# Thursday March 5th Theorem (When Cobordisms Are Trivial) : Let $(W, V, V')$ be a cobordism of dimension $n\geq 6$, $f$ Morse with all critical points of indices in $[2, \cdots, n-2]$. Suppose $\pi_1 = 0$ for $W, V,$ and $V'$, and $H_*(W, V) = 0$; then this is homotopic (?) to the product cobordism. ### Proof of Theorem Factor $c = c_2 c_3 \cdots c_{n-2}$; then from $H_*(W, V) = 0$ we have \begin{align*} 0 \to C_{n-2} \mapsvia{\del} C_{n-3} \to \cdots \to C_2 \to 0 ,\end{align*} which has zero homology. Thus for all $\lambda$, choose $\theset{z_1^{\lambda+1}, \cdots, z_{k_{\lambda+1}}^{\lambda+1} }$ as basis of $\ker C_{\lambda+1} \to C_\lambda$. Then choose $\theset{b_1^{\lambda+2}, \cdots, b_{\lambda+1}^{\lambda+2} }$ such that $\bd b_i^{\lambda+2} = z_i^{\lambda+1}$. Then $\theset{b_i^{\lambda}, z_j^\lambda}$ forms an integral basis of $C_\lambda$. From the basis theorem, we can choose a pair $(f', \xi')$ such that this basis is represented by $D_L$. ![Image](figures/2020-03-18-18:36.png)\ Claim : $\bd b^{\lambda+1} = \pm z^\lambda$, so $S_R(q) \intersect S_L(p) = \pm 1$. Using the 2nd Cancellation Theorem, the smaller cobordism is thus a product cobordism. Proof : Recall the following: - If $X = \bd W$ with $W$ oriented, then $X$ is oriented by $\theset{\nu, \tau_1, \cdots, \tau_{n-1}}$. - There is a map \begin{align*} H_n(W, X) &\to H_{n-1}(X) \\ [0_W] &\mapsto [0_X] .\end{align*} So choose an orientation of $W$ (which we'll notate $\circ W$) and all $D_L$, and orient the normal bundle of $D_R$ such that - $(\circ (D_R), \circ(D_L) ) = \circ W$ - $D_R(q_i) \intersect D_L(q_i) = \pm 1$. Then $\circ V D_R = \circ VS_R$ and $\circ D_R = \circ S_R$. The case for $S_L$ and $VS_L$ are similar. Lemma : Given $(W, V, V')$