with GLn(R) acting on Sk by identification the latter with Rk ∪ {∞},
and collapsing s∞ := Fr(ζ)×GLk(R) {∞} to a point:

Th(ζ) := (Fr(ζ)×GLk(R) Sk)/s∞.

If we endow ζ with a Riemannian metric, this is homeomorphic
to the quotient D(ζ)/S(ζ) of the closed unit disk bundle by the unit
sphere bundle.

Let Grd(N) denote the Grassmannian of d-planes in RN . It carries
several vector bundles, the first of which is the canonical bundle
γd(N). This is d-dimensional and has total space described by the
subspace of Grd(N)×RN consisting of (V, v) with v ∈ V. We shall
instead by interested in γ⊥d (N), the (N − d)-dimensional vector
bundle with total space described by the subspace of Grd(N)×RN

consisting of (V, v) with v ∈ V⊥. Note that γd(N) ⊕ γ⊥d (N) is the
trivial N-dimensional bundle.
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Proposition 34.1.7. We have that Ψd(R
N) ' Th(γ⊥d (N)).

Proof. We intend to cover Ψd(R
N) by two open subsets U0 and U1:

· U0 is the subspace of Ψd(R
N) of W such that 0 /∈W.

· U1 is the subspace of Ψd(R
N) of W such that there is a unique

point w0 in W that is closest to 0.

· U0 ∩U1 is then the subspace of Ψd(R
N) of W such that 0 /∈ W but

there is a unique point w0 in W that is closest to 0. Here is a collection of embeddings R→
R2 which are not in U1 but converge
to a point in U1. Let η : R → [0, 1] be a
smooth function which is 0 on (−∞, 0],
> 0 on (0, ∞) and strictly increases
to ∞. Then take et : R → R2 in radial
coordinates (r, θ) as follows

et(x) :=

{
(η(x− t), x/(1 + x2)) if x > 0,
(η(−x), x/(1 + x2)) if x ≤ 0.

This is at minimal radius 1 on the
interval [0, t], so fo t > 0 is not in U1
but for t = 0 is.

Unfortunately, U1 as above is not open, so we replace it with the
following

· U1 is the subspace of Ψd(R
N) of those W such that restriction

ot W of function x 7→ ||x||2 has a unique minimum, which is a
non-degenerate critical point.

Firstly, U0 has a deformation retraction onto ∅ by pushing mani-
folds to infinity. Next, by first translating w0 to 0 and then zooming
in on the origin (analogously to our proof that Emb(Rn, Rn) ' O(n)),
we see that U1 ' Grd(N). Finally, by moving w0 onto SN−1 ⊂ RN by
scaling and then zooming in on it, we see that U0 ∩U1 is homotopy
equivalent to the space of affine d-planes in RN , whose closest point
to the origin lies in SN−1. This is the same as a point V ∈ Grd(R

N)

and a point in the unit sphere of the fiber of γ⊥d (N) at V, i.e. the unit
sphere bundle S(γ⊥d (N)). By Lemma 34.1.5 we conclude that there is
a homotopy pushout

S(γ⊥d (N)) ∗

Grd(N) Ψd(R
N)

with the left vertical map the projection to the base.
To compute this, we may replace the left vertical map by the

cofibration S(γ⊥d (N)) → D(γ⊥d (N)), where D(γ⊥d (N)) denotes the
closed unit disk bundle, and taking the actual pushout. This is given
by D(γ⊥d (N))/S(γ⊥d (N)), which we saw before is homeomorphic to
Thom(γ⊥d (N)).

Example 34.1.8. When d = 0, we have that Gr0(R
N) is given by the

Thom space of the orthogonal complement to the canonical bundle
over the space Gr0(R

N). This Grassmannian has a single point, and
γ⊥d (N) has N-dimensional fibers, so that Th(γ⊥d (N)) ∼= SN .

34.2 The d-dimensional cobordism category

We now define the d-dimensional cobordism category Cob(d, N).
Like Cob(0, N) this is a topological category, i.e. has spaces of objects
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and morphisms, and source, target and composition maps that are
continuous.

Let Ψd(R× IN−1) denote the subspace of Ψd(R
N) consisting of W

contained in R× int(IN−1). Note these are not allowed to disappear
except at {±∞} × IN−1. For open U ⊂ R and W ∈ Ψd(R× IN−1) we
let W|U denote W ∩ (U × IN−1). We also allow {t} ⊂ R, and then
W|t := W ∩ ({t} × IN−1) ∈ Ψd−1(int(IN−1)), the latter being the
subspace of Ψd−1(R

N−1) of X contained in int(IN−1).

Definition 34.2.1. The d-dimensional cobordism category Cob(d, N)

is the topological category with space of objects given by R ×
Ψd−1(int(IN−1)) and space of morphisms given by the subspace
of R2 × Ψd(R

N) consisting of triples (t, t′, W) such that t ≤ t′ and
there exists an ε > 0 so that

W|(−∞,t+ε) = (R×W|t)|−∞,t+ε),

W|(t′−ε,∞) = (R×W|t′)|(t′−ε,∞).

The source and target maps send (t, t′, W) to W|t and W|t′ re-
spectively. The identity at (t, X) is (t, t, R× X). The composition of
(t, t′, W) and (t′, t′′, W ′) is given by (t, t′′, W ′′) with W ′′ the union of
W|(−∞,t′) and W ′|[t′ ,∞).

One should really think of the morphisms (t, t′, W) as being sub-
manifolds of [t, t′]× int(IN−1), the above is just slightly more techni-
cally convenient (because otherwise the subspace of RN they live in
changes depending on t, t′).

It is not clear that the simplicial space N•Cob(d, N) is proper. We
shall thus take BCob(d, N) to be its thick geometric realization.

We shall postpone the identifying its homotopy type in terms of
classifying of diffeomorphism groups until the next lecture. Instead
we shall prove the following theorem:

Theorem 34.2.2. We have that BCob(d, N) ' ΩN−1Th(γ⊥d (N)).

These weak equivalences can be made natural in N (by an argu-
ment similar as for configurations, which we won’t give for the sake
of brevity), so that when we define Cob(d) := colimN→∞Cob(d, N),
we have that

BCob(d) ' colimN→∞ΩN−1Th(γ⊥d (N)).

We can identify the latter as Ω∞ of a Thom spectrum. This requires
us thinking of γ⊥d (N) has being related to the formal vector bundle
−γd(N) over BO(d), as γ⊥d (N) is not a vector bundle over BO(d).

By definition, the Thom spectrum M(−ξ) of the virtual bundle −ξ

of an ξ that is n-dimensional over B is given as follows, supposing
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there exists a filtration B(N) of B such that ξ has an N − n orthogonal
complement ξ⊥N (this is always possible up to weak equivalence).
The Nth space of M(−ξ) is then given by Th(ξ⊥N), so that in this
convention, the Thom class is in degree −n. With this definition,
colimN→∞ΩNTh(γ⊥d (N)) is the infinite loop space associated to
MTO(d), the Thom spectrum of −γ over BO(d).

The following is the main result of [GTMW09].
Remark 34.2.3. We leave to the
reader to convince themselves that
π0(BCob(d)) ∼= ΩO

d−1(∗), the (d− 1)st
unoriented bordism group. This may
also be deduced from Corollary 34.2.4
using elementary homotopy theory,
see Section 3 of [GTMW09], a fun but
non-trivial exercise.

Corollary 34.2.4 (Galatius-Madsen-Tillmann-Weiss). We have that
BCob(d) ' Ω∞−1MTO(d).

Comparison to manifolds in cylinders

The first step shall be to compare BCob(d, N) to Ψd(R× IN−1).

Proposition 34.2.5. There is a zigzag of weak equivalences

Ψd(R× IN−1)← · · · → BCob(d, N).

t0 t1 t2

t0 < t1 < t2 ∈ R

Figure 34.1: A point in X2 for d = 1,
N = 2, having 2 + 1 = 3 walls.

Proof. We shall build a semi-simplicial resolution X• of C(R× IN−1).
Its space Xp of p-simplices is given by

the subspace of Ψd(R× IN−1)×Rp+1 consisting of (W, t0, . . . , tp) with
t0 < . . . < tp such that W is transverse to the “walls” {ti} × IN−1.

See Figure 34.1. As before, the map

ε : ||X•|| → Ψd(R× IN−1)

induced by the augmentation, is a microfibration with contractible
fibers. The former uses that transvesality is an open condition, the
latter that Sard’s lemma which says that for fixed W, the set {t |
{t} × IN−1 tW} ⊂ R is dense.

To compare this to the nerve of Cob(d, N), we consider the semi-
simplicial subspace X′• of X• given by (W, t0, . . . , tp) such that there
exists an ε > 0 such that W|(ti−ε,ti+ε) = (R×W|ti )|(ti−ε,ti+ε). See Fig-
ure 34.2. We may bend submanifolds straight by linear interpolation
to prove that the inclusion

X′• → X•
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t0 t1 t2

t0 < t1 < t2 ∈ R

Figure 34.2: A point in X′2 for d = 1,
N = 2, having 2 + 1 = 3 walls, obtained
by deforming the point in X2 of Figure
34.1 by linear interpolation near the
walls.

is a level-wise weak equivalence, and hence so is its thick geometric
realization.

Next we note that there is a semi-simplicial map X′• → N•Cob(d, N)

given by sending (W, t0, . . . , tp) to the p-tuple of morphisms obtained
by taking W|[ti ,ti+1]

and extending in constant fashion to (−∞, ti) and
(ti+1, ∞). This forgets about the pieces W|(−∞,t0]

and W|[tp ,∞), which
are contractible pieces of data by pushing outwards to infinity. Thus
this semi-simplicial map is a levelwise weak equivalence, and hence
realizes to a weak equivalence,

We summarize by noting that we produced a zigzag of weak
equivalences

Ψd(R× IN−1)
'←− ||X•||

'←− ||X′•||
'−→ BCob(d, N).

