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Abstract. This paper begins with an introduction to some of the concepts

of algebraic topology. The main result that will be proven is the h-cobordism

theorem, a powerful tool for manifolds of dimension 5 or greater. We will only
address dimensions 6 and greater, as dimension 5 limits the theorem to topo-

logical, rather than smooth, manifolds and involves significant complications

in the proof. The h-cobordism theorem is then used to prove the Poincaré
conjecture for high dimensions. Some familiarity with algebraic topology is

assumed, though a brief review of basic topics is provided. Necessary concepts

in homology are only briefly addressed, and further reading is suggested to the
interested reader.
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1. Basic Concepts

The h-cobordism theorem in dimension 6 or greater is concerned with diffeo-
morphisms between smooth manifolds. We won’t address the definitions rigorously
here, but [4] has a good introduction to the topic. The standard definitions for ho-
motopy, isotopy, diffeotopy, homotopy equivalence, homeomorphism, embeddings,
and diffeomorphisms will be assumed.

Notation 1.1. A homotopy, isotopy, or diffeotopy is a function F : X× [0, 1]→ Y .
For 0 ≤ t ≤ 1, we let Ft(x) := F (x, t).

Notation 1.2. Two diffeomorphic spaces X and Y will be denoted X ∼= Y .
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1.1. Algebra. Algebraic topology involves the application of group structures to
topological objects. One way of doing this is with homotopy groups, which classify
the maps of spheres into a space.

Definition 1.3. The n-th homotopy group of a space X with basepoint x0, denoted
πn(X,x0), or often just πn(X), is the group whose elements are equivalence classes
of maps f : Sn → X under (based) homotopy: that is, each map f must send some
element y ∈ Sn to x0, and the homotopies F between the maps f must be based
at x0: Ft(y) = x0 for all 0 ≤ t ≤ 1. The fundamental group is another name for
the first homotopy group π1.

Definition 1.4. A space X is connected if π0(X) is the trivial group. It is simply
connected if π1(X) and π0(X) are both trivial. It is n-connected if πi(X) is trivial
for all i ≤ n.

There is also a notion of relative homotopy groups:

Definition 1.5. The relative n-th homotopy group of a space X with subspace
X ′ and basepoint x0 ∈ X ′ is denoted πn(X,X ′), or πn(X,X ′, x0). Its elements
are equivalence classes of maps f : Dn → X under (based) homotopy, with the
restrictions that f(∂Dn) = f(Sn−1) ⊂ X ′ and x0 = f(y) for some fixed y ∈ Sn−1.
The homotopies must be similarly based at x0. Note that the relative homotopy
group πn(X,x0, x0) is the same as the absolute homotopy group given in definition
1.3, since Dn with its boundary mapped to a single point is equivalent to a map
from Sn.

The notion of n-connectedness is different for maps than it is for spaces. First,
note that a map between topological spaces f : X → Y induces a map πn(f) :
πn(X) → πn(Y ) by simply sending the image of Sn in X to its composition with
f in Y . This is well defined: if s1, s2 are images of Sn in X that are homotopic by
a homotopy H : Sn × [0, 1] → X, then f(s1) and f(s2) will be homotopic in Y by
f ◦H : Sn × [0, 1] → X → Y . This notion of induced maps allows us to define an
n-connected map.

Definition 1.6. A map f : X → Y is n-connected if the induced maps πi(f) :
πi(X) → πi(Y ) are isomorphisms for i < n and πn(f) : πn(X) → πn(Y ) is a
surjection.

Example 1.7. For X ⊂ Y , the inclusion f : X → Y is 1-connected if the addition
of Y −X to X does not change the path components of X (π0(f) is an isomorphism)
and if there are no new elements of the fundamental group added by the rest of
Y (π1(f) is a surjection). The inclusion of the red subset into the space in figure
1 is 1-connected: both the space and the subspace are connected, and π1(f) maps
Z = π1(X) to the trivial group π1(Y ).

In addition to homotopy groups, the proof of the h-cobordism theorem employs
homology groups. The overview of homology here is sketchy and informal. For a
more complete approach, see [1, Chapter 2].

Any topological space can be seen as a CW complex, which is a combination of
Dn ‘cells’ joined along their boundaries to Dk ‘cells’, where k < n. For instance,
figure 2 shows the decomposition of the sphere S2 into a single 0-cell, a single 1-cell,
and two 2-cells.
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Figure 1. The inclusion map of the red subset into the entire
space is 1-connected. (See example 1.7.)

Figure 2. The construction of a sphere S2 from a single D0, a
single D1 with its boundary attached to the D0, and two D2 with
their boundaries attached to the D1.

First, we’ll consider an object that we’ll call the group of cellular n-chains of a
space X, denoted by Cn(X). It is the free abelian group generated by the n-cells
in a given cellular decomposition of a space. That is, if the n-cells are denoted
{α1, α2, · · · , αkn}, then the elements of Cn(X) (called cellular n-chains) are formal
sums z1α1 + z2α2 + · · ·+ zknαkn for zj ∈ Z.

We’ll also define a boundary operator dn : Cn(X) → Cn−1(X). The boundary
operator acts on the basis of Cn(X) by sending each αj to the (n − 1)-cells that
its boundary is mapped to, with either a positive or negative sign indicating ori-
entation. The image of other elements in the group follows naturally from this
definition on the basis.

Example 1.8. The boundary operator would send the top 2-cell in figure 2 to the
1-cell with positive orientation, while it would send the bottom 2-cell to the 1-cell
with negative orientation.

Remark 1.9. The composition dn ◦ dn+1 is the zero map. This is because any
collection of n-cells that form the boundary of an (n + 1)-cell must itself have an
empty boundary.

This trivial composition motivates the definition of a homology group, which
we’ll think of as follows: the n-th homology group of a space X is defined as the
kernel of dn with the image of dn+1 identified. That is, Hn(X) = ker(dn)/ im(dn+1).

Just as with homotopy groups, we also have relative homology groups. See [1,
Chapter 2] for a discussion of these relative groups.

2. Introduction to the h-Cobordism Theorem

The h-cobordism theorem is a powerful result in algebraic topology that allows us
to prove that two spaces are diffeomorphic. It was first proven in 1962 by Stephen
Smale, then an instructor at the University of Chicago (now a professor at the
Toyota Technological Institute at Chicago).
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The basic objects that we will be working with in the proof of the theorem are
called cobordisms.

Definition 2.1. An n-dimensional cobordism (W ;M0, f0,M1, f1) consists of a com-
pact n-dimensional manifold W , closed (n − 1)-dimensional manifolds M0,M1, a
decomposition of the boundary of W as ∂W = ∂0W q ∂1W , and diffeomorphisms
fi : Mi → ∂iW for i = 0, 1.

Usually f0 and f1 are clear from the definition of the cobordism, and so we
can just write cobordisms as (W ; ∂0W,∂1W ). We also want a notion of equivalent
cobordisms:

Definition 2.2. If (W ;M0, f0,M1, f1) and (W ′;M0, f
′
0,M

′
1, f
′
1) are two cobordisms

with the same dimension, they are diffeomorphic relative to M0 if there exists a
diffeomorphism F : W →W ′ such that F ◦ f0 = f ′0.

As the name of the theorem suggests, we won’t actually be working with general
cobordisms, but instead with a refinement known as h-cobordisms.

Definition 2.3. A cobordism (W ; ∂0W,∂1W ) is an h-cobordism if the inclusions
∂0W →W and ∂1W →W are homotopy equivalences.

Our goal with h-cobordisms is to prove that certain spaces are diffeomorphic,
which motivates the following definition.

Definition 2.4. An h-cobordism (W ; ∂0W,∂1W ) is trivial if it is diffeomorphic
relative ∂0W to (∂0W × [0, 1]; ∂0W × {0}, ∂0W × {1}).

With these definitions, we can state the main result of this paper and a corollary.

Theorem 2.5 (h-Cobordism Theorem (4.27)). Any h-cobordism (W ;M0, f0,M1, f1)
for M0 simply connected and closed and dim(W ) ≥ 6 is trivial.

Theorem 2.6 (Poincaré Conjecture (5.3)). For n ≥ 6, any simply connected,
closed n-manifold M whose homology groups Hp(M) are isomorphic to Hp(S

n) for
all p ∈ Z is homeomorphic to Sn.

3. Handles and Handlebody Decomposition of Manifolds

Handles are crucial to the proof of the h-cobordism theorem. They are geometric
structures that can be attached to or detached from generic manifolds in ways that
preserve diffeomorphism classes. These structures are called handles because a
relatively basic version of them looks like a typical handle attached to an object.
Consider a solid ball, D3. Clearly, D3 is a 3-manifold with boundary, where ∂D3 =
S2, the unit sphere in three dimensions. We can take a bent ‘full’ cylinder D2×D1

and embed the two ends into the surface of the sphere, creating a sphere with an
attached handle. See figure 3.

The following definition of a handle is a generalization of this intuitive under-
standing.

