# Tuesday January 28th Setup: Fix an elementary cobordism $(W; M_0, M_1)$, a Morse function $f: W\to [-1, 1]$ with exactly one critical point $p$ with index $\ind_(p) = \lambda$. This yields a gradient-like vector field $\xi$, and $D_L = W^s(p) = \theset{x\in W \suchthat \lim_{t\to\infty} \psi_x(t) = p}$ the stable manifold. Theorem (Deformation Retract of Cobordism Onto ??) : $W \cong M_0 \union D_L$, a $\lambda$ dimensional disk, is a homotopy equivalence. More precisely, there is a deformation retract. ### Proof Take the characteristic embedding $\phi_L: S^{\lambda - 1} \cross OD^{n-\lambda} \injects M_0$. We have a cobordism $(W(M_0, \phi_L); M_0, \chi(M_0, \phi_L)) \cong (W; M_0, M_1)$. Recall that the LHS is constructed via $(M_0 \setminus \phi(S^{\lambda-1} \cross 0)) \cross D_1 \disjoint L_\lambda / \sim$. Retraction 1: $W(M_0, \phi_L) \mapsvia{r_t} M_0 \union C$. We'll construct this retraction. This follows the green integral curves to retract onto the red. ![Image](figures/2020-01-28-11:19.png)\ Identify $D_L = \theset{(\vector x, \vector 0)} \subset L_\lambda$ in the local picture: ![Image](figures/2020-01-28-11:17.png)\ Define $C = \theset{(\vector x, \vector y) \suchthat \norm{\vector y} \leq \frac 1 {10}}$. Choose $(Z, c)$ such that $z\in M_0 \setminus \phi_L( S^{\lambda-1} \cross OD^{n-\lambda} )$ and $c\in [-1, 1]$. Let $r_t(z, c) = (z, c + t(-1-c))$, note what happens at $t=-1, 1, 0$. We can parameterize the integral curves in the local picture as $(\vector x/r, r\vector y)$. So for $(\vector x, \vector y) \in L_\lambda$, we can define \begin{align*} r_t(\vector x, \vector y) = \begin{cases} (\vector x, \vector y) & \norm{\vector y} \leq \frac 1 {10} \iff (\vector x, \vector y) \in C \\ ? & ? \\ (\vector x/ \rho(t), \rho(t) \vector y) & \norm{\vector y} \geq \frac{1}{10} \end{cases} .\end{align*} where $\rho(t)$ is the solution of \begin{align*} \rho(t)^2 \norm{\vector y}^2 - \norm{\vector x}^2/\rho(t)^2 = \qty{ \norm{\vector y}^2 - \norm{\vector x}^2 }(1-t) - t \\ \rho(t) \norm{\vector y}^2 \geq \frac{1}{10} \implies \rho(t) \geq \frac{1}{10 \norm{\vector y}} .\end{align*} So we define $\rho(t) = \max(\text{positive solutions for the above equation}, \frac{1}{10\norm{\vector y}})$. Retraction 2: $M_0 \union C \mapsvia{r_t'} M_0 \union D_L$ ![Image](figures/2020-01-28-11:33.png)\ We want the restriction of $r_t'$ to $M_0\setminus C$ to be the identity, so for $(\vector x, \vector y) \in C$ we define \begin{align*} r_t'(\vector x, \vector y) = \begin{cases} (\vector x, (1-t) \vector y) & \norm{\vector x} \leq 1 \\ (\vector x, \alpha(t)\vector y) & 1 \leq \norm{\vector x} \leq \sqrt{1 + \frac 1 {100}} \end{cases} .\end{align*} ![Image](figures/2020-01-28-11:37.png)\ We define $\alpha(t)$ at $t=0$ to be the identity, and at $t=1$ we want $\norm{\alpha(t) \vector y}^2 - \norm{x}^2 = -1$, and solving yields \begin{align*} \alpha(t) = (1-t) + t\frac{\sqrt{\norm{x}^2 - 1 }}{\norm{\vector y}} .