A delooping argument: easy case

Recall that Ψd(R
k × IN−k) denotes the subspace of Ψd(R

N) of W
contained in Rk × int(IN−k). Now we repeat a version of the previous
argument to prove the following:

Proposition 34.2.6. For k > 0 and d < k + 1, there is a weak equivalence

Ψd(R
k × IN−k) ' ΩΨd(R

k+1 × IN−k−1).

Proof. We again give a semi-simplicial resolution of Ψd(R
k+1 ×

IN−k−1) by a semi-Segal space X• such that X1 ' Ψd(R
k × IN−k). As

before, X• has space Xp of p-simplices given by

the subspace of Ψd(R
k+1 × IN−k−1)×Rp+1 consisting of (W, t0, . . . , tp)

with t0 < . . . < tp such that W is disjoint from the “walls” Rk × {ti} ×
IN−k−1.

This is clearly a semi-Segal space with the desired X1 (which is
group-like by Lemma 34.1.4) by pushing the submanifolds in Rk ×
(−∞, t0)× IN−k−1 and Rk × (tp, ∞)× IN−k−1 out to infinity.

There is a canonical map ε : ||X•|| → Ψd(R
k+1 × IN−k−1), but

to prove it is a weak equivalence, we use an additional augmented
semi-simplicial space X′•. It has space X′p of p-simplices given by
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the subspace of Ψd(R
k+1 × IN−k−1)×Rp+1 × (Rk)p+1 consisting of

(W, t0, . . . , tp, y0, . . . , yp) with t0 < . . . < tp such that W is disjoint from
{yi} × {ti} × IN−k−1.

There is a semi-simplicial map

X• → X′•

by picking yi to the 0. This is a levelwise weak equivalence by push-
ing Rk × {ti} × IN−k−1 radially outwards in the Rk-direction from
{yi} × {ti} × IN−k−1. We obtain a factorization

||X•|| ||X′•||

Ψd(R
k+1 × IN−k−1).

'

Note that the conditions on d and k
are necessary; in particular the fact
that X• is a resolution implies that
Ψd(R

k+1 × IN−k−1) is path-connected,
which is not true for k small.

Finally, we note that right vertical map is a weak equivalence
because it is a microfibration with contractible fibers. The condition
that k > d is used to show that the fibers are non-empty: W is a
d-dimensional manifold, and this must avoid some (N − k − 1)-
dimensional manifold {y} × {t} × IN−k−1 if d + N − k− 1 < N, i.e.
d < k + 1.

A delooping argument: hard case

It remains to discuss the cases 0 < k ≤ d− 1. In this case a more subtle
version of Proposition 34.2.5 is used. This takes advantange of the
full strength of Lemma 3.14 of [GRW10], which uses the following no-
tion: a semi-Segal space is group-like if the induced monoid structure1 1 That is, the map

π0(X1)×π0(X1)
∼=←− π0(X2) −→ π0(X1),

which is associative by considering a
diagram involving X3 and unital by
considering a diagram involving X0.

on π0(X1) has inverses.

Lemma 34.2.7. If X• is a semi-Segal space with X1 group-like, then X1 '
Ω||X•||.

Proposition 34.2.8. For k > 0 and d ≥ k + 1, there is a weak equivalence

Ψd(R
k × IN−k) ' ΩΨd(R

k+1 × IN−k−1).

Proof. We now only attempt to resolve the path-component Ψd(R
k+1×

IN−k−1)∅ of Ψd(R
k+1 × IN−k−1) corresponding to the empty manifold.

This is the identity with respect to its group structure on π0, and
ΩΨd(R

k+1 × IN−k−1)∅ ' ΩΨd(R
k+1 × IN−k−1).

As before, the resolution is by a semi-Segal space X• such that
X1 ' Ψd(R

k × IN−k). As before, X• has space Xp of p-simplices given
by

the subspace of Ψd(R
k+1× IN−k−1)∅×Rp+1 consisting of (W, t0, . . . , tp)

with t0 < . . . < tp such that W is disjoint from the “walls” Rk × {ti} ×
IN−k−1.
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However, we shall need two different semi-simplicial spaces (X′)t•
and (X′′)t• . The space of p-simplices of (X′)t• is given by

the subspace of Ψd(R
k+1 × IN−k−1)×Rp+1 × (Rk)p+1 consisting of

(W, t0, . . . , tp, y0, . . . , yp) with t0 < . . . < tp such that W t ({yi} × {ti} ×
IN−k−1).

The space of p-simplices of (X′′)t• is given by

the subspace of Ψd(R
k+1 × IN−k−1)×Rp+1 × (Rk)p+1 × (0, ∞) consist-

ing of (W, t0, . . . , tp, y0, . . . , yp, ε) with t0 < . . . < tp such that W ∩ (Rk ×
(ti − ε, ti + ε)× IN−k−1) equals Rk × (ti − ε, ti + ε)×W|{yi}×{ti} and
|ti+1 − ti| > 2ε for 0 ≤ i ≤ p− 1.

There is a semi-simplicial map (X′′)t• → (X′)t• forgetting the ε’s.
This is a level-wise weak equivalence by zooming in on the {yi}. The
map ||(X′)t• || → Ψd(R

k+1 × IN−k−1)∅ is a Serre microfibration with
weakly contractible fibers, so is a weak equivalence. Note that this proof is not so different

from Proposition 34.2.6, as there as
we could have phrased disjointness
as transversality, and the hard step of
sliding in a null-bordism is unnecessary.

There is a semi-simplicial map X′• → (X′′)t• , taking ε to be half of
the distance from {yi} × {ti} × IN−k−1 to W and the yi to be 0. We
claim that this is a levelwise weak equivalence. To prove this, we use
that because W|{yi}×{ti} is the restriction of an element of Ψd(R

k+1 ×
IN−k−1)∅, there is an embedded null-bordism Vi of W|{yi}×{ti} in
IN−k−1 × I. As in the proof of Lemma 34.1.4, we may use this to
deform W to have empty intersection with Rk × {ti} × IN−k−1, see
Figure 34.3.

Combined with Propositions 34.1.7, 34.2.5 and 34.2.6, this finishes
the proof of Theorem 34.2.2 and hence Corollary 34.2.4.

34.3 Tangential structures

Next lecture we shall use a stronger version involving tangential
structures. Given a d-dimensional vector bundle ξ over B and a d-
dimensional manifold W, let Bun(TW, ξ) denote the space of bundle
maps TW → ξ. This has a continuous action of Diff(W) by precompo-
sition. Then

Emb(W, RN)×Diff(W) Bun(TW, ξ)

is the space of embedded submanifolds of RN diffeomorphic to W and with
tangential structure ξ. If N is (d − 1)-dimensional, one uses instead
Bun(TN ⊕ ε, ξ).

Example 34.3.1. If ξ is the canonical bundle over BO(d), this is the
same up to homotopy as imposing no tangential structure. If ξ is the
canonical bundle over BSO(d), up to homotopy this is the same as a
choice of orientation.
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R2

I

ti

Figure 34.3: Halfway through using a
null-bordism to clear intersections with
a wall in the case k = 1, d = 2 and N =
3. The manifold W|{yi}×{ti} consists of
two points, and the nullbordism is an
interval. The purple is the intersection
with R× {ti} × I.
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We can define a version Ψξ
d(R

N) of Ψd(R
N) of submanifolds

with ξ-structure. Using this, one may define cobordism categories
Cobξ(d, N) and Cobξ(d). The results proven in this lecture generalize
to:

Corollary 34.3.2 (Galatius-Madsen-Tillmann-Weiss). We have that
BCobξ(d) ' Ω∞−1MTξ, where MTξ is the Thom spectrum of the virtual
vector bundle −ξ over B.



35
Surgery in cobordism categories

Takeaways:
· The manifolds Wg,1 admit con-

tractible spaces of θ-structures,
so we might as well use Cobθ(d)
instead.

· By surgery on objects and mor-
phisms, made possible using the
θ-structures, we can show that
Ω0BCobθ(d) is weakly equivalent a
component of the group completion
of
⊔

g≥0 BDiff∂(Wg,1).

In the previous lecture we proved that BCob(d) ' Ω∞−1MTO(d), and
stated the more general version

BCobξ(d) ' Ω∞−1MTξ.

Today we will use the tangential structure θ induced by n-connective
cover BO(2n)〈n〉 → BO(2n). Surgery in cobordism categories is used
to show that the stable homology of BDiff∂(Wg,1) may be computed
by ΩBCobθ(2n) ' Ω∞ MTθ. These results appear in [GRW14].

35.1 The tangential structure θ

Recall θ is the tangential structure coming from pulling back the
universal 2n-dimensional bundle γ along the n-connective cover
θ : BO(2n)〈n〉 → BO(2n), i.e. πi(BO(2n)〈n〉) = 0 for 0 ≤ i ≤ n
and the map πi(BO(2n)〈n〉) → πi(BO(2n)) is an isomorphism
for i > n. In this section we consider the θ-structures on Wg,1 :=
#g(Sn × Sn) \ int(D2n).

θ-structures on the (2n− 1)-sphere

Since the diffeomorphism group Diff∂(Wg,1) fixes the boundary, it
is natural to also fix the θ-structure near the boundary. As in the
previous lecture, the space of θ-structures over S2n−1 is defined to be
the space of bundle maps Bun(TS2n−1 ⊕ ε, θ∗γ).

Lemma 35.1.1. For any 2n-dimensional manifold W, Bun(TW, θ∗γ)

is weakly equivalent to the space of lifts along θ of “the” classifying map
W → BO(2n) of TW.