Definition 3.1. An n-dimensional handle of index q is a structure diffeomorphic
to Dq×Dn−q. We will refer to this as an (n, q)-handle or, if the dimension is clear,
simply a q-handle. Handles must also be embedded into a topological space in a
specific way: see definition 3.4.
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Figure 3. A solid ball with an attached handle.

Figure 4. A (3, 2) handle and a (3, 3) handle.

The first thing to note is that (n, q)-handles will always be n-manifolds with
boundary, as the product of q- and (n − q)-manifolds with boundary. Figure 4
shows a (3, 2)-handle and a (3, 3)-handle.

The relationship between the handles, their boundaries, and the way they will be
embedded into other manifolds is easier to understand by first defining two notions:

Definition 3.2. The core of an (n, q)-handle is Dq ×{0}. The cocore of an (n, q)-
handle is {0} ×Dn−q. Note that the boundary of the core is Sq−1 × {0} and the
boundary of the cocore is {0} × Sn−q−1.

Definition 3.3. The transverse sphere of a handle (φq) is the boundary of the
cocore, {0} × Sn−q−1.

Figure 5 shows the core and cocore of a (3, 1)-handle, while figure 6 shows the
core and cocore of a (3, 2) handle. (In each diagram, the core is in red and the cocore
is in blue.) The notions of core and cocore demonstrate the product structure of
the handle, and help differentiate between (n, q) and (n, n−q) handles, even though
they appear identical as geometric structures in n-space.

Figure 5. Core and cocore of a (3, 1) handle.

Handles are useful because they can be embedded into manifolds with boundary
in order to form ‘new’ manifolds. This embedding must be done in a specific way.
The handle was attached to the ball above by embedding the disks at each end
of the cylinder. Defining that cylinder as a (3, 1)-handle makes it clear that the
embedding is being done on S0 × D2. In other words, the embedding sends the
product of the boundary of the core with the cocore into the boundary of the initial
manifold. This is generalized as follows:
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Figure 6. Core and cocore of a (3, 2) handle.

Definition 3.4. Given an n-dimensional manifold M with boundary ∂M and a
smooth embedding φq : Sq−1×Dn−q → ∂M , we can attach a q-handle to M . This
operation generates a new manifold M + (φq) = M ∪φq Dq ×Dn−q.

Remark 3.5. It is important to check that M + (φq) is actually a manifold. Topo-
logically, this follows easily: since M and Dq × Dn−q are both n-manifolds, any
point not in φq

(
Sq−1 ×Dn−q) clearly has a neighborhood homeomorphic to ei-

ther Rn or {x ∈ Rn |x0 ≥ 0}. What remains is to examine the image of φq.
Recall that φq sends a subset of the boundary of the q-handle to the bound-
ary of M . Therefore, any point in the image has a neighborhood homeomorphic
to one copy of {x ∈ Rn |x0 ≥ 0} in the handle and another copy of it in M .
These two copies will be glued along a piece of the embedded part of the handle,
which will correspond precisely to x0 = 0 in each half Euclidean space. The space
{x ∈ Rn |x0 ≥ 0} ∪x0=0 {x ∈ Rn |x0 ≥ 0} is homeomorphic to Rn, so M + (φq)
must be a topological n-manifold. Guaranteeing that M + φq is smooth requires
rounding out the corner where the manifold is joined to the handle. This can clearly
be done, so I will omit the details.

Remark 3.6. From remark 3.5 it clearly follows that the boundary of M + (φq) can
be found by taking the boundary of M , removing the interior of the image of φq, and
adding in those parts of the boundary of the q-handle that are not embedded intoM .
Since the q-handle is Dq×Dn−q, its boundary must be Sq−1×Dn−q∪Dq×Sn−q−1,
which means that Dq × Sn−q−1 will be a part of the boundary of M + (φq).

Remark 3.7. Note that this ‘addition’ between manifolds and handles is not neces-
sarily commutative. The manifold (W+(φq))+(ψp) is not necessarily diffeomorphic
to (W+(ψp))+(φq). That is because each added handle changes the boundary, and
thus affects the ways the next handle can be attached: ψp’s codomain is ∂(W+(φq))
in the first manifold, but only ∂W in the second. The conditions under which we
have quasi-commutativity will be discussed in lemma 4.4.

One important concept later on will be that of trivial handle embeddings.

Definition 3.8. If W is an (n− 1)-manifold, an embedding φ : Sq−1×Dn−q →W
is trivial if it can be written as the composition of two embeddings φ = f ◦ g where
f : Dn−1 →W and g : Sq−1 ×Dn−q → Dn−1. In other words, a trivial embedding
is one that sends Sq−1 ×Dn−q injectively to a contractible subspace of W . Figure
7 shows an example of a trivial and a non-trivial embedding.

Remark 3.9. Since all Dk are homotopic to points, note that saying that φ : Sq−1×
Dn−q →W is trivial doesn’t depend at all on the Dn−q portion of the map. Because
of this, we will often talk about the restriction φ|Sq−1 being trivial, which is an
equivalent notion.
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Figure 7. A ‘solid’ torus W = S1 × D2 with the images of two
embeddings φ21, φ

2
2 : S1×D1 → ∂W . The red embedding is clearly

trivial (see definition 3.8) while the blue embedding is not.

Now that embedding a handle into a manifold is defined, it can be applied to
the manifolds at issue in the h-cobordism theorem. Recall that we are interested
in (n+ 1)-dimensional manifolds W with ∂W = ∂0W q∂1W , where ∂0W and ∂1W
are both n-dimensional manifolds. The goal is to trivialize W : that is, show that
it is diffeomorphic relative ∂0W to ∂0W × [0, 1]. The method for doing this is to
construct a ‘handlebody decomposition’ of W .

Definition 3.10. A handlebody decomposition of a manifold W with ∂W = ∂0W q
∂1W (relative to ∂0W ) is another manifold W ′ diffeomorphic to W with

W ′ = ∂0W × [0, 1] + (φq11 ) + (φq22 ) + · · ·+ (φqrr ).

In order to not change ∂0W × {0}, we require that the image of φqii be contained
in ∂1(∂0W × [0, 1] + (φq11 + · · ·+ (φ

qi−1

i−1 ))). Note that each qj need not be distinct:
we can have multiple 5-handles, for instance. Also note that since the addition is
not commutative, the sequence of qj will not necessarily be increasing, though we
will order it later.

A handlebody decomposition of W relative to ∂0W thus gives the trivial (n+1)-
manifold for ∂0W with arbitrary handles attached to ∂0W × {1}, so trivializing it
will involve diffeomorphically removing all of the handles. The following lemma
is derived from Morse theory. (See [2, Chapter 6] for an introduction to Morse
theory.)

Lemma 3.11. If W is a compact manifold of dimension n ≥ 6 with ∂W = ∂0W q
∂1W , then there exists a handlebody decomposition of W rel ∂0W .

This lemma allows us to decompose any h-cobordism into the trivial h-cobordism
of ∂0W together with arbitrary handles. In order to show that the h-cobordism is
diffeomorphic to the trivial h-cobordism, then, we need only find a way to smoothly
remove the handles.

Remark 3.12. To connect handlebody decompositions with the homology theory
mentioned in section 1.1, we will assert that q-handles Dq ×Dn−q can be thought
of as q-cells Dq in a cellular decomposition, with the homology notions understood
accordingly. For a discussion of this that is beyond the scope of this paper, see [3,
Section 1.2]. Note that while Lück discusses homology groups over the universal
covers of spaces, we will be working with simply connected spaces. Since the uni-
versal cover of a simply connected space is just the space itself, we can dispense
with that hassle.
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4. Simplifying Handlebody Decompositions

This section closely follows the proof of the s-Cobordism Theorem in [3, Chapter
1].

Once an h-cobordism is decomposed into a handlebody, there are various tools
that allow us to diffeomorphically alter the decomposition into a new one that
brings us closer to the trivial h-cobordism. The lemmas presented in this section
are all important ways of changing between handlebody decompositions.

The isotopy lemma will enable us to change between two handles of the same
index if the embeddings of those handles are sufficiently similar. First, though, we
need the following isotopy extension lemma from [2, Chapter 8, Theorem 1.3]. The
proof is beyond the scope of this paper, but can be seen there.

Lemma 4.1. Let V ⊂ W be a compact submanifold and F : V × [0, 1] → W be
an isotopy of V . If either F (V × [0, 1]) ⊂ ∂W or F (V × [0, 1]) ⊂W − ∂W then F
extends to a diffeotopy G of W that has a compact support. That is, the closure of
the set {x ∈W |G(x, t) 6= G(x, 0) for some t} is compact.

Lemma 4.2 (Isotopy Lemma). Let φq and ψq be embeddings attaching two q han-
dles to an n dimensional manifold W with ∂W = ∂0W q ∂1W . If φq and ψq are
isotopic, then there is a diffeomorphism W + (φq)→W + (ψq) relative to ∂0W .