\end{align*} $\qed$ Corollary : For $M$ a closed smooth $n\dash$manifold with a Morse function $f: M \to \RR$, $M$ is homotopy-equivalent to a CW complex with one $\lambda\dash$cell for each critical point of index $\lambda$. > Proof: See Milnor's book (Morse Theory). ## Morse Inequalities Let $M$ be a closed smooth manifold and $f: M\to \RR$ Morse, and fix $F$ a field. Let $b_i(M)$ denote the $i$th Betti number, which is $\rank H_i(M; F)$. Weak Morse Inequalities: 1. $b_i(M) \leq$ the number of index $i$ critical points, denoted $c_i(M)$. 2. $\xi(M) = \sum (-1)^i c_i(M)$. Strong Morse Inequalities: $b_i(M) - b_{i-1}(M) + \cdots \pm b_0(M) \leq c_i - c_{i-1} + c_{i-2} \cdots \pm c_0$. Lemma : The weak inequalities are consequences of the strong ones. Proof (implying (1)) : We have $b_i - \cdots \leq c_i - \cdots$ and separately $b_{i-1} - \cdots \leq c_{i-1} \cdot$, and adding these inequalities yields $b_i \leq c_i$. Proof (implying (2)) : To obtain the equality, multiply through by a negative sign. For $i> n$, we have $b_{i-1} - b_{i-2} + \cdots = c_{i-1} - c_{i-2} + \cdots$, where the LHS is $\pm \chi(M)$ and the RHS has matching signs. ### Proof of Strong Morse Inequalities Suppose $f(p_1) < \cdots < f(p_k)$. We can select points $a_i$ such that $a_0 < f(p_1) < a_1 < \cdots$. Let $M_i = f\inv [a_0, a_i]$; we then have $\emptyset \definedas M_0 \subset M_1 \subset \cdots M_k = M$. Using excision, we have \begin{align*} H_j(M_i, M_{i-1}) &= H_j( f\inv[a_{i-1}, a_i], f\inv(a_{i-1}) ) \\ &= \begin{cases} \FF & j = \ind(p_i) = \lambda_i \\ 0 & \text{otherwise} \end{cases} .\end{align*} So $b_j(M_{i}, M_{i-1}) = 1$ iff $j = \lambda_i$, and 0 otherwise. Lemma (Sublemma) : Define $S_i \definedas b_i(X, Y) - b_{i-1}(X, Y) + \cdots$, i.e. the LHS of the strong Morse inequality. Then $S_i$ is *subadditive*, i.e. if $X \supset Y \supset Z$ then $S_i(X, Z) \leq S_i(X, Y) + S_i(Y, Z)$. This implies the strong inequality, since \begin{align*} S_i(M, \emptyset) \leq S_i(M_k, M_{k-1}) + S_i(M_{k-1}, M_{k-2}) + \cdots + S_i(M_1, M_0) .\end{align*} The RHS here equals $\sum_{j=1}^k T_i(M_j, M_{j-1}) = T_i(M)$, where $T_i(M) = c_i - c_{i-1} + \cdots$. Write down the relative homology exact sequence: \begin{center} \begin{tikzcd} {H_{i+1}(X, Y)} \arrow[rr, "\partial_i"] & & {H_i(Y, Z)} \arrow[rr, "f_i"] & & {H_i(X, Z)} \arrow[rr, "g_i"] & & {H_i(X, Y)} \arrow[lllldd, "\partial_{i-1}"] \\ & & & & & & \\ & & {H_{i-1}(Y, Z)} & & & & \end{tikzcd} \end{center} then \begin{align*} \rank(\del_i) = \dim \ker(f_i) = b_i(Y,Z) - \rank(f_i) = b_i(Y,Z) - b_i(X, Z) + \rank(g_i) = \cdots = S_i(Y,Z) - S_i(X, Z) + S_i(X, Y) > 0 .\end{align*} since ranks are positive.