We are justified in using “the” since the space of classifying maps
of any vector bundle over reasonable base is weakly contractible
(using the relative classifying property of the classifying space).
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Proof. We have that ` ∈ Bun(TW, ξ) is given by pairs of a map
l : W → B and an isomorphism λ : TW ∼= l∗ξ. If we fix a choice
of tangent classifier for TW given by a map t : W → BO(2n) and
an isomorphism τ : TW ∼= t∗γ, then a lift t′ of t along θ gives us a
bundle map TW → θ∗γ as the map t′ : W → BO(2n)〈n〉 and the
isomorphism TW ∼= (t′)∗θ∗γ ∼= t∗γ. Thus given (t, τ) we get a map
Liftθ(t)→ Bun(TW, θ∗γ).

We may change B by a homotopy equivalence, so by using the
path-loop fibration we may suppose that θ is a fibration. This implies
that the map

Bun(θ) : Bun(TW, θ∗γ)→ Bun(TW, γ)

is a fibration. It has image in the subspace of classifying maps for
TW. This subspace is weakly contractible, so Bun(TW, θ∗γ) is weakly
equivalent to the subspace Bun(θ)−1(t, τ). By construction Liftθ(t)→
Bun(TW, θ∗γ) factors over Bun(θ)−1(t, τ), and there is a homotopy
inverse Bun(θ)−1(t, τ)→ Liftθ(t) sending (l, λ) to l.

Let F := hofib(BO(2n)〈n〉 → BO(2n)), which has homotopy
groups given by

πi(F) =

πi(O(2n)) if i < n

0 if i ≥ n

and one should think of it as O(2n)/O(2n)〈n− 1〉 (even though this
does not make sense as O(2n)〈n− 1〉 is not a subgroup of O(2n), or a
group at all).

We may prove that single lift of TS2n−1 ⊕ ε exists by obstruction the-
ory, as the obstruction classes in Hi+1(S2n−1; πi(F)) all live in vanish-
ing groups, and similarly it is unique up to homotopy once we fix an
orientation as the obstructions for uniqueness lie in Hi(S2n−1; πi(F))
(the orientation comes from H0(S2n−1; π0(F)) ∼= Z/2Z).

An alternative argument uses the isomorphism TS2n−1 ⊕ ε ∼= ε⊕2n.
Using it, we may conclude that the space of θ-structures is weakly
equivalent to the mapping space Map(S2n−1, F). Using the fiber
sequence

Ω2n−1F → Map(S2n−1, F)→ F

we see that Map(S2n−1, F) ' F. This show π0 of the space of θ-
structures is Z/2Z, and also shows that space of θ-structure is not
weakly contractible.

θ-structures on Wg,1

Let us pick a θ-structure `∂ near ∂Wg,1 and let Bun∂(TWg,1, θ∗γ)

denote the space of bundle maps extending `θ . We claim that this is
weakly contractible.
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To see that a single θ-structure exists, note that the obstructions to
extending `∂ lie in Hi+1(Wg,1, ∂Wg,1; πi(F)). As the homology groups
vanishes if i + 1 < n (i.e. i ≤ n− 2) and the coefficients vanish if i ≥ n,
there is a single obstruction class in Hn(Wg,1, ∂Wg,1; πn−1(O(2n)).
These obstruction class record whether the trivialization of the tan-
gent bundle on the boundary of each of the 2g n-handles may be
extended. We may show that it vanishes by noting that W1,1 admits
a framing and hence so does Wg,1, and the restriction to a neighbor-
hood of ∂Wg,1

∼= S2n−1 of this framing is in particular a θ-structure,
and without loss of generality it is equal to `θ . For uniqueness there
are no obstructions, so a θ-structure extending `θ is unique up to
homotopy.

If fact, by comparing to a framing one sees that the space of all
θ-structures is weakly equivalent to Map∗(Wg; F), where Wg :=
#g(Sn × Sn). This fits into a fiber sequence

Ω2n(F)→ Map∗(Wg; F)→
2g

∏
i=1

ΩnF,

whose base and fiber are weakly contractible by our calculation of
the homotopy groups of F. The conclusion is that Bun∂(TWg,1, θ∗γ)

is weakly contractible, so that the moduli space of Wg,1’s with θ-
structure,

BDiffθ
∂(Wg,1) := Bun∂(TWg,1, θ∗γ) � Diff∂(Wg,1),

is in fact weakly equivalent to BDiff∂(Wg,1).
This justifies the study of Cobθ(d) instead of Cob(d) if one is inter-

ested in diffeomorphism groups of Wg,1. The former has a technical
advantage; embedded spheres of dimension ≤ n in a θ-manifold have
a trivial normal bundle, and hence we can attempt to do surgery on
them.

35.2 Surgery in cobordism category: statement

We start by stating the result of this lecture and do a rational compu-
tation.

Statement

Our definition of Cobξ(d) was a colimit over N of topological cate-
gories Cobξ(d, N), whose space of objects was given by R×Ψξ

d−1(IN−1)

and whose space of morphisms was a subspace of R2 ×Ψξ
d(R× IN−1).

It is slightly more convenient to use instead a “Moore loop” varia-
tion. It shall also be useful to replace Ψξ

d−1(IN−1) and Ψξ
d(R× IN−1)
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with homeomorphic spaces ψ
ξ
d−1(N − 1, 0) and ψ

ξ
d(N, 1); here ψ

ξ
d(n, k)

is defined to be the space of submanifolds of Rk ×Rn−k that are only
allowed to go to infinity in the Rk-directions.

Definition 35.2.1. The topological category Cobξ [d, N] has space of
objects given by ψ

ξ
d−1(N − 1, 0) and space of morphisms the subspace

of [0, ∞)× ψ
ξ
d(N − 1, 1) consisting of (t, W) such that W is a product

outside of [0, t]×RN−1.

The nerves of Cobξ(d, N) and Cobξ [d, N] are levelwise weakly
equivalent, so their classifying spaces are weakly equivalent as well
(recall these are defined using the thick geometric realization). Taking
N → ∞, we get a weak equivalence

BCobξ(d) ' BCobξ [d].

In contrast to Cobξ(d), Cobξ [d] has non-trivial endomorphisms
and hence contains non-trivial monoids, to which we may attempt to
apply the group completion theorem.

Taking d = 2n and ξ = θ, the strategy is to find a monoidM (i.e. a
subcategory with a single object) in Cobθ [2n] such that (i) the map

Ω0BM→ Ω0BCobθ [2n]

is a weak equivalence, and (ii) there is a weak equivalence

M'
⊔
g≥0

BDiffθ
∂(Wg,1),

with the monoid multiplication homotopic to boundary connected
sum (which is easily seen to be homotopy commutative).

In the previous section we saw that for Wg,1, θ-diffeomorphisms
are the same as ordinary diffeomorphisms, so we conclude there are
weak equivalences

Ω0B

⊔
g≥0

BDiffθ
∂(Wg,1)

 ' Ω0BM '−→ Ω0BCobθ [2n] ' Ω0BCobθ(d) ' Ω∞
0 MTθ.

An application of the group completion theorem of McDuff-Segal
[MS76] then gives Theorem 1.2 of [GRW14]:

Theorem 35.2.2 (Galatius-Randal-Williams). If n ≥ 3, the stable
homology of BDiff∂(Wg,1) is computed by the isomorphism

colim
g→∞

H∗(BDiff∂(Wg,1)) ∼= H∗(Ω∞
0 MTθ).
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Rational computation

We have that H∗(Ω∞
0 MTθ; Q) is the free graded-commutative al-

gebra on π∗>0(MTθ) ⊗ Q. This is the same as the rational spec-
trum homology in positive degrees which may be identified with
H∗>2n(BO(2n)〈n〉; Q) shifted down by −2n using the Thom isomor-
phism, which applies since the base of θ∗γ is simply-connected and
hence θ∗γ is orientable. We conclude that H∗(Ω∞

0 MTθ; Q) is the free
graded-commutative algebra on generators kλ∨ , where λ∨ is a dual
to a monomial λ in the Euler class e and Pontryagin classes pi for
d n+1

4 e ≤ i ≤ n− 1 of total degree > 2n, in degree |λ| − 2n.
Example 35.2.3. If n = 3, we have that
H∗(Ω∞

0 (MTθ); Q) is the free graded-
commutative algebra

Q[κej pk
1 pl

2
| 2nj + 4k + 8l > 6],

so only excluding κe and κp1 , as both
i = 1, 2 satisfy d 3+1

4 e ≤ i ≤ 3− 1.

The weak equivalence BDiff∂(Wg,1) ' Ω∞
0 MTθ is homotopic to a

Pontryagin-Thom map. This implies that kλ∨ are dual to generalized
MMM-classes κλ in cohomology. To define them, let

Wg,1 � Diff∂(Wg,1)

denote the universal Wg,1-bundle over BDiff∂(Wg,1), and take its
vertical tangent bundle Tv, which is 2n-dimensional. Given the
monomial λ, we obtain λ(Tv) ∈ H|λ|(Wg,1 � Diff∂(Wg,1); Q), and
integrating over the 2n-dimensional fiber gives the class κλ ∈
H|λ|−2n(BDiff∂(Wg,1); Q).

35.3 Surgery in cobordism category: proof outline

We now give an outline of the proof. Given that the entire paper
[GRW14] is 74 pages long, we can not give full details.

Strategy

One starts with constructing a sequence of subcategories, with inclu-
sions inducing weak equivalences upon taking classifying spaces:

Cobθ
D,k,l [2n] ↪→ Cobθ

D,k[2n] ↪→ Cobθ
D[2n] ↪→ Cobθ [2n]. (35.1)

We define them for finite N and take colimits as N → ∞:

Standard strip To define Cobθ
D[2n, N] for N ≥ 2n + 1, we let D2n−1 ⊂

RN−1 be given by taking S2n−1 ∩ ((−∞, 0]×R2n−1) and increasing
the dimension to N − 1 by taking a product with RN−1−2n. We also
fix a θ-structure on D2n−1 by restricting `θ on S2n−1 to the bottom
hemisphere.