Proof. Recall that φq and ψq both send Sq−1 × Dn−q → ∂1W . Thus an isotopy
between them is i : (Sq−1 ×Dn−q)× [0, 1]→ ∂1W with the relevant restrictions to
φq and ψq. By lemma 4.1, taking V = Sq−1 ×Dn−q compact, we can extend i to
a diffeotopy H : W × [0, 1] → W with H0 = idW . Since H is an extension of i, it
follows that H1 ◦ φq = ψq. We can further guarantee that H is stationary on ∂0W
by considering only a noncompact subset of W that contains ∂1W but not ∂0W .
Since H is stationary on all but a compact subset of this noncompact set, it can be
extended to a diffeotopy that is stationary on ∂0W .

This tells us that H1 = H|W×{1} : W →W is a diffeomorphism relative to ∂0W
with H1 ◦ φq = i|Sq−1×Dn−q×{1} = ψq. Since H1 is a diffeomorphism of W that
sends the embedded part of the handle (φq) to the embedded part of the handle
(ψq), we need only join it with the identity map on the remainder of the handle to
find a diffeomorphism from W + (φq)→W + (ψq). �

The following lemma allows us to consider the base manifold only up to diffeo-
morphism when attaching handles. In essence, it says that embedding a handle
into two diffeomorphic manifolds is exactly the same.

Lemma 4.3 (Diffeomorphism Lemma). Take two compact manifolds W and W ′

with boundaries ∂W = ∂0W q ∂1W and ∂W ′ = ∂0W
′ q ∂1W ′. Let F : W →W ′ be

a diffeomorphism that induces a diffeomorphism f0 : ∂0W → ∂0W
′.

Take a handle (φq) embedded by φq : Sq−1 × Dn−q → ∂1W . We can find an

embedding φ
q

: Sq−1 × Dn−q → ∂1W
′ and a diffeomorphism F ′ : W + (φq) →

W ′ + (φ
q
) that induces f0 on ∂0W . That is, attaching the handles does not change

the diffeomorphism on the base part of the boundary.

Proof. We prove this explicitly by taking φ
q

= F ◦φq. This is clearly an embedding
with the right domain and target. To complete the proof we need only find F ′ and
verify the properties.
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Let F ′ : W ∪φq Dq ×Dn−q →W ′ ∪φq Dq ×Dn−q be defined by F ∪φq id. Since

F ◦φq = φq, this definition yields a diffeomorphism. And since φq(Sq−1×Dn−q) ⊂
∂1W , F ′ induces the same f0 as F on ∂0W . �

The first step in simplifying a handlebody decomposition is to put the handles
in order of increasing degree. As mentioned in remark 3.7, addition of handles
to a manifold is not obviously commutative, since each added handle changes the
boundary to which the subsequent handle can be embedded. Thus it is not immedi-
ately clear that we can list the handles in order of ascending degree. The following
lemma, however, will allow us to do just that.

Lemma 4.4 (Ordering Lemma). Let W be a compact n-manifold with boundary
∂W = ∂0W q∂1W . Let V = W+(ψr)+(φq) for two handle embeddings with q ≤ r.
Then V is diffeomorphic relative ∂0W to V ′ = W + (φ

q
) + (ψr) for an appropriate

φ
q
.

Proof. The first thing we want to do is separate the embedding φq from (ψr). To
do this, first consider the restriction φq|Sq−1×{0} : Sq−1 × {0} → ∂1W + (ψr). The
dimension of this restriction of the embedding is q − 1, and the dimension of the
transverse sphere of (ψr) is n−r−1. Since q ≤ r, we have that (q−1)+(n−r−1) <
n− 1, where n− 1 is the dimension of the boundary of W .

Since the restriction of φq together with the transverse sphere of (ψr) do not
make up the full dimension of the boundary, we can perturb the former slightly
into an unoccupied dimension at any intersection of the two. This perturbation

can be written as an isotopy, so by lemma 4.1, φq is isotopic to a map φ̂q that does

not intersect the transverse sphere of (ψr) anywhere along φ̂q|Sq−1×{0}.

Because any embedding of Dk can be isotoped arbitrarily close to the image of

any point in the disk, we can isotope φ̂q to a map φ
q

that sends Sq−1×Dn−q to an

arbitrarily small neighborhood U ⊃ φ̂q(Sq−1×{0}). We can take this neighborhood
to be disjoint from a closed neighorhood V of the transverse sphere of (ψr).

Then there is a clear diffeotopy of ∂1(W +(ψr)) that sends V to the boundary of
(ψr) (that is, Dr ×Sn−1−r) and the rest of ∂1(W + (ψr)) to parts of the boundary
completely disjoint from the r-handle. Under this diffeotopy, the q-handle’s embed-
ding is completely separate from the r-handle, and so we can switch their order.
Therefore, W + (ψr) + (φq) ∼= W + (φ

q
) + (ψr) relative to ∂0W . �

The ordering lemma allows us to sort the handlebody decomposition according
to the degree of the handles and to reorder the handles of the same degree however
we want. Therefore, combining the ordering lemma with lemma 3.11 we can write
any compact manifold W of dimension n ≥ 6 with disjoint boundary components
as

W ∼= W ′ = ∂0W × [0, 1] +

p0∑
i=1

(φ0i ) +

p1∑
i=1

(φ1i ) + · · ·+
pn∑
i=1

(φni ).(4.5)

Sorting the decomposition allows us to consider the relationship between handles
of subsequent degree. Since our goal is to gradually eliminate the handles, it makes
sense to examine situations in which subsequent handles trivialize each other. For
example, (φq) + (φq+1) attached to an n-manifold is trivial if it is diffeomorphic to
Dn embedded along a Dn−1. Such an attachment can be deformed into the interior,
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with its boundary simply replacing the part of the boundary that the handles were
embedded into.

Figure 8. Trivial combination of (3,1) and (3,2) handles.

One example is found in figure 8. The rectangle represents a portion of the
boundary of a 3-manifold. Attached is a 1-handle, as in figure 3, and a 2-handle.
The 2-handle is also a cylinder, but it is embedded along S1 ×D1. Half of the S1

lies along ∂1W , while the other half lies on the boundary of the 1-handle. The D1

part of the embedding provides substance to the intersection, so that the 2-handle
shares a strip with the original boundary and a strip with the 1-handle. The 2-
handle itself fills the space between the 1-handle and the original boundary. Once
the two handles are joined together, they can be squished into the original manifold
and become trivialized.

For our purposes, what is interesting is the intersection of the transverse sphere
{0}×Sn−q−1 of the lower index handle and a single sphere Sq×{0} of the embedded
portion of the higher index handle, which is the blue dashed circle in figure 8. Their
intersection is indicated with a black dot, and it is this point of intersection that
we look at in the cancellation lemma.

The term transversal comes up in what follows. Rather than defining it rigor-
ously, we’ll say that two objects are transversal if they’re not in a special relationship
to each other: that is, if they don’t happen to coincide in some unexpected way,
such as two curves which happen to be tangent rather than intersecting, or two
submanifolds that happen to coincide over a certain number of dimensions.

Lemma 4.6 (Cancellation Lemma). Let W be a compact n-manifold with boundary
∂W = ∂0W q ∂1W . Take two handle embeddings, φq into ∂1W and ψq+1 into
∂1(W + (φq)). If ψq+1(Sq×{0}) is transversal to the transverse sphere of (φq) and
meets the transverse sphere in a single point, then there is a diffeomorphism rel
∂0W such that W ∼= W + (φq) + (ψq+1).

Proof. Since ψq+1(Sq × {0}) has dimension q and the transverse sphere of (φq)
has dimension n − q − 1 and both lie within the n − 1 dimensional ∂1(W + (φq)),
transversality simply means that together they ‘fill up’ the full dimension.

Given a neighborhood U ⊂ ∂1(W + (φq)) of the transverse sphere {0}×Sn−q−1,
we can find a diffeotopy F : ∂1(W +(φq))× [0, 1]→ ∂1(W +(φq)) such that F0 = id
and F1 maps the complement of U to ∂1(W + (φq))− φq(Sq × int(Dn−1−q)), while
F ({0}×Sn−q−1×{t}) = {0}×Sn−q−1 for all t. That is, F diffeotopes U to cover the
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whole boundary of the handle (φq) while pushing the rest of the handle’s boundary
onto the rest of the manifold’s boundary and holding the transverse sphere fixed.

Assume without loss of generality that the intersection between the transverse
sphere and ψq+1(Sq × {0}) occurs at the image of the ‘north pole’ of the q-sphere.
Then we can take U to include the image of the northern hemisphere but not include
any of the southern hemisphere.

The new embedding obtained by composing F1◦ψq+1 is diffeotopic to the original
embedding, so by the isotopy lemma 4.2 we may treat it as though it were the same.
Thus ψq+1 sends the lower hemisphere of Sq × {0} outside of the handle (φq). We
can further isotope it so that the upper hemisphere is mapped into the disk Dq×{x}
for some x ∈ Sn−q−1. This is guaranteed by transversality and single intersection.

This new embedding ψq+1 gives us a picture analogous to that in figure 8. The
first step in proving that W + (φq) + (ψq+1) ∼= W is to collapse (φq) into (ψq+1).

Consider each non-embedded disk of (φq): {y} × Dn−q for all y ∈ Dq. One
of these, {0} × Dn−q, is the disk whose boundary corresponds to the transverse
sphere. Clearly each of these intersect the embedded upper hemisphere Dq×{x} in
a point (y, x). Thus they intersect the image of ψq+1 along {y} ×Dn−1−q. Taking
the full handle Dq ×Dn−q, we see that this is an n-manifold embedded in another
n-manifold along Dq ×Dn−1−q. Therefore, we can collapse (φq) into (ψq+1).

Now we are left with W and an object Dq+1 ×Dn−1−q that is embedded in W
along Sq−×Dn−1−q, where Sq−

∼= Dq denotes the lower hemisphere of the q sphere.
The manifold Dq+1 ×Dn−1−q embedded in W along Dq ×Dn−1−q is trivial, and
so we have a diffeomorphism W ∼= W + (φq) + (ψq+1). �

At this point, some notation will be useful moving forward. Recall our current
statement of the handlebody decomposition in equation (4.5). The following tools
are derived from that statement.

Notations 4.7. Let −1 ≤ q ≤ n. Define

Wq := ∂0W × [0, 1] +

p0∑
i=1

(φ0i ) +

p1∑
i=1

(φ1i ) + · · ·+
pq∑
i=1

(φqi ),

∂1Wq := ∂Wq − ∂0W × {0}, and

∂◦1Wq := ∂1Wq −
pq+1∐
i=1

φq+1
i (Sq × int(Dn−1−q)).

The submanifold Wq consists of the trivial product structure together with all of
the handles up to index q. The ‘upper’ component of the boundary of Wq is ∂1Wq,
and ∂◦1Wq gives us the the same upper boundary minus the interiors of the regions
into which (q + 1)-handles will be embedded in Wq+1. It can be thought of as the
‘safe’ or ‘unaffected’ part of the boundary.

The following lemma characterizes handles attached by trivial embeddings (recall
definition 3.8) as particularly easy to cancel.

Lemma 4.8 (Trivial Cancellation). If φq : Sq−1 × Dn−q → ∂1W is a trivial
embedding then there is an embedding φq+1 : Sq × Dn−1−q → ∂1(W + (φq)) such
that W ∼= W + (φq) + (φq+1).

Proof. Since φq is a trivial embedding, we can write it as the composition of em-
beddings φq = f ◦ g with f : Dn−1 → ∂1W and g : Sq−1 ×Dn−q → Dn−1. By the
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cancellation lemma 4.6, we want to find an embedding φq+1 such that φq+1(Sq×{0})
is transversal to the transverse sphere of (φq) and meets it in a single point.

The transverse sphere of (φq) is {0}×Sn−1−q and it is a piece of the boundary of
the handle Dq×Sn−1−q. Let p1 : Dq → Dq×Sn−1−q be defined by some fixed point
x ∈ Sn−1−q and the identity on Dq. The image of p1 intersects the transverse sphere
transversally and exactly once, and the boundary of the Dq lies in ∂1W through the
embedding φq, along the boundary of the embedded Sq−1×Dn−q. Then, since that
Sq−1×Dn−q lies in a Dn−1 (through f−1), we can define p2 : Dq → Dn−1 to avoid
the image g(Sq−1 × Dn−q) ⊂ Dn−1. By letting p1 and p2 define the embeddings
of the upper and lower hemispheres of an Sq and extending the embedding to
Sq×Dn−1−q, we have a φq+1 that satisfies the conditions of the cancellation lemma
and thus W ∼= W + (φq) + (φq+1). �

The elimination lemma will provide a way of replacing handles with handles of
higher index, but before we approach its proof we need another lemma from [2,
Chapter 8].

Lemma 4.9. Let V be a compact submanifold of a manifold N , and let f0, f1 :
V →M − ∂M be isotopic embeddings. If f0 extends to an embedding N →M then
so does f1. Further, the extension of f1 is isotopic to the extension of f0.

Proof. Recall that by the definition of isotopy we have a function H : V × [0, 1]→
M−∂M such thatH0 = f0, H1 = f1, and eachHt is a homeomorphism. We can find
a new isotopy H ′ : f0(V )× [0, 1]→M −∂M by simply taking H ′ = H ◦ (f−10 × id).
Note that H ′1 = H1 ◦ f−10 = f1f

−1
0 .

By lemma 4.1, H ′ extends to a diffeotopy G : M →M . Since it is an extension,
we know that G1|f0(V ) = H ′1 = f1f

−1
0 , or G1f0 = f1f

−1
0 f0 = f1.

Let j : N →M be the given extension of f0. Then we can set k = G1j : N →M
and it will be an extension of f1. And since G1 is a diffeomorphism (since G is a
diffeotopy), we have that j and k are isotopic. �

Lemma 4.10 (Elimination Lemma). Fix q such that 1 ≤ q ≤ n − 3, and suppose
that the handlebody decomposition has no handles of index j < q. Fix i0 with 1 ≤
i0 ≤ pq to denote a specific q-handle. Further suppose that there is an embedding
ψq+1 : Sq ×Dn−1−q → ∂◦1Wq that satisfies these conditions:

(1) If we restrict ψq+1|Sq×{0}, it is isotopic in ∂1Wq to another embedding χ :
Sq×{0} → ∂1Wq, where χ meets the transverse sphere of (φqi0) transversally
and in exactly one point, and where χ is also disjoint from the transverse
spheres of all other q-handles.

(2) The same restriction of ψq+1 to Sq ×{0} is isotopic in ∂1Wq+1 to a trivial
embedding χ′ : Sq × {0} → ∂1Wq+1.

Then, we can replace (φqi0) with a (q + 2)-handle, meaning that the handlebody
decomposition can be written as

∂0W × [0, 1] +

pq∑
i=1,i6=i0

(φqi ) +

pq+1∑
i=1

(φq+1
i ) + (ψq+2) +

pq+2∑
i=1

(φq+2
i ) + · · ·+

pn∑
i=1

(φni ).

Remark 4.11. Note that the handles of index q + 1 and greater will not have the
same embedding functions as they did before the switch. Since we only really care
about the number of handles of each index, this isn’t a concern.
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Proof. The first thing to do is to extend χ and χ′ to legitimate (q + 1)-handle

embedding functions ψq+1
1 , ψq+1

2 using lemma 4.9 with V = Sq × {0}, N = Sq ×
Dn−1−q, and M = ∂1Wq or ∂1Wq+1.

By the lemma, ψq+1 is isotopic to ψq+1
1 , which is isotopic to ψq+1

2 . We obviously

have that ψq+1
1 |Sq×{0} meets the transverse sphere of (φqi0) transversally and in

exactly one point, since that is a property of χ in (1). And further, since χ is

disjoint from the transverse spheres of all the other q-handles, we can make ψq+1
1

similarly disjoint from those transverse spheres. Also, since χ′ is trivial its extension
ψq+1
2 must also be trivial.
Since we have stayed away from higher index handles, we can safely ignore them

and add new ones back in at the end. That is, if we show a diffeomorphsim

∂0W×[0, 1]+

pq∑
i=1

(φqi )+

pq+1∑
i=1

(φq+1
i ) ∼= ∂0W×[0, 1]+

pq∑
i=1,i6=i0

(φqi )+

pq+1∑
i=1

(φq+1
i )+(ψq+2)

then we can show a diffeomorphism between the two with the handles of index q+2
or greater added back in by the diffeomorphism lemma 4.3.

Since ψq+1
2 is trivial, by the trivial cancellation lemma 4.8 we know there exists

some ψq+2 such that

∂0W × [0, 1] +

pq∑
i=1

(φqi ) +

pq+1∑
i=1

(φq+1
i )

∼= ∂0W × [0, 1] +

pq∑
i=1

(φqi ) +

pq+1∑
i=1

(φq+1
i ) + (ψq+1

2 ) + (ψq+2),

which, by the isotopy lemma 4.2,1 is diffeomorphic to

∂0W × [0, 1] +

pq∑
i=1

(φqi ) +

pq+1∑
i=1

(φq+1
i ) + (ψq+1

1 ) + (ψq+2).

By a simple application of the ordering lemma 4.4 we can move (φqi0) and (ψq+1
1 )

and get that the above is diffeomorphic to

∂0W × [0, 1] +

pq∑
i=1,i6=i0

(φqi ) + (φqi0) + (ψq+1
1 ) +

pq+1∑
i=1

(φq+1
i ) + (ψq+2).

Since ψq+1
1 (Sq ×Dn−1−q) meets the transverse sphere of (φqi0) transversally and in

a single point by assumption, by the cancellation lemma 4.62 we get that

∂0W×[0, 1]+

pq∑
i=1

(φqi )+

pq+1∑
i=1

(φq+1
i ) ∼= ∂0W×[0, 1]+

pq∑
i=1,i6=i0

(φqi )+

pq+1∑
i=1

(φq+1
i )+(ψq+2).