Then Cobθ
D[2n, N] is the subcategory of Cobθ [2n, N] with objects

given by X ∈ ψθ
d−1(N − 1, 0) such that (X, `) ∩ ((−∞, 0]×RN−2) =

(D2n−1, `∂|D2n−1) and morphisms given by (t, W, `) such that
(W, `) ∩ (R× (−∞, 0] ×RN−1) = (R× D2n−1, R× `∂). That is,
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its intersection with the bottom half-space coincides a standard
strip, as a manifold with θ-structure.

Highly-connected morphisms For k ≤ n − 1, let Cobθ
D,k[2n, N] be the

subcategory where all morphisms (t, W) satisfy the property that
the pair (W|[0,t], W|t) is k-connected.

Highly-connected objects For k ≤ n− 1 and l ≤ k, we let Cobθ
D,k,l [2n, N]

be the subcategory of Cobθ
D,k[2n, N] with l-connected objects X.

We want to take d = 2n ≥ 6, k = n− 1 and l = n− 1, and we get a
weak equivalence

BCobθ
D,n−1,n−1[2n] '−→ BCobθ [2n].

Note that the objects are (n − 1)-connected (2n − 1)-dimensional
manifolds, so by Poincaré duality they must be homotopy equivalent
to S2n−1. of course, there can still be more than one isomorphism
class of objects, due to the existence of exotic spheres.

Let A be a set of isomorphism classes of objects containing at
last one object in each path-component of classifying space and
Cobθ,A

D,n−1,n−1[2n] is the full subcategory on objects in A. Then we

have that BCobθ
D,n−1,n−1[2n] is weakly equivalent to BCobθ,A

D,n−1,n−1[2n].
So let Ā be given by the class (S2n−1, `∂) and one isomorphism class
in each other path component, so that

BCobθ,Ā
D,n−1,n−1[2n] '−→ BCobθ

D,n−1,n−1[2n].

Let us next take based loops at the object (S2n−1, `∂) to get a weak
equivalence of based loop spaces

ΩBCobθ,Ā
D,n−1,n−1[2n] ' Ω∞ MTθ.

The based loop space only sees the path component containing
(S2n−1, `∂), and though there are still many objects, the space of such
objects is path-connected. Now consider the simplicial space with
p-simplices given by (N0Cob

θ,Ā
D,n−1,n−1[2n])p+1. Then the map

NpM NpCob
θ,Ā
D,n−1,n−1[2n]

∗ (N0Cob
θ,Ā
D,n−1,n−1[2n])p+1

with ∗ in degree p mapping to the (p + 1)-fold product of (S2n−1, `∂)

is levelwise homotopy cartesian and satisfies the conditions for the
Bousfield-Friedlander theorem1 (Theorem 4.9 of [GJ09]). Thus upon 1 The Bousfield-Friedlander theorem is a

example of a theorem giving conditions
under which homotopy pullbacks
commute with geometric realization.
See also [Rez14].
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geometric realization we get a homotopy cartesian square

BM BCobθ,Ā
D,n−1,n−1[2n]

∗ ||[p] 7→ (N0Cob
θ,Ā
D,n−1,n−1[2n])p+1||

with bottom right-hand corner contractible with an extra degeneracy
argument.

Thus BCobθ,Ā
D,n−1,n−1[2n] is weakly equivalent to classifying space of

the full subcategory on the single object (S2n−1, `∂). That is, we take
M to be endomorphism monoid of (S2n−1, `∂) in BCobθ

D,n−1,n−1[2n],
and have a weak equivalence

ΩBM' BCobθ,Ā
D,n−1,n−1[2n].

We shall identify the homotopy type ofM. By scaling the t-
coordinate of (t, W) this is the space of θ-manifolds (W, `) in [0, 1]×
R∞−1 with the following properties:

· (W, `) ∩ ({i} ×R∞−1) = (S2n−1, `∂) for i ∈ {0, 1},
· (W, `) ∩ (R× (−∞, 0]×R∞−2) = (R× D2n−1, R× `∂), and

· W is (n− 1)-connected.

By an argument as in Section 35.1, the spaces of θ-structure are
contractible if they are non-empty, so this weakly equivalent to⊔

[W]

BDiff∂(W),

where W ranges over all (n− 1)-connected manifolds with boundary
∂W ∼= S2n−1 whose tangent bundle is trivializible over the n-skeleton.
The monoid structure coming from composition is given by boundary
connected sum along the top hemispheres D2n−1 ⊂ S2n−1. Thus
using the group completion theorem we have that

H∗

⊔
[W]

BDiff∂(W)

 [π0]
−1 ∼= H∗(Ω0BM).

There can be more diffeomorphism classes of manifolds W than
just those of the Wg,1; though their homotopy theory says that W '
Wg,1, by smoothing theory we can still change the smooth structure
on a disk. Thus, up to elements that are already invertible we only
need to invert W1,1. We conclude that

H∗

⊔
[W]

BDiff∂(W)

 [W1,1]
−1 ∼= H∗(Ω∞ MTθ),

and restricting to the path-components of Wg,1, we obtain Theorem
35.2.2. We shall now outline the steps proving that all inclusions
(35.1) induce a weak equivalence upon taking classifying spaces.
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Creating a standard strip

We start by proving that BCobθ
D[2n, N] ↪→ BCobθ [2n, N] is a weak

equivalence for N ≥ 2n + 1. It is done by comparing both sides to a
space of θ-manifolds in R×RN . Like in the first step of the proof of
Barratt-Priddy-Quillen-Segal and Galatius-Madsen-Tillmann-Weiss
theorems, there is a commutative diagram

BCobθ
D[2n, N] BCobθ [2n, N]

ψθ
d,D(N, 1) ψθ

d(N, 1)

' '

ι

(35.2)

with vertical maps weak equivalences, and ψθ
d,D(N, 1) the subspace

of ψθ
d(N, 1) consisting of (W, `) such that (W, `) ∩ (R× (−∞, 0] ×

RN−2) = (R× D2n−1, R× `∂|D2n−1). There is a map ρ : ψθ
d(N, 1) →

ψθ
d,D(N, 1) by taking a diffeomorphism of R×R×RN−2 onto R×

(2, ∞)×RN−2 coming from an orientation-preserving diffeomorphism
R→ (2, ∞), and adding a “tube” (R× S2n−1, R× `∂).

The identity on ψθ
d(N, 1) is homotopic to the map ι ◦ ρ by sliding

W up and sliding in a tube. This uses that there exists a θ-structure
on D2n extending `∂ on its boundary S2n−1. A preferred choice is
by rotating `∂|D2n−1 around ∂D2n−1 (by uniqueness we may assume
that the θ-structure on S2n−1 is the restriction of this one). The map
ρ ◦ ι is homotopic to the identity by connecting up the strip and
the tube, which has a θ-structure by rotating D2n−1 in the “other
direction.” See Figure 35.1. Thus the bottom horizontal map in (35.2)
is a homotopy equivalence and hence the horizontal map is a weak
equivalence.

[t, ∞)× D2n−1

moving a tube in or out

[t, ∞)× D2n−1

undoing a tube

Figure 35.1: The “sliding in a tube” and
“undoing a tube” homotopies
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Surgery on morphisms

Our next goal is to make the morphisms highly-connected relative
to their outgoing boundary. This is done by induction over k, i.e. we
prove all inclusions

Cobθ
D,n−1[2n, N] ↪→ . . . ↪→ Cobθ

D,0[2n, N] ↪→ Cobθ
D,−1[2n, N] = Cobθ

D[2n, N]

induces weak equivalences upon taking classifying spaces as N → ∞.
The following is a special case of Theorem 3.1 of [GRW14]:

Theorem 35.3.1. The inclusion Cobθ
D,k[2n, N] → Cobθ

D,k−1[2n, N]

induces a weak equivalence on classifying spaces if (i) k ≤ n− 1, and (ii)
k + 1 + 2n < N.

Given a morphism W|[0,t], an element of the relative homotopy
group πk(W[0,t], W|t) for k ≤ n− 1 can be killed by surgery as long we
can represent it by an embedded sphere with trivial normal bundle.
But condition (i) in 35.3.1 means that we can arrange any map to
be an embedding by transversality, while the θ-structure takes care
of the normal bundle. To implement this surgery in the classifying
space, we replace BCobθ

D,k−1[2n, N] by the geometric realization

semi-simplicial space Xk,N
• with p-simplices given by elements of

ψθ
d,D(N, 1) with intervals (ai − ε, ai + εi) such that for each pair of

regular values t < t′ ∈ ⋃
i(ai − ε, ai + εi), the bordism W|[t,t′ ] is

k-connected relative to its outgoing boundary. In this space we can
do a surgery move as in Figure 35.2 (though it needs to modified to
get the θ-structures to work out, see Figure 3 of [GRW14]). This can
be embedded in RN under condition (ii) of Theorem 35.3.1.

Of course there is no canonical choice of the surgery data that
will make the morphisms in Np k-connected rel outgoing boundary.
However, one may define a semi-simplicial space whose q-simplices
contain q + 1 pieces of surgery data and show this is weakly con-
tractible. Using more than one pieces of surgery data is fine: we may
“overkill” relative homotopy groups, all this does is add some more
relative homotopy in degree k + 1.

Surgery on objects

After making the morphisms (n− 1)-connected relative to the out-
going boundary, we make the objects highly-connected by induction
over l, i.e. we prove all inclusions

Cobθ
D,n−1,n−1[2n, N] ↪→ . . . ↪→ Cobθ

D,n−1,0[2n, N] ↪→ Cobθ
D,n−1,−1[2n, N] = Cobθ

D,n−1[2n, N]

induces weak equivalences upon taking classifying spaces as N → ∞.
The left-most step — surgery in the middle dimension — will be
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t0 t1 t0 t1 t0 t1

Figure 35.2: A surgery move in the
case k = 0, i.e. making morphisms
path-connected relative to the outgoing
boundary when 2n = 2.

harder than the other ones so we have two theorems, which are
special cases of Theorems 4.1 and 5.2 of [GRW14].