As stated above, we can at this point use the diffeomorphism lemma to add in
the (q+ 2)-and higher handles to both sides of the diffeomorphism, and obtain the
diffeomorphism called for in the lemma. �

1For this step we also technically need the diffeomorphism lemma and a different (q+2)-handle

embedding, since ψq+1
1 has a different boundary available for embedding than ψq+1

2 . This is a

minor complication, though, since it all ends up the same.
2Again, we technically need to use the diffeomorphism lemma and change the (q + 1)- and

(q + 2)-handle embeddings. But the numbers of the handles remains the same, so changing the
notation is unnecessary.
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While the elimination lemma is useful, it is not the final solution. In order for it
to apply we must have eliminated at least the 0-handles by another method (since
1 ≤ q) and it will not change the total number of handles. It will merely shift the
handles to ones of higher index, up to shifting handles from index n − 3 to index
n−1. More tools are necessary in order to simplify the handlebody decomposition.

The next lemma allows us to eliminate handles of index 0 and 1, and be left with
only higher index handles.

Lemma 4.12. Take W to be a compact manifold of dimension at least 6, with
∂W = ∂0W q ∂1W . If the inclusion ∂0W → W is 1-connected, then we can
eliminate the 0- and 1- handles. That is,

W ∼= W ′ = ∂0W × [0, 1] +

p2∑
i=1

(φ2i ) + · · ·+
pn∑
i=1

(φni ).

Proof. First, we want to eliminate the 0-handles. Consider what they look like:
D0×Dn ∼= Dn, embedded along ∂D0×Dn, which is empty. So 0-handles are simply
Dns that are disjoint from ∂0W × [0, 1]. However, since the inclusion ∂0W → W
is 1-connected, we know there is an isomorphism between the path components of
∂0W and those of W . Since π0(∂0W × [0, 1]) is isomorphic to π0(∂0W ), that means
that π0(∂0W × [0, 1]) is isomorphic to π0(W ).

That means that for each (φ0i ) there must be a higher degree handle that connects
it to a path component of ∂0W × [0, 1]. Since S0 is the only disconnected Sk, that
connecting handle must be a 1-handle. Therefore, for each (φ0i ) there exists (φ1j )

such that φ1j ({−1} ×Dn−1) ⊂ ∂0W × {1} and φ1j ({1} ×Dn−1) ⊂ Sn−1 = ∂(φ0i ), if

we let S0 = {−1, 1}.
The transverse sphere of a 0-handle is simply its boundary Sn−1. Looking at the

requirements of the cancellation lemma 4.6, we see that φ1j (S
0×{0}) is transversal

to the transverse sphere of (φ0i ) and meets it in exactly one point, (1, 0). Therefore,
for each i, j we can cancel (φ0i ) and (φ1j ) by the cancellation lemma.

Of course, there may be more 1-handles left that we also need to eliminate. First,
reindex the handlebody decomposition so that it is

W ∼= ∂0W × [0, 1] +

p1∑
i=1

(φ1i ) + · · ·+
pn∑
i=1

(φni ).(4.13)

We will get rid of the remaining 1-handles using the elimination lemma 4.10. To
do this, we need to construct an embedding ψ2

i : S1 ×Dn−2 → ∂◦1W1 for each φ1i
that, when restricted to S1 × {0}, is isotopic in ∂1W1 to two other embeddings.
One must intersect the transverse sphere of (φ1i ) transversally and in exactly one
point and be disjoint from the other 1-handles’ transverse spheres. The other must
be isotopic in ∂1W2 to a trivial embedding. Using this 2-handle we will replace (φ1i )
with a 3-handle (ψ3

i ).
We will construct ψ2

i first on S1 × {0}, which we will do by considering the
two halves of S1: S1

−, S
1
+. First, let ψ2

i+
: S1

+ → ∂◦1W1 be the embedding of the

upper half of the circle, and define it by a standard embedding of S1
+ → D1,

with D1 = D1×{x0} representing a line along the boundary of (φ1i ) = D1×Dn−1.
Clearly, this intersects the transverse sphere {0}×Sn−2 transversally and in exactly
one point (0, x0).
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Now we want to embed the lower half of the circle S1
− in such a way that the

overall ψ2
i is isotopic to a trivial embedding. First, though, a detour into algebra

is necessary.
The unaffected boundary ∂◦1W0 is formed from ∂1W0 = ∂0W × {1} (since we

have no 0-handles left) by removing a finite number of disks Dn−1, the images of
S0 × Dn−1 for each 1-handle. (There will be 2p1 such disks removed.) In any
manifold of dimension n ≥ 3, the removal of a Dn does not change the fundamental
group because each π1(Sn) is isomorphic to the trivial group for n ≥ 2. Therefore,
the fundamental group of ∂◦1W0 is isomorphic to the fundamental group of ∂1W0,
which is the same as the fundamental group of ∂0W .

Recall that the 1-connectedness of the inclusion ∂0W →W means that we have
an induced surjection between the fundamental group of ∂0W (equivalently the
fundamental group of ∂◦1W0) and the fundamental group of W .

Now, to find an appropriate embedding ψ2
i−

, start by picking an arbitrary em-

bedding p : S1
− → ∂◦1W0 that joins up with ψ2

i+
at the endpoints. This gives us a

loop l ∈ W , which corresponds to an element α ∈ π1(W ). Look at α−1, and take
some preimage l′ of α−1 in ∂◦1W0, which exists (though not necessarily uniquely)
by the surjection between the fundamental groups. By combining p and l′ we get
a single embedding ψ2

i−
: S1
− → ∂◦1W0.3

Since the isotoping does not change the homotopy class, our new loop ψ2
i =

ψ2
i+
∪ψ2

i−
corresponds to the element αα−1 = 0 in the fundamental group, and thus

ψ2
i is nullhomotopic in W .
We want ψ2

i to be trivial in ∂1W2, so we first want nullhomotopy in W to imply
nullhomotopy in ∂1W2.

Note that any 3-or-greater-handle is embedded along Sq−1 ×Dn−q, where q ≥
3. This embedded boundary will always be simply connected, since Sk is simply
connected for k ≥ 2. Thus any homotopy that passes through a 3-or-greater-
handle can be homotoped around that handle. So any two functions in W2 that
are homotopic in W are also homotopic in W2.

Now we want to show that functions in ∂1W2 that are homotopic in W2 are also
homotopic in ∂1W2. If the homotopy passes through ∂0W × [0, 1), we can obviously
homotope it so that it only passes through ∂0W × {1} and the 1 and 2 handles. If
it passes through a 1-handle D1 × Dn−1 we can homotope it so that passes only
through one of the embedded Dn−1s and the boundary. And, as mentioned above,
since we are in an (n− 1)-manifold with n− 1 ≥ 3, the removal of a Dn−1 does not
change the fundamental group, so if the homotopy passes through the embedded
Dn−1s we can homotope it so that it passes only through the boundary.

The only problem that remains is if the homotopy passes through a 2-handle.
However, since we know that n ≥ 6, the boundary of any 2-handle will be of the
form D2 × Sn−3, with n − 3 ≥ 3. Since disks are simply connected and Sk is
simply connected for k ≥ 2, this means that the boundaries of the 2-handles are
simply connected, and thus any homotopy that passes through a 2-handle can be
homotoped to only lie on its boundary. Therefore, nullhomotopy in W implies
nullhomotopy in ∂1W2.

3We will have to isotope it slightly first, so that the joining of p and l′ occurs away from the
endpoint of the embedding and to eliminate all the other self-intersections of the embedding, but

this is not a problem.
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Our nullhomotopy in ∂1W2 is a continuous map H : S1 × [0, 1] → ∂1W2 where
H(S1 × {1}) is constant, so we can equivalently think of it as a continuous map
H : D2 → ∂1W2. This continuous map is not necessarily an embedding, however,
so we don’t yet have triviality. For that, we need the “easy Whitney embedding
theorem” (see [2, Chapter 1, Theorem 3.5] and the notes following it for the proof)
which tells us that any continuous map from an n-manifold to R2n+1 (or greater
dimensional Euclidean space) can be approximated by an embedding into the same
Euclidean space. Since, by assumption, ∂1W2 has dimension at least 5, D2 has
dimension only 2, and ∂1W2 is a manifold (we can treat it locally as though it were
a subset of R≥5), we can approximate our nullhomotopy by an embedding of D2

into ∂1W2. Since ∂1W2 has no boundary, this approximation is also guaranteed to
be contained in ∂1W2.

So we now have our embedding ψ2
i defined on S1×{0} in a way that it intersects

the transverse sphere of (φ1i ) transversally and in exactly one point, and such that
it is trivial in ∂1W2. We can easily extend it to the full S1 ×Dn−2, at which point
it satisfies the conditions of the elimination lemma 4.10, and we can replace our
handle (φ1i ) by a handle (ψ3

i ). By repeating this process for each 1-handle, we
eliminate all of the 1-handles, and we can rewrite the handlebody decomposition
(4.13) as

W ∼= ∂0W × [0, 1] +

p2∑
i=1

(φ2i ) + · · ·+
pn∑
i=1

(φni ).(4.14)

�

Lemma 4.15. Given an h-cobordism (W ; ∂0W,∂1W ) where ∂0W is simply con-
nected and a handlebody decomposition as in equation (4.14), each Wq and ∂1Wq

is also simply connected.