Theorem 35.3.2. The inclusion Cobθ
D,k,l [2n, N] ↪→ Cobθ

D,k,l−1[2n, N]

induces a weak equivalence on classifying space if 2(l + 1) < 2n, l ≤ k,
l ≤ 2n− k− 2, and l + 2 + 2n < N.

Theorem 35.3.3. The inclusion Cobθ
D,n−1,n−1[2n, N] ↪→ Cobθ

D,n−1,n−2[2n, N]

induces a weak equivalence on classifying space if 2n ≥ 6 and 3n + 1 < N.

The idea is similar as before; using surgery moves indexed by
weakly contractible spaces of surgery data to increase connectiv-
ity of the objects. The connectivity of the morphisms is necessary,
providing the existence of paths for the surgery moves.



36
The Weiss fiber sequence

Having given the outline of the Galatius-Randal-Williams theorem
H∗(BDiff∂(Wg,1)) ∼= H∗(Ω∞

0 MTθ) for ∗ ≤ g−3
2 , we will use this to

get information about H∗(BDiff∂(D2n)). This involves thinking of
diffeomorphisms of a disk as “the difference” between diffeomor-
phisms and a space of self-embeddings. In the next lecture we will
study these self-embeddings using embedding calculus. The ideas
are due to Weiss [Wei15], and appeared in a slightly different form in
[Kup17].

36.1 Monoids of self-embeddings

A first definition

Let us fix a n-dimensional smooth manifold M with boundary ∂M.
Let us also fix a codimension zero submanifold K ⊂ ∂M. Then let
Kc := ∂M \ K, an open submanifold of ∂M. We shall denote M̄ := M ∪
∂M× [0, 1], the union taken along ∂M ⊂ M and ∂M× {0} ×M× [0, 1].

Definition 36.1.1. Let EmbK(M) be the space of embeddings M ↪→ M̄
with image in M \ Kc ⊂ M̄ and fixing K ⊂ ∂M× {0} ⊂ M̄.

Note that such embeddings are really a map M → M (though
we used the above definition to avoid discussions about boundary
conditions) and may be composed. This gives EmbK(M) the structure
of a (non)-unital monoid, though it has a unit up to homotopy.

The complement

We can extract a manifold with corners out of ϕ ∈ EmbK(M):

C(ϕ) := M̄ \ (im(ϕ) ∪ K× [0, 1]),

whose boundary is canonically identified with ∂(Kc × [0, 1]).
Let CK denote the set of diffeomorphism classes of n-dimensional

manifolds with boundary identified with ∂(Kc × [0, 1]). Given W, W ′ ∈
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CK, we may form W�W ′ by identifying Kc × {1} ⊂ W with Kc ×
{0} ⊂W ′ and identifying ∂(Kc × [0, 2]) with ∂(Kc × [0, 1]) by rescaling
the second term by 1/2. This is associative and has unit Kc × [0, 1].

Lemma 36.1.2. We have that C(ϕ ◦ ψ) ∼= C(ϕ)�C(ψ).

Proof. For ε > 0 small enough, we can find an extension of ϕ to
ϕ̃ : M ∪ M × [0, ε] that is the identity on K × [0, ε]. Then C(ϕ̃) :=
M̄ \ (im(ϕ̃) ∪ K × [0, 1]) is clearly diffeomorphic to C(ϕ) by moving
along the collar.

Furthermore, C(ψ) is clearly diffeomorphic to Cε(ψ) := M ∪ ∂M×
[0, ε] \ (im(ψ) ∪ K× [0, ε]). The identification

C(ϕ ◦ ψ) ∼= ϕ̃(Cε(ψ))�C(ϕ̃) ∼= C(ϕ)�C(ψ),

proves the desired equation in CK, see Figure 36.1.

C(ϕ)

ϕ(ψ|∂M)

∼= C(ϕ̃)

ϕ̃(Cε(ψ)))

Figure 36.1: A diagrammatic picture
explaining Lemma 36.1.2.

This means that there is a homomorphism from EmbK(M) to the
monoid CK.

Definition 36.1.3. Let C ⊂ CK be a submonoid, then EmbCK(M) denote
the submonoid of EmbK(M) of the connected components mapping
to C.

Which elements of CK lie in the image of EmbK(M)? A relative
h-cobordism between two manifolds with boundary V, V′ with ∂V =

L = ∂V′ is a manifold with corners W with ∂W = V ∪V′ ∪ L× [0, 1].
Below we shall have V = Kc = V′ and L = ∂Kc.

Lemma 36.1.4. If Kc is simply-connected and ϕ is homotopy equivalence,
then we have that C(ϕ) is a relative h-cobordism on Kc.

Proof. It suffices to prove that both inclusions of Kc ↪→ C(ϕ) are
weak equivalences. Let us assume for convenience that Kc is path-
connected, applying Siefert-van Kampen to the pushout

Kc × {0} C(ϕ)

im(ϕ) ∼= M M ∪ Kc × [0, 1]
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gives the pushout diagram of groups

π1(Kc × {0}) ∼= 0 π1(C(ϕ))

π1(im(ϕ)) π1(M ∪ Kc × [0, 1]),
∼=

and we conclude that the map π1(M) → π1(M) ∗ π1(C(ϕ)) induced
by an isomorphism of π1(M) and the inclusion onto the first term is
an isomorphism, and hence π1(C(ϕ)) = 0, so that π1(Kc × {0}) →
π1(C(ϕ)) is an isomorphism. It then also follows that the π1(Kc ×
{1})→ π1(C(ϕ)) is an isomorphism.

Then we consider homology. By excision, we have that

H∗(C(ϕ), Kc × {0}) ∼= H∗(M ∪ Kc × [0, 1], im(ϕ))

and the right hand side vanishes since ϕ was assumed a homotopy
equivalence. By Poincaré duality we also get that H∗(C(ϕ), Kc ×
{1}) = 0.

36.2 Self-embeddings of Wg,1

We shall soon specialize to Wg,1, but first prove that it is quite com-
mon that an embedding is a homotopy equivalence.

Lemma 36.2.1. Let M be the complement of the interior disk Dn in a
simply-connected closed manifold N with torsion-free homology groups.
Any embedding ψ : M ↪→ M is a homotopy equivalence.

Proof. We claim that ψ∗ is injective; this follows form the fact that the
intersection product between degrees i and n− i (for i > 0) is non-
degenerate and preserved by ψ∗ up to sign ε. Thus, if we suppose
that for i > 0 and x ∈ Hi(M) is non-zero, take y ∈ Hn−i(M) such that
x · y 6= 0, then ψ∗(x) · ψ∗(y) 6= 0 as well and hence ψ∗(x) 6= 0.

We next claim that ψ∗ is surjective. By counting dimensions, ψ∗ is
surjective after tensoring with Q. Take a generating set x1, . . . , xn of
Hi(M) such that there exist y1, . . . , yn ∈ Hn−i(M) such that xi · yj = δij.
Then consider z ∈ Hi(M), and write z− ∑i ε(z · ψ∗(yi))ψ∗(xi). We
claim that this is 0 in Hi(M; Q); this follows since the − · ψ(yi) are a
basis of Hi(M; Q)∨. But Hi(M) ↪→ Hi(M; Q), so ψ∗ is surjective.

Thus ψ∗ is a homology isomorphism and by Whitehead’s theorem
it is a homology equivalence.

Let us now take M = Wg,1 and K = D2n−1
− ⊂ S2n−1 = ∂Wg,1

the bottom hemisphere. Then by Lemma’s 36.1.4 and 36.2.1, if n ≥
3, we may use the h-cobordism theorem to conclude that C(ϕ) is
homeomorphic to D2n−1

− × [0, 1]. Thus the image of EmbD2n−1
−

(Wg,1)
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lies in the subset Θ of diffeomorphism classes of 2n-dimensional
manifolds with boundary identified with ∂(D2n−1 × [0, 1]) that are
homeomorphic to D2n−1 × [0, 1] rel boundary. Let Θ0 ⊂ Θ be the class
of D2n−1 × [0, 1] rel boundary. The embedding space of interest will be
EmbΘ0

D2n−1
−

(Wg,1).

Remark 36.2.2. We shall give a few different interpretations of these
spaces of self-embeddings.

Firstly, EmbΘ0
D2n−1
−

(Wg,1) may be thought of as those isotopy classes
of embeddings are isotopic to a diffeomorphism. Secondly, Weiss
proved that EmbΘ

D2n−1
−

(Wg,1) ' Diff∂(Wg,1 \ {∗}) for ∗ ∈ ∂Wg,1. Thirdly,
EmbΘ

D2n−1
−

(Wg,1) may be thought of as homeomorphisms of Wg,1 with
a lift of its (topological microbundle) differential to a linear map over
the n-skeleton.

36.3 The Weiss fiber sequence

A minor defect of our construction is that there is no monoid maps
from Diff∂(Wg,1) to either model. Instead, we shall use moduli spaces
of manifolds to produce a map

BDiff∂(Wg,1)→ BEmb0
D2n−1
+

(W̄g,1)

up to homotopy.

A different model

We shall first give a different model for this space of self-embeddings.
To do so, we introduce W̄g,1. These are defined by taking W̄ :=
D2n−1
+ × [0, 1]#(Sn × Sn) ⊂ [0, 1]×R∞ and letting W̄g,1 = D2n−1

+ ×
[0, 1] ∪⊔g

i=1(W̄ + i · e1). Thus ∂W̄g,1
∼= D2n−1

+ × {0, 1} ∪ S2n−2 × [0, g +

1].

Definition 36.3.1. Let EmbD2n−1
+

(W̄g,1) be the space of embeddings

ϕ : W̄g,1 ↪→ W̄g,1 with following properties:

(i) ϕ is the identity on D2n−1
+ × {0},

(ii) ϕ maps int(D2n−1
+ )× {g + 1} into the interior of W̄g,1,

(iii) ϕ is given by id × scaling on S2n−2 × [0, g + 1] (necessarily the
scaling is by a number < 1).