Proof. Since W is an h-cobordism, the inclusion ∂0W →W is a homotopy equiva-
lence, which gives us an isomorphism on the homotopy groups. Thus W is simply
connected. Since all handles of index ≥ 2 (index 1 and 0 have been removed) are
simply connected manifolds embedded along simply connected manifolds, removing
them only simplifies the fundamental group: any homotopy of loops in the full space
that passes through a handle can be changed to a new homotopy that passes along
the embeddings of those handles. Thus there is a surjection from π1(W )→ π1(Wq)
for all q. Since W is simply connected, this means that each Wq is simply connected.

For the boundary components ∂1Wq, note that ∂1W is simply connected since it
is homotopy equivalent to W . Each ∂1Wq is constructed from ∂1Wq+1 by removing
and adding simply connected manifolds, so again we have a surjection π1(∂1W )→
π1(∂1Wq) for all q. Thus each ∂1Wq is simply connected. �

We now have to step back into homology. Recall from remark 3.12 that we can
treat the q-handles of a decomposition as q-cells for purposes of relative homology
groups.

Lemma 4.16 (Homology Lemma). Let (W ; ∂0W,∂1W ) be an n ≥ 6 dimensional
h-cobordism with ∂0W simply connected. Fix a handle of index 2 ≤ q ≤ n− 3 such
that there are no handles of index less than q, and select a specific handle (φqi0).
Let f : Sq → ∂1Wq be an embedding. Let [f ] represent the image of the class of
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maps homotopic to f under the following composition of functions:

πq(Wq)→ πq(Wq, ∂0W × [0, 1])→ Hq(Wq, ∂0W × [0, 1]) = Cq(W )

If [f ] = ±[φqi0 ] ∈ Cq(W ), then f is isotopic to an embedding g : Sq → ∂1Wq where

g meets the transverse sphere of (φqi0) transversally and in exactly one point, and

is disjoint from the transverse spheres of the handles (φqi ) for i 6= i0.

Proof. First, note that the equality shown above, Hq(Wq, ∂0W × [0, 1]) = Cq(W ),
holds. The q-th relative homology group here consists of Z-combinations of q-
handles that embed in ∂0W × [0, 1] (which is all of them, since there are no < q
handles), modded out by q-handles which are the images of q + 1 handles under
the boundary operator, which is none of them, because Wq has no q+ 1 handles by
definition. This combination, then, is exactly Cq(W ).

Now, examine what the composition does. First, it associates the embedding f
to its element in the q-th homotopy group, i.e. it equates it with all other homotopic
embeddings of Sq into Wq. The next step equates it to all homotopic embeddings
of Sq−1 into ∂0W × [0, 1] that are the boundary of embeddings of Dq into Wq.
Of course, since f is an embedding of Sq into ∂1Wq, this will always have Sq−1

identified to a point. However, we can stretch out the point of the Sq that lies in
∂0W × [0, 1]. The part added in the middle of this ‘stretching’ will form the lower
hemisphere of a new, isotopic embedding f , and the upper hemisphere will be a Dq

such that its boundary Sq−1 lies in ∂0W × [0, 1].
Recall that q-handles are Dq×Dn−q embedded along Sq−1×Dn−q, so the equiv-

alence classes in πq(Wq, ∂0W × [0, 1]) can be equated to q-handles in Hq(Wq, ∂0W ×
[0, 1]) = Cq(W ). Therefore, [f ] ∈ Cq(W ) denotes the handle (ψq) such that the
embedding of the upper hemisphere of Sq under f is isotopic to the core of (ψq).

If [f ] = ±[φqi0 ] then the upper hemisphere of f is isotopic to the core of the

handle (φqi0). We can then isotope it to the boundary of that handle, guaranteeing
that it intersects the transverse sphere of that handle transversally and in a single
point. To show that it is disjoint from the other transverse spheres, only note
that we can define the lower hemisphere of this new f such that it lies entirely
within the original product structure minus the interior of the embeddings of the
q-handles. The upper hemisphere lies entirely within the target q-handle, so we
have disjointness. �

Lemma 4.17 (Modification Lemma). Let (W ; ∂0W,∂1W ) be an h-cobordism with
∂0W simply connected, and let f : Sq → ∂◦1Wq be an embedding. Take xj ∈ Z
for 1 ≤ j ≤ pq+1. Then there is another embedding g : Sq → ∂◦1Wq that is
isotopic to f in ∂1Wq+1 and, using the notation developed in the homology lemma

4.16, [g] = [f ] +
∑pq+1

j=1 xj · dq+1[φq+1
j ] ∈ Cq(W ). Note that dq+1 is the boundary

operator from Cq+1(W,∂0W ) → Cq(W,∂0W ): that is, dq+1 maps (q + 1)-handles
to q-handles.

Proof. First, to clarify the notation, note that [g] = [f ] +
∑pq+1

j=1 xj · dq+1[φq+1
j ]

means that g is homologous to f joined to the core of each handle (φq+1
j ) xj times.

It suffices to prove that we can find g such that [g] = [f ]± dq+1[φq+1
j ] for some

arbitrary j: from that point we can proceed by induction.
For a given (φq+1

j ), let tj be an embedding Sq → Sq×Sn−2−q ⊂ ∂(φq+1
j ) ⊂ ∂1Wq

given by fixing a point z ∈ Sn−2−q and sending Sq to Sq × {z}. Note that tj is

trivial in ∂1Wq+1 because it is contained in Dq+1 × {z} ⊂ ∂(φq+1
j ) ⊂ ∂1Wq+1.
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Figure 9. The connect sum of two S2 along a D2 × [0, 1] with
each end embedded in one of the spheres.

Since ∂1Wq is path connected, we can define a path wj as an embedding [0, 1]→
∂1Wq connecting the images of f and tj . That is, wj(0) ∈ f(Sq), wj(1) ∈ tj(Sq).
Since ∂1Wq is simply connected, wj is unique up to homotopy.

By thickening wj to an embedding of [0, 1]×Dq, we can obtain a new embedding
v : Sq → ∂1Wq as the connect sum of f and tj , where the boundary of wj defines
the connection between the two spheres (see figure 9).

Since tj is trivial, the embedded Sq minus a Dq can be isotoped back into that
removed Dq, and then wj can be isotoped back to the Dq removed from the image
of f , so v is isotopic to f . That means that we can also isotope it just slightly so
that we get a new embedding g isotopic to f that lies in ∂◦1Wq.

When we pass g through the composition of functions we get that [g] = [f ] ±
dq+1[φq+1

j ], where the sign may be altered by changing the orientation of tj . �

The next step in the proof eliminates almost all of the remaining handles, leaving
only handles of two consecutive indices q, q+ 1. This mostly reduced form is called
the ‘normal form’ of the handlebody decomposition. The proof of the normal form
lemma involves two steps. First, we eliminate all the handles of index k < q. Then
we use the dual handlebody lemma to turn the handles of index k > q + 1 into
handles of index k < q and repeat the first step.

Lemma 4.18 (Dual Handlebody Lemma). Let (W ; ∂0W,∂1W ) be an n-dimensional
cobordism and suppose that

W ∼= ∂0W × [0, 1] +

p0∑
i=1

(φ0i ) +

p1∑
i=1

(φ1i ) + · · ·+
pn∑
i=0

(φni ).

Then we can build W up from the other boundary component by finding a handle
of index (n− k) for each k-handle in the original decomposition. That is,

W ∼= ∂1W × [0, 1] +

pn∑
i=1

(ψ0
i ) +

pn−1∑
i=1

(ψ1
i ) + · · ·+

p0∑
i=0

(ψni ).
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The proof of the dual handlebody lemma is rather technical, so we’ll omit the
details here and relegate them to Appendix A.

Lemma 4.19 (Normal Form Lemma). Let (W,∂0W,∂1W ) be an oriented, compact
h-cobordism of dimension at least 6 with ∂0W simply connected. Then for any q
with 2 ≤ q ≤ n− 3, we have handles such that

W ∼= ∂0W × [0, 1] +

pq∑
i=1

(φqi ) +

pq+1∑
i=1

(φq+1
i ).

Proof. The basic approach of this proof is inductive: we will eliminate k-handles
with the assumption that there are no (k − 1)-handles. Because of lemma 4.12 the
base cases k = 0 and k = 1 are already solved. In order to remove each k-handle
we will add a (k + 1)- and a (k + 2)- handle, such that each pair (φki ), (ψk+1

i ) and

(ψk+1
i ), (ψk+2

i ) cancel each other. The net result will be a diffeomorphic handlebody
decomposition where the k-handle is replaced by a (k + 2)-handle.

Note that since the inclusion ∂0W → W is a homotopy equivalence, all of the
relative homology groups Hp(W,∂0W ) are trivial. Recall that Hp(W,∂0W ) is the p-
handles that attach directly to the product structure, modded out by the embedding
targets of (p + 1)-handles. Since we have that Hk(W,∂0W ) = 0, and there are no
< k handles, this means that all of the k-handles are targets of the embeddings of
(k + 1)-handles, so the boundary operator dk+1 is surjective.