This is clearly a monoid under composition, and we let Emb0
D2n−1(W̄g,1)

be the subspace of embeddings such that the closure of W̄g,1 \ im(ϕ)

is diffeomorphic to D2n−1 × [0, 1] rel boundary up to rescaling in
the second term. The following is an annoying, essentially following
from the existence of inclusions Wg,1 ↪→ W̄g,1 and W̄g,1 ↪→Wg,1.

Lemma 36.3.2. We have that Emb0
D2n−1
+

(W̄g,1) ' EmbΘ0
D2n−1
−

(Wg,1).
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Moduli spaces of manifold models

We shall give a geometric model for BDiff∂(Wg,1), which is similar to
the monoidM which appeared at the end the last lecture, without
the θ-structures. To define it, we pick an embedding of S2n−1 into
R×R∞ whose intersection with (−∞, 0]×R∞ is D2n−1

− .

Definition 36.3.3. LetMg(S2n−1) be given by the space of pairs
(t, W) ∈ [0, ∞)× ψ2n(∞, 1) that satisfy

(i) W|(−∞,0] = (−∞, 0]× S2n−1 and W|[t,∞) = [0, ∞)× S2n−1.

(ii) W ∩ (R× (−∞, 0]×R∞) = R× D2n−1
− .

(iii) We have t > 0 if g > 0.

(iv) If t > 0, W|[0,t] \ ([0, t]× int(D2n−1)) is diffeomorphic to W̄g,1 rel
boundary up to rescaling [0, g + 1] to [0, t].

Note that the spaceM0(S2n−1) is a unital monoid under the
operation (t, W)� (t′, W ′) = (t + t′, W ′′) with W ′′ given by W ′′ ∩
((−∞, t] ×R∞) = W ∩ ((−∞, t] ×R∞) and W ′′ ∩ ([t, ∞) ×R∞) =

W ′ ∩ ([t, ∞) × R∞), with unit given by (0, R × S2n−1). The space
Mg(S2n−1) is a rightM0(S2n−1)-module.

Lemma 36.3.4. For each g ≥ 0,Mg(S2n−1) ' BDiff∂(Wg,1) and the
operation � is homotopic to boundary connected sum.

Proof. By scaling we may deformation retractMg(S2n−1) onto the
subspace with t = g + 1. This is the homeomorphic to the quotient
of the space of embeddings of W̄g,1 into [0, g + 1]× [0, ∞)×R∞ by
the diffeomorphisms of W̄g,1) fixing ∂W̄g,1 pointwise. Since this is an
action with local slices, this quotient is a model for BDiff∂(Wg,1). Un-
der this identification, � indeed corresponds to boundary connected
sum.

The fiber sequence

Our goal is to computeMg(S2n−1) �M0(S2n−1), which fits into a
fiber sequence

Mg(S2n−1)) −→Mg(S2n−1) �M0(S2n−1) −→ ∗ �M0(S2n−1),

sinceM0(S2n−1) is path-connected. This is a consequence of the
following general statement:

Lemma 36.3.5. Let A be a unital topological monoid and M a right A-
module. Then if M is group-like, there is a fiber sequence

M→ M � A→ ∗ � A.
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Proof. This is a consequence of a result of Segal we used before;
if E• → B• is a map of semi-simplicial spaces such that for each
injective θ : [q]→ [p] in ∆ we have that

Ep Eq

Bp Bq

θ∗

homotopy cartesian, then so is

E0 ||E•||

B0 ||B•||.

θ∗

Apply this to E• = B•(M, A, ∗) and B• = B•(∗, A, ∗) and the
map given by projecting away M. Since a composite of homotopy
cartesian square is homotopy cartesian, we may check di only. Since
products preserve homotopy cartesianness, we may reduce to check-
ing that the map (act, π2) : M×A→ M×A is a weak equivalence. By
fibering over A, it suffices to check that for each a ∈ A acting by a is
a weak equivalence on M. Then the group-like property allows us to
reduce to the identity component, and it suffices to check on a single
element; for the identity it is obvious,

To compute the middle term, we shall write down a semi-simplicial
resolution of X• ofMg(S2n−1) for g > 0.

Definition 36.3.6. Let g > 0, then the semi-simplicial space X• has
p-simplices Xp given by the data of

(a) (t, W) ∈ Mg(S2n−1),

(b) an embedding ϕp : W̄g,1 ↪→W|[0,t] with following properties:

(i) ϕp is the identity on D2n−1
+ × {0},

(ii) ϕp maps int(D2n−1
+ )× {g + 1} into the interior of W|[0,t],

(iii) ϕp is given by id × scaling on S2n−2 × [0, t] (necessarily the
scaling is by a number < t

g+1 ),

(iv) the closure of W|[0,t] \ im(ϕp) is diffeomorphic to D2n−1
+ × [0, 1]

rel boundary up to rescaling in the second term.

(c) a p-tuple of embeddings ϕi : W̄g,1 ↪→ W̄g,1 in Emb0
D2n−1
+

(W̄g,1) for

0 ≤ i ≤ p− 1.

The face maps compose or forget embeddings, and the augmentation
forgets all embeddings.

This should remind the reader of a mix ofMg(S2n−1) with

B•(∗, Emb0
D2n−1(W̄g,1), Emb0

D2n−1(W̄g,1)),
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which is weakly contractible by an extra degeneracy argument:

Lemma 36.3.7. If n 6= 2, the map ε : ||X•|| → Mg(S2n−1) is a weak
equivalence.

Proof. By the isotopy extension theorem, the map ε is a fiber bundle
and thus it suffices to prove that the fibers are weakly contractible.
Given a continuous map Si → ε−1(W, t) there exists an ψ : W̄g,1 →
W|[0,t] satisfying the properties in (b), whose image contains all these
embeddings and whose complement is diffeomorphic to a disk. This
may be used to cone off the continuous map, by letting the other
embeddings be determined uniquely as factoring over ψ. These have
the correct complement, since the set of smooth structure on a disk
forms a groups under boundary connected sum.

We can apply − �M0(S2n−1) to get a semi-simplicial resolution for
Mg(S2n−1) �M0(S2n−1). There is semi-simplicial map

X• �M0(S2n−1)→ N•Emb0
D2n−1
+

(Wg,1)

given by remembering only the p-tuple of embeddings.

Lemma 36.3.8. For each p ≥ 0, the map Xp �M0(S2n−1)→ NpEmb0
D2n−1
+

(Wg,1)

is a weak equivalence.

Proof. By contractibility of spaces of embeddings into infinite-
dimensional Euclidean spaces, we may assume that the image of
ϕp is exactly W̄g,1. We may similarly assume that the complement of
W|[0,t] lies outside [0, g + 1]×R∞. This subspace of Xp �M0(S2n−1)

is homeomorphic to NpEmb0
D2n−1
+

(Wg,1)× (M0(S2n−1) �M0(S2n−1)),

and the latter term is weakly contractible.

The conclusion is a zigzag of weak equivalences

X• �M0(S2n−1)||

||N•Emb0
D2n−1
+

(Wg,1)|| Mg(S2n−1) �M0(S2n−1)

BEmb0
D2n−1
+

(Wg,1) BDiff∂(Wg,1) � BDiff∂(D2n),

'
'

' '

and the map BDiff∂(Wg,1) → BEmb0
D2n−1
+

(W̄g,1) is determined by the

inclusion

BDiff∂(Wg,1)→ BDiff∂(Wg,1) � BDiff∂(D2n),
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which fits into a fiber sequence

BDiff∂(Wg,1)→ BEmb0
D2n−1
+

(W̄g,1)→ ∗ � BDiff∂(D2n).

Since BDiff∂(D2n) is path-connected, it may be recovered from
∗ � BDiff∂(D2n) by taking based loops.



37
Embedding calculus

Takeaways:
· Studying embeddings through their

restrictions to embedded Rn’s in
the domain recovers under mild
conditions the entire homotopy type
of the space of embeddings.

· Filtering by the number of Rn’s
gives a tower which is remarkably
computable.

In the last lecture we saw there is a fiber sequence

BDiff∂(Wg,1) −→ BEmbΘ0
D2n−1
−

(Wg,1) −→ B2Diff∂(D2n).

Today we shall explain how to study the middle term using embed-
ding calculus. The main reference is [BdBW13], but see also [Wei99]
for more explicit results.

37.1 Embeddings and immersions

There is a slogan that embedding calculus is the pointillistic study of
manifolds. As a motivation we shall give an example of what a first
naive attempt at such a theory can see.

For the moment, let M and N be n-dimensional manifolds with
empty boundary. How does one study the space of embeddings
Emb(M, N)? A good strategy would be to precompose with an
embedding L ↪→ M for L so that one understands the embeddings of
L into a n-dimensional well. We have only down this for one example
of L; L =

⊔
k Rn. In that case we have seen that Emb(

⊔
k Rn, N) fits

into a pullback diagram

Emb(
⊔

k Rn, N) FrGL(TN)k

Emb(
⊔

k ∗, N) ' Confk(M) Mk

where we shall use Confk(M) as shorthand for the ordered configura-
tion space of k particles in N.

There is no canonical choice of
⊔

k Rn ↪→ M to restrict along. The
strategy is to take all choices. As a first attempt we might try to
extract information out of the composition map

Emb(
⊔
k

Rn, M)× Emb(M, N)→ Emb(
⊔
k

Rn, N).
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This is not a bad idea. In the case k = 1, we get a map

FrGL(TM)× Emb(M, N)→ FrGL(TN),

and upon adjointing the first term in the domain over, we get a map

Emb(M, N)→ Map(FrGL(TM), FrGL(TN)).

But in fact we land in a smaller subspace of the target: the space
Bun(TM, TN) of bundle maps, i.e. TM → TN that map each fiber
linearly onto a fiber. This map is essentially the derivative. We can
complete it to a commutative diagram

Emb(M, N) Map(FrGL(TM), FrGL(TN)

Imm(M, N) Bun(TM, TN)

D

D

with the map Imm(M, N)→ Bun(TM, TN) being a weak equivalence
if M has no compact component, by Smale-Hirsch [Sma59a, Las70a].

One way wonder about the difference between Emb(∗, M) and
Emb(Rn, M). The latter would give rise to the map Emb(M, N) →
Map(M, N) remembering that an embedding is in particular a con-
tinuous map. There are examples of manifolds where no immersion
exists in a homotopy class of continuous maps (e.g. the identity ho-
motopy class of the Möbius strip into S1 ×R), so remembering the
underlying immersion instead of the underlying continuous map
certainly captures more information.

37.2 Manifold calculus

We shall explain the outline of a theory which, when applied to
Emb(−, N), produces embedding calculus. This is called manifold
calculus, and our discussion shall follow [BdBW13]. There are other
approaches to embedding calculus; a more classical one restricts
attention to a single manifold and uses the (discrete) poset O(M)

of open subsets diffeomorphic to a disjoint union of disks in place
of Diskn, [Wei99]. A more modern one studies functors out of an
∞-category of configuration, [BdBW15].

Setting up manifold calculus

If we reflect composition maps, we realize that if we consider them
for each k individually we are forgetting that there are compatibilities
between them. This can neatly encoded by thinking of Emb(−, N) as
an invariant presheaf on smooth n-manifolds.
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That is, we can define the topologically-enriched category Mfdn

with objects n-dimensional manifolds M with empty boundary, and
morphism spaces from M to M′ given by the space of embeddings
Emb(M, M′). Then an invariant presheaf on smooth n-manifolds is a
continuous functor Mfd

op
n → Spaces, and Emb(−, N) is indeed such a

continuous functor.
Embedding calculus proposes to study Emb(−, N) by its restric-

tion to the subcategory Diskn, the full subcategory on those objects
diffeomorphic to

⊔
k Rn for some k ≥ 0, or the even smaller subcate-

gories Disk≤k
n where all objects are diffeomorphic to

⊔
k′ R

n for k′ ≤ k.
Denote the inclusions Disk≤k

n ↪→ Mfdn by ιk and Diskn ↪→ Mfdn by
ι. Then there are restrictions functors ι∗k and ι∗. These admit right
adjoint functors (ιk)! and ι! given by right Kan extension. One can
then either use the projective model structures on these presheaf cat-
egories, or ∞-categories, to construct derived functors of these right
Kan extensions.

Definition 37.2.1. The kth Taylor approximation Tk(F) of F ∈
Fun(Mfdn,Spaces) is the homotopy right Kan extension along ιk of
its restriction to Disk≤k

n .

A right Kan extension is a limit, an using the Bousfield-Kan for-
mula for enriched homotopy limits, one finds the following for-
mula for this extension (assuming that values of F are fibrant): on
M ∈ Mfdn, it is the totalization of the cosimplicial spaces with p-
cosimplices given by

∏
U0,...,Up∈ob(Disk≤k

n )

Map

(
p

∏
i=0

Emb(Ui, Ui+1)× Emb(Up, M), F(U0)

)
.

(37.1)
This explicit construction, or the homotopy universal property of

homotopy right Kan extension, has several formal consequences:

· There is a homotopy unique sequence of maps

F

T0(F) T1(F) T2(F) · · · ,

(37.2)

whose homotopy limit T∞(F) may also be described as the homo-
topy right Kan extension along ι of the restriction F to Diskn.

· A natural transformation η : F → G of functors Mfd
op
n → Spaces

induces a weak equivalence on all M ∈ Disk≤k
n if and only if

Tk(F) ' Tk(G).

· We have that TkTk′(F) = Tmin(k,k′)(F).
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Definition 37.2.2. The tower (37.2) is called the Taylor tower of F, the
Tk(F) the kth Taylor approximation and T∞(F) the limit of the Taylor
tower.

Alternative perspectives

Let us outline a few alternative perspectives on manifold calculus.

· An alternative construction of Tk(F) is as the homotopy sheafifica-
tion with respect to the Grothendieck topology on Mfdn generated
by those open covers that contain each k-tuple of points in M,
[?]. For k = 1, this is just a homotopy sheaf with respect to the
ordinary Grothendieck topology.

· An second alternative construction of Tk(F) uses that Diskn is the
PROP constructed out of the operad EGL

n with k-ary operations
Embk(

⊔
k Rn, Rn) (historically called the framed little n-disks op-

erad, you should not use this terminology, because it is extremely
confusing). This exhibits Fun(Diskn,Spaces) as the category of
right EGL

n -modules. Any manifold M gives rise to a right EGL
n -

module Emb(−, M) and T∞(F)(M) is the derived mapping space
of EGL

n -modules from Emb(−, M) to F. To get the kth Taylor ap-
proximations, one uses that there is a truncated operad EGL,≤k

n

(which lives in symmetric sequences on finite sets of cardinality
≤ k), and take the derived mapping spaces of EGL,≤k

n -modules
form Emb(−, M)→ F.

· We can also interpret manifold calculus through the point of view
of factorization cohomology. This is a functor

∫ − C : Mfd
op
n → Spaces

taking as input an EGL
n -coalgebra C in the symmetric monoidal

category (Spaces,×, ∗). Such a coalgebra is simply the symmetric
monoidal right EGL

n -modules, i.e. takes disjoint using to product
(just like algebras over an operad O are the symmetric monoidal
left O-modules). In Spaces this theory collapses to some extent, as
EGL

n -coalgebras are just spaces with GLn(R)-action (since every
space has a canonical E∞-coalgebra structure from the diago-
nal). However, the construction does not require the input to be
symmetric monoidal, one can equally well take factorization coho-
mology of right EGL

n -comodules; the result is exactly T∞(F). From
this perspective, the Taylor tower is just the cardinality filtration.

First examples

Let us first produce some examples of linear functors, i.e. those
F : Mfd

op
n → Spaces such that F → T1(F) is a natural weak equiva-

lence. If F satisfies F(∅) ' ∗, then F is said to be reduced. In this case,
inspection of equation (37.1) or the homotopy universal property
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implies that

T1(F)(M) ' Map(FrGL(TM), F(Rn))hGLn(R).

Since the action of GLn(R) on FrGL(TM) is free, we may replace this
with the actual equivariant maps and obtain instead.

Map(FrGL(TM), F(Rn))GLn(R) = Γ(M, FrGL(TM)×mrGLn(R) F(Rn)).

In particular, if F = Map(−, X) it is linear: this is simply the case
F(Rn) = X with trivial GLn(R)-action.

Remark 37.2.3. This may be used to justify a claim in the smoothing
theory part; if one can show that flexible invariant sheaf on topolog-
ical n-manifolds is a linear functor in a topological manifold setting,
then it is weakly equivalent to a spaces of sections. In fact, a sheaf
satisfying an h-principle — at least in the sense that we defined it —
is the same as being a linear functor, that is, also being a homotopy
sheaf.

37.3 Embedding calculus

We shall now apply the previous discussion to F = Emb(−, N).

The 0th and 1st Taylor approximations

We can use this to compute T1(F) for F = Emb(−, N). Note in this
case T0(F) = Emb(∅, N) = ∗, i.e. F is reduced). Then there is a natural
transformation Emb(−, N) → Imm(−, N), and by Smale-Hirsch
the latter is naturally weakly equivalent to Bun(T−, TN), which is
isomorphic to Γ(M, FrGL(TM)×mrGLn(R) FrGL(TN)) and thus linear.
The values on Rn of this natural transformation is given by

Emb(Rn, Rn)→ Imm(Rn, Rn),

which is a weak equivalence by shrinking the domain, and in fact
both sides are weakly equivalent to GLn(R). We conclude that

Lemma 37.3.1. We have that T1(Emb(−, M)) ' Imm(−, M).

Of course, we could also have reasoned in the other direction and
used the formula in Section 37.2.

Making the rest of the tower useful

To make the tower (37.2) useful in the case F = Emb(−, N), one
needs to know two things:

(1) What are the differences between the stages?
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(2) What does the tower converge to?

We start by answering the first question. Given an element f0 ∈
Emb(M, N) (usually the identity), Weiss computed the homotopy
fiber of Tk(F) → Tk−1(F) over the image of f0 as follows. There is a
number of bundles over Confk(M) := Emb({1, . . . , k}, M). For each
subset S ⊂ {1, . . . , k} we may take Emb(S, N) (note all these bundles
are trivial). These form a cubical diagram

Subset({1, . . . , k})op → Spaces

S 7→ Emb(S, N)

over Confk(M). These spaces in this diagram have compatible
canonical sections σS given on (x1, . . . , xk) ∈ Emb({1, . . . , k}, M)

by the embedding sending s ∈ S to f0(xs), so we might as well
consider it as a diagram of pointed spaces. On a cubical diagram
F : Subset({1, . . . , k})op → Spaces∗ of pointed spaces there is a natural
operation called “total homotopy fiber”: this is the homotopy fiber of
the map from the corner to the homotopy limit of the punctured cube

F({1, . . . , k})→ holim
S∈Subset({1,...,k})op\{1,...,k}

F(S).

This may also be computed by taking iterated homotopy fibers.
This is a pointed space again, so applying tohofib fiberwise

to the cubical diagram, we get a space tohofibSEmb(S, N) over
Emb({1, . . . , k}, M). There is an Sk-action on the base, which ex-
tends to an action on the total space that preserves the fiberwise base
point. Thu we can take the quotient by Sk to get a bundle tohofibk

over Ck(M) = Confk(M)/Sk with section which we denote f0.

Theorem 37.3.2 (Weiss). There is a weak equivalence between hofib(Tk(F)→
Tk−1(F), f0) and the subspace of Γ(Ck(M), tohofibk) of sections are equal
to f0 near the fat diagonal.