Now we can select a k-handle (φki ) and write

[φki ] =

pk+1∑
j=1

xj · dk+1[φk+1
j ]

by the surjectivity of dk+1, for xj ∈ Z.

Now fix an arbitrary trivial embedding ψ
k+1

i : Sk × Dn−1−k → ∂◦1Wk. Since

ψ
k+1

i |Sk×{0} is nullhomotopic (ψ
k+1

i is trivial), [ψ
k+1

i ] = 0. By the modification

lemma 4.17 we can find an embedding ψk+1
i that is isotopic to ψ

k+1

i with [ψk+1
i ] =

[φki ].

Now, by letting fi = ψk+1
i |Sk×{0} and applying the homology lemma 4.16 we can

find an isotopic embedding that meets the transverse sphere of (φki ) transversally

and in a single point. Since ψk+1
i is still isotopic to the trivial embedding ψ

k+1

i ,
we can apply the elimination lemma 4.10 and replace the handle (φki ) with another

handle (ψk+2
i ). By repeating this process for each k-handle, and then proceeding

inductively over k up to q−1, we can eliminate all of the handles of index less than
q at the cost of increasing the number of handles of index q and q + 1.

At this point, we have a handlebody decomposition of the form

W ∼= ∂0W × [0, 1] +

pq∑
i=1

(φqi ) + · · ·+
pn∑
i=1

.(φni ).(4.20)

An application of the dual handlebody lemma 4.18 yields a handlebody decompo-
sition of the form

W ∼= ∂0W × [0, 1] +

p0∑
i=1

(φ0i ) + · · ·+
pn−q∑
i=1

(φn−qi ).(4.21)
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We can apply lemma 4.12 to eliminate the 0 and 1 handles, and then repeat the
argument above in this proof with q′ = n − q − 1 (note that since 2 ≤ q ≤ n − 3,
we have that 2 ≤ n − q − 1 ≤ n − 3). Thus (after another application of the dual
handlebody lemma) we obtain a handlebody decomposition of the form

W ∼= ∂0W × [0, 1] +

pq∑
i=1

(φqi ) +

pq+1∑
i=1

(φq+1
i ).(4.22)

�

Now that we have this easily manageable handlebody, we want to describe
it in terms of a matrix. To do this, we look at the relative homology groups
Hq+1(Wq+1,Wq) and Hq(Wq,Wq−1). Clearly {[φq+1

i ]}1≤i≤pq+1 is a Z-basis for
Hq+1(Wq+1,Wq) and {[φqi ]}1≤i≤pq is a Z-basis for Hq(Wq,Wq−1). It turns out
(because these two relative homology groups are the only nonzero entries in a long
exact sequence) that the boundary operator is a bijection between these two groups,
so their bases are the same size, i.e. pq = pq+1.

Definition 4.23. The representative matrix of an h-cobordism in normal form
(as in equation (4.22)) is a pq by pq matrix describing the action of the boundary

operator on the basis {[φq+1
i ]}1≤i≤pq+1

in terms of the basis {[φqi ]}1≤i≤pq .

Remark 4.24. The representative matrix will be invertible. This follows from the
fact that the map it describes is a bijection, and thus invertible.

Lemma 4.25. Take an h-cobordism (W ; ∂0W,∂1W ) with dim(W ) ≥ 6 and ∂0W
simply connected, and its representative matrix A ∈ Mpq (Z). Let B ∈ Mj(Z) be
any matrix formed from A using any of the following operations:

(1) B is obtained from A by adding a multiple of the k-th row to the l-th row,
for k 6= l;

(2) B is obtained from A by multiplying the k-th row by −1;
(3) B is obtained from A by interchanging two rows or two columns;

(4) B is of the form A⊕ I1, i.e. B =

(
A 0
0 1

)
; or

(5) A is of the form B ⊕ I1, i.e. A =

(
B 0
0 1

)
.

Then there is another handlebody decomposition of W that has B as a representative
matrix.

Remark 4.26. For general h-cobordisms in normal form, the group of Zπ matrices
under the equivalence class of the operations above is called the Whitehead group.
This general theory is used to prove the s-cobordism theorem.

Proof. We will approach this proof separately for each operation. Operation 4 is
included for completeness, even though it it not necessary in order to prove the
h-cobordism theorem.

(1) We want to change the l-th row of the matrix, which represents the image

dq+1[φq+1
l ] as a Z-vector relative to the basis of q-handles. Consider

W ′ = ∂0W × [0, 1] +

pq∑
i=1

(φqi ) +

pq∑
i=1,i6=l

(φq+1
i ).
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By the modification lemma 4.17 we can find an embedding φ
q+1

l that is isotopic

to φq+1
l with [φ

q+1

l ] = [φq+1
l ] + x · dq+1[φq+1

k ] (x ∈ Z). By the isotopy lemma 4.2,

W = W ′ + (φq+1
l ) ∼= W ′ + (φ

q+1

l ). And if we take the representative matrix of the
new handlebody decomposition of W , the l-th row will have changed by x times
the k-th row, since the k-th row is the representation of dq+1[φq+1

k ] in the matrix.

(2) We want to change the k-th row, which represents (φq+1
k ). Multiplying this

row by −1 is represented by changing the orientation of the embedding φq+1
k , which

can be achieved by composing the embedding with a diffeomorphism Sq → Sq of
degree −1.

(3) This is simply an application of the ordering lemma 4.4: we can reorder the
handles however we wish, which corresponds to either changing rows or columns
depending on which index handles we rearrange.

(4) First, we attach a q-handle (ψq) that does not touch any of the existing
handles, giving us the matrix

(
A 0

)
. Then we can find an embedding f of Sq

such that [f ] = ±[ψq]. Then we can extend f to a (q + 1)-handle embedding. Our
new handlebody has the desired matrix, and by the homology lemma 4.16 and the
cancellation lemma 4.6 we can isotope the handles so that they cancel each other,
and our new handlebody is diffeomorphic to our original one.

(5) This is the exact same process as (4), but in reverse. Looking at our last
handles (φqpq ), (φq+1

pq ), they satisfy the homology lemma and thus we can cancel
them with the cancellation lemma, giving us the smaller matrix. �

Theorem 4.27 (h-Cobordism Theorem). Any h-cobordism (W ; ∂0W,∂1W ) with
dim(W ) ≥ 6 and ∂0W simply connected is diffeomorphic relative to ∂0W to the
trivial h-cobordism (∂0W × [0, 1]; ∂0W × {0}, ∂0W × {1}).

Proof. By the normal form lemma 4.19 we can find a handlebody decomposition
diffeomorphic to W relative to ∂0W in the form of equation (4.22). Then we can
take its representative matrix, an invertible pq by pq matrix over Z. Since every
invertible matrix in Mn(Z) can be changed to In by operations 1-3 in lemma 4.25,
we can find a handlebody decomposition diffeomorphic to W relative to ∂0W whose
representative matrix is In.

Then, by n iterations of operation 5 in lemma 4.25, we can find a handlebody
diffeomorphic to W relative to ∂0W whose representative matrix is a 0 by 0 matrix.
By definition, pq = 0, so this handlebody is of the form W ∼= ∂0W × [0, 1]. �

5. Proof of the Poincaré Conjecture

The idea of the Poincaré conjecture is that a less precise form of equality suffices
to show homeomorphism for spheres Sn. That is, any simply connected n-manifold
that has the same homology groups as Sn is homeomorphic to Sn.

The proof requires a few lemmas, which we present first.

Lemma 5.1. For n ≥ 6, let M be a simply connected n-manifold with Hj(M)
isomorphic to Hj(S

n) for all j ∈ N. Take two disjoint disks Dn
i ⊂ M for i = 0, 1.

Let N = M − int(Dn
0 ) − int(Dn

1 ). Then the inclusion of the boundary spheres
Sn−1i → N is a homotopy equivalence for i = 0, 1.

Proof. The first thing we want to do is show that the relative homology group
Hj(M − int(Dn

0 )− int(Dn
1 ), Sn−10 ) = 0 for all j. By excision [1, Theorem 2.20], we
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have that this relative homology group is isomorphic to Hj(M − int(Dn
1 ), Dn

0 ), so
we will instead show that this equivalent group is 0 for all j.

Now, we will use long exact sequence of a pair (see [1, page 117]) by considering
the pair (M − int(Dn

1 ), Dn
0 ). This sequence is

· · · → Hj(D
n
0 )→ Hj(M − int(Dn

1 ))→ Hj(M − int(Dn
1 ), Dn

0 )→
Hj−1(Dn

0 )→ Hj−1(M − int(Dn
1 ))→ Hj−1(M − int(Dn

1 ), Dn
0 )→ · · · .

Since all disks are homotopic to points, Hj(D
n
0 ) = 0 for all j, so this sequence can

be rewritten as

· · · → 0→ Hj(M − int(Dn
1 ))→ Hj(M − int(Dn

1 ), Dn
0 )→

0→ Hj−1(M − int(Dn
1 ))→ Hj−1(M − int(Dn

1 ), Dn
0 )→ 0→ · · · .