For the second question, it is helpful to extend to manifolds with
boundary. Such an extension is unique up to homotopy (it will al-
ways be true that F(M) ' F(int(M)), and we may have worked with
such manifolds from the start. We will just say that work of Good-
willie and Klein [GK15] implies that the Taylor tower for Emb(−, N)

converges when evaluated on those M which admit a finite handle
decomposition with handles of dimension < n− 2 [GW99].
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Finiteness results for diffeomorphisms of disks

Takeaways:
· By combining information about

embeddings and diffeomorphisms
of a fixed manifold, in our case
Wg,1, we can learn something about
diffeomorphisms of disks.

· We may avoid the limitations of
homological stability by letting
g→ ∞.

· The sources of finiteness for embed-
dings are embedding calculus and
a result of Sullivan that mapping
class groups of high-dimensional
simply-connected manifolds are
arithmetic groups.

We shall combine the results of the previous two sections to prove
that each homotopy group πi(Diff∂(D2n)) is finitely generated for
2n ≥ 6.

38.1 Finiteness for embeddings

We start by proving some results about the monoid of embeddings
EmbΘ0

D2n−1
−

(Wg,1), which we shall shorten to Emb(Wg,1). We will does
this by independently considering its path components and identity
component. This suffices, since π0 is a group by our identification of
it with various groups of diffeomorphisms and homeomorphisms,
and hence all components are homotopy equivalent.

The group of path components

Firstly, we note that the fiber sequence

BDiff∂(Wg,1)→ BEmb(Wg,1)→ B2Diff∂(D2n)

implies that there is a short exact sequence of groups

Θ2n+1 → π0(Diff∂(Wg,1))→ π0(Emb(Wg,1))→ 0.

We shall use this to prove that π0(Emb(Wg,1)) has the following
property:

Definition 38.1.1. We say that a group G is of homologically finite type if
for all Z[G]-modules M that are finitely generated as abelian groups,
for each i ≥ 0 the homology group Hi(BG; M) is a finitely generated
abelian group.

Lemma 38.1.2. In a short sequence

1→ H → G → G′ → 1,

if G is homologically finite type and H is finite, then G′ is also of homologi-
cally finite type.
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Proof. There is a local coefficient Serre spectral sequence

E2
pq = Hp(BG′; Hq(BH; M))⇒ Hp+q(BG; M).

By assumption the target is finitely generated in each degree. We
need to prove that the q = 0 row is finitely generated in each degree.
To do so we prove by induction over p the stronger statement that
for all M′ that are finitely generated as abelian groups, for all p′ ≤ p
the groups Hp′(BG′; M′) are finitely generated. The initial case p = 0
follows by taking M′ = M in the above spectral sequence and looking
at E2

00 = H0(BG′; M′) (which uses that H acts trivially on M, so that
H0(BH; M) = MH = M). No differential goes into it or out of it, and
it converges to a finitely generated group, so it is finitely generated.

Let us next prove the induction step, and assume the case p− 1.
Then first p columns, i.e. the 0th to (p − 1)st, consists of finitely
generated groups because H being finite implies Hq(BH) ⊗ M′

is finitely generated as an abelian group. Then the entry E2
p0 =

Hp(BG; M′) can only have differentials to finitely generated abelian
groups, and has to converge to a finitely generated abelian group.
Hence Hp(BG; M′) has to be finitely generated as well.

Hence it suffices to prove that the mapping class group π0(Diff∂(Wg,1))

is of homologically finite type. This is a consequence of the follow-
ing theorem of Sullivan, proven using surgery theory and rational
homotopy theory [Sul77]:

Theorem 38.1.3 (Sullivan). If M is a closed simply-connected smooth
manifold of dimension n ≥ 5, then π0(Diff(M)) is an arithmetic group.

For us an arithmetic group is a group Γ such that there exists an
algebraic group G over Q, i.e. G ⊂ GLn(Q) defined by polynomial
equations in its entries, such that there is a finite index group of Γ
which is isomorphic to G∩GLn(Z).

Borel and Serre proved there is a finite index subgroup Γ′ of Γ
which acts freely on a manifold with boundary, the Borel-Serre com-
pactification, such that the quotient is a compact manifold with
boundary [Ser79]. This gives a finite free Z[Γ′]-module resolution
of Z, which allows one to compute H∗(BΓ′; M′) for M′ finitely gen-
erated as an abelian group, using a chain complex that consists of
finitely generated abelian groups. Hence it is of homologically fi-
nite type. To deduce the same for Γ, we need the following lemma
(compare to Lemma 38.1.2).

Lemma 38.1.4. If H ⊂ G has finite index, then G is of homologically finite
type if and only if H is.

We conclude the following:
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Theorem 38.1.5 (Borel-Serre). An arithmetic group is homologically finite
type.

Corollary 38.1.6. If M is a closed simply-connected smooth manifold of
dimension n ≥ 5, then π0(Diff(M)) is of homologically finite type.

The manifold Wg,1 is not closed, but using Wg := #g(Sn × Sn), we
have a fiber sequence

Emb(D2n, Wg)→ BDiff∂(Wg,1)→ BDiff∂(Wg).

We saw before that Emb(D2n, Wg) ' FrGL(TWg), which fits into a
fiber sequence

O(2n)→ FrGL(TWg)→Wg,1,

so that we may conclude that π0(FrGL(TWg)) ∼= Z/2Z ∼= π1(FrGL(TWg)).
Thus π0(Diff∂(Wg,1)) differs from π0(Diff∂(Wg)) by finite groups,
and hence is also of homologically finite type. We may then conclude
that:

Corollary 38.1.7. We have that π0(Emb(Wg,1)) is of homologically finite
type.

The identity component

We shall study the identity component Embid(Wg,1) of embeddings
Wg,1 ↪→Wg,1 rel D2n−1

− using embedding calculus. We saw before that
there is a tower

...

T3 Γ(C3(Wg,1), tohofib3 rel fat diagonal and D2n−1
− )

T2 Γ(C2(Wg,1), tohofib2 rel fat diagonal and D2n−1
− )

Embid(Wg,1) T1 BunD2n−1
− ,id(TWg,1, TWg,1).

'

This converges since the handle dimension of the source Wg,1 rel
D2n−1
− is n, while the target Wg,1 is 2n-dimensional, and 2n− n > 2

if n ≥ 3. We shall use this to prove that Embid(Wg,1) has homotopy
groups which are finitely generated abelian groups in each degree
(since it is a path-connected H-space, π1 is abelian).

For the first Taylor approximation, we note that the bundle maps
fit into a fiber sequence

Map∗(Wg,1, O(2n))→ BunD2n−1
− ,id(TWg,1, TWg,1)→ Map∗(Wg,1, Wg,1),
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and the fiber and base may be identified by ∏2g Ωn(O(2n)) and
∏2g Ωn(Wg,1), so that it easily follows from the long exact sequence
of homotopy groups that the identity components of the space of
bundle maps are finitely generated abelian groups in each degree.

By the Goodwillie-Klein estimates [GK15] that went into proving
the tower converges, the layers given by section spaces, become more
highly connected as the number of particles goes to infinity. This
simply follows by connectivity estimates on the total homotopy fiber.
Thus it suffices to show that the section spaces also have finitely gen-
erated homotopy groups in each degree. This is a similar argument;
the fibers have finitely generated homotopy groups by using the iter-
ated homotopy fiber formula and using that configuration spaces are
homotopy equivalent to finite CW complexes and hence have finitely
generated homotopy groups. Then one does an induction over the
number of cells in the base.

Proposition 38.1.8. We have that πi(Embid(Wg,1)) is a finitely generated
abelian group for all i ≥ 1.

By a Serre class argument, we then also have that H∗(Embid(Wg,1))

is a finitely generated abelian group in each degree. From the geo-
metric spectral sequence the same is true for H∗(BEmbid(Wg,1)).

The classifying space of embeddings

Now we combine our results on the path components and the iden-
tity components. There is a fiber sequence

BEmbid(Wg,1)→ BEmb(Wg,1)→ Bπ0(Emb(Wg,1))

and by the Serre spectral sequence, the homology of the total space
may be computed by

E2
pq = Hp(Bπ0(Emb(Wg,1)); Hq(BEmbid(Wg,1)))⇒ Hp+q(BEmb(Wg,1))

and since the π0(Emb(Wg,1)) is of homologically finite type, while
each Hq(BEmbid(Wg,1) is a finitely generated abelian group. This
means that each entry on the E2-page is a finitely generated abelian
group, and hence so is Hp+q(BEmb(Wg,1)).

Theorem 38.1.9. We have that H∗(BEmb(Wg,1)) is finitely generated in
each degree.

38.2 Diffeomorphisms of disks

Consider the Serre spectral sequence for

BDiff∂(Wg,1)→ BEmb(Wg,1)→ B2Diff∂(D2n),
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which is given by

E2
pq = Hp(B2Diff∂(D2n), Hq(BDiff∂(Wg,1)))⇒ Hp+q(BEmb(Wg,1)),

where we note that the coefficients are trivial since the base is simply-
connected.

By the Galatius-Randal-Williams theorems, we have that Hq(BDiff∂(Wg,1))

is equal to Hq(Ω∞ MTθ) for q g−3
2 . This is finitely generated. On other

hand, the spectral sequence converges to finitely generated abelian
groups by Theorem 38.1.9. Then a similar argument to Lemma 38.1.2
tells us that Hp(B2Diff∂(D2n)) is finitely generated for p ≤ g−3

2 . But
g was arbitrary so H∗(B2Diff∂(D2n)) is finitely generated in each de-
gree. By a Serre classes argument, the same is true for the homotopy
groups. This is the result we have been working towards the last
couple of lectures [Kup17].

Theorem 38.2.1 (K.). We have that πi(Diff∂(D2n)) is finitely generated for
i ≥ 0 and n ≥ 3.

Remark 38.2.2. The same is true for odd-dimensional disks as long as
the dimension is not 5, 7, by using results of Botvinnik-Perlmutter in
place of Galatius-Randal-Williams, [Per15, BP15].
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