Any time two terms in a long exact sequence are bracketed by trivial groups, they
must be isomorphic. So, instead of looking at the relative homology group Hn(M−
int(Dn

1 ), Dn
0 ), we can equivalently look at Hj(M − int(Dn

1 )). To do this, we can
consider another pair (M,M − int(Dn

1 )), which gives us a new long exact sequence,

· · · → Hj(M − int(Dn
1 ))→ Hj(M)→ Hj(M,M − int(Dn

1 ))→
Hj−1(M − int(Dn

1 ))→ Hj−1(M)→ Hj−1(M,M − int(Dn
1 ))→ · · · .

By excising M −Dn
1 from Hj(M,M − int(Dn

1 )), we can change this sequence to

· · · → Hj(M − int(Dn
1 ))→ Hj(M)→ Hj(D

n
1 , S

n−1
1 )→

Hj−1(M − int(Dn
1 ))→ Hj−1(M)→ Hj−1(Dn

1 , S
n−1
1 )→ · · · .

The homology Hj(D
n
1 , S

n−1
1 ) is isomorphic to the j-th homology of an n-sphere,

which is 0 for j 6= n and Z for j = n. By hypothesis, Hj(M) is the same. So, for
all j 6= n, n− 1 we have a short exact sequence

· · · → 0→ Hj(M − int(Dn
1 ))→ 0→ · · · ,

which means that Hj(M − int(Dn
1 )) = 0 for j 6= n, n − 1. For the other cases, we

have

· · · → 0→ Hn(M − int(Dn
1 ))→ Z→ Z→ Hn−1(M − int(Dn

1 ))→ 0→ · · · .
The map Z → Z is the map Hn(M) → Hn(M,M − int(Dn

1 )), which is an isomor-
phism since M is an n-manifold. Therefore, Hj(M − int(Dn

1 )) = 0 for j = n, n− 1,
as well.

Thus we have that Hj(M− int(Dn
1 )) = Hj(N,S

n
0 ) = 0 for all j. By an analogous

argument, Hj(N,S
n
1 ) = 0 for all j. Therefore, since everything is simply connected,

the inclusions of each of these spheres into the full space are homotopy equivalences.
�

Lemma 5.2. Any homeomorphism h : Sk → Sk can be extended to a homeomor-
phism H : Dk+1 → Dk+1.

Proof. First note that we can think of Dk+1 as the product Sk× [0, 1] with Sk×{0}
identified to a single point. Define H by letting H(x, t) = (t · h(x), t). The fact
that H is a homeomorphism follows directly from h being a homeomorphism. Note
that we cannot extend this lemma to diffeomorphisms, because problems will arise
near t = 0. Thus diffeomorphisms h′ : Sk → Sk only extend to homeomorphisms
H ′ : Dk+1 → Dk+1. �
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Theorem 5.3 (Poincaré Conjecture). For n ≥ 6, let M be a simply connected
n-manifold with Hj(M) = Hj(S

n) for all j ∈ N. Then M is homeomorphic to Sn.

Proof. Take two disjoint disks Dn
i ⊂ M for i = 0, 1, and let N = M − int(Dn

0 ) −
int(Dn

1 ). Clearly (N ;Sn−10 , Sn−11 ) is a cobordism, and it is an h-cobordism by
lemma 5.1. Since Sn−1 is simply connected, we can apply the h-cobordism theorem
4.27 and get that (N ;Sn−10 , Sn−11 ) ∼= (Sn−10 × [0, 1];Sn−10 × {0}, Sn−10 × {1}). This
diffeomorphism induces a diffeomorphism f : Sn−10 → Sn−11 , which we can extend
by lemma 5.2 to a homeomorphism F : Dn

0 → Dn
1 .

By filling the interiors of the disks back in according to this homeomorphism F ,
we get a homeomorphism M = N ∪Dn

0 ∪Dn
1 → Sn−10 × [0, 1]∪Dn−1

0 ∪Dn−1
0 . The

target of this is clearly Sn. �

Appendix A. The Dual Handlebody Lemma

This is a more technical version of the proof of the dual handlebody lemma.

Lemma A.1 (Dual Handlebody Lemma 4.18). Let (W ; ∂0W,∂1W ) be an n-dimensional
cobordism and suppose that

W ∼= ∂0W × [0, 1] +

p0∑
i=1

(φ0i ) +

p1∑
i=1

(φ1i ) + · · ·+
pn∑
i=0

(φni ).

Then we can build W up from the other boundary component by finding a handle
of index (n− k) for each k-handle in the original decomposition. That is,

W ∼= ∂1W × [0, 1] +

pn∑
i=1

(ψ0
i ) +

pn−1∑
i=1

(ψ1
i ) + · · ·+

p0∑
i=0

(ψni ).

Proof. First, consider a simpler case. Let W ∼= ∂0W × [0, 1] + (φq). Let M denote
∂0W × {1} minus the interior of the q-handle embeddings. That is, M = ∂0W ×
{1} − int{φq(Sq−1 ×Dn−q)}. It is clear that M is an (n− 1)-manifold with ∂M =
φq(Sq−1 × Sn−1−q).

Figure 10 shows an example of this: W = S1 × [0, 1] + (φ1), where φ1 sends
S0 ×D1 to two arcs of ∂1W . In this case, M = S1 −D1

0 −D1
1.

Rather than building W up from the interval product of ∂0W , we can construct
it from a product of this manifold M . First, take M × [0, 1] (an example is in figure
10). Then we want to attach a new piece along the boundary of the embedding,
i.e. the boundary of the piece that was removed, all the way through the product.
As noted above, ∂M = φq(Sq−1 × Sn−1−q), so we want to attach our new piece to
φ(Sq−1 × Sn−1−q)× [0, 1].

Let N be the new piece we are attaching. In order to restore W , we need to
both fill in the removed bits along the entire product and also restore the original
q-handle. So N = Sq−1 ×Dn−q × [0, 1] ∪Sq−1×Dn−q×{1} D

q ×Dn−q.
Therefore, we have that

W ∼= (M × [0, 1])∪φ(Sq−1×Sn−1−q)×[0,1]

(Sq−1 ×Dn−q × [0, 1] ∪Sq−1×Dn−q×{1} D
q ×Dn−q).
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W

M x [0,1]

N

Figure 10. A 2-manifold W = S1 × [0, 1] with an attached 1
handle, together with the associated manifolds M × [0, 1] and N
mentioned in the proof of lemma A.1.

W = M ∪ N

Figure 11. The manifold W from figure 10 written as the union
of M × [0, 1] and N from figure 10.

Figure 12. The manifold W in the proof of lemma A.1 in its
decomposition into M × [0, 1] and N , with Y (See equation (A.3))
shown in red.
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The goal is to write W as the product of ∂1W with an attached n − q handle.
Recall that an n − q handle is Dn−q × Dq, embedding along Sn−1−q × Dq. This
handle can be found inside of N . Let

N ⊃ X = Sq−1 ×Dn−q
1
2

× [0, 1] ∪Sq−1×Dn−q
1
2

×{1} D
q ×Dn−q

1
2

,(A.2)

X ⊃ Y = Sq−1 × Sn−1−q1
2

× [0, 1] ∪Sq−1×Sn−1−q
1
2

×{1} D
q × Sn−1−q1

2

,(A.3)

where Dk
1
2

= {x ∈ Rk | ||x|| ≤ 1
2} and Sk−11

2

= ∂Dk
1
2

. See figure 12.

Since Sq−1 × [0, 1] ∪Sq−1×{1} D
q is diffeomorphic to Dq, we have that X ∼=

Dq ×Dn−q ∼= Dn−q ×Dq. Similarly, Y ∼= Dq × Sn−1−q ∼= Sn−1−q ×Dq.
Thus X embeded along Y (as it is inside N) is an n− q handle. Now, consider

Z = W − int(X). Clearly W = Z + (ψn−q). All that remains is to show that
Z = ∂1W × [0, 1].

Recall that
∂1W = M ∪φq(Sq−1×Sn−1−q) D

q × Sn−1−q.
So

∂1W × [0, 1] = M × [0, 1] ∪φq(Sq−1×Sn−1−q)×[0,1] D
q × Sn−1−q × [0, 1].

Meanwhile,

Z =W − int(X)

∼=M × [0, 1] ∪φ(Sq−1×Sn−1−q)×[0,1] S
q−1 × (Dn−q − int(Dn−q

1
2

))× [0, 1]

∪Sq−1×(Dn−q−int(Dn−q
1
2

))×{1} D
q × (Dn−q − int(Dn−q

1
2

)).

Since Dk −Dk
1
2

= Sk−1 × [0, 1] and, as before, Sq−1 × [0, 1] ∪Sq−1×{1} D
q = Dq,

this means that Z = ∂1W × [0, 1].
This process can be iterated for handlebodies with more than a single handle.

By combining this with the ordering lemma 4.4, we can find a dual handlebody
decomposition

∂0W × [0, 1] +

p0∑
i=1

(φ0i ) + · · ·+
pn∑
i=0

(φni ) ∼= ∂1W × [0, 1] +

pn∑
i=1

(ψ0
i ) + · · ·+

p0∑
i=0

(ψni ).

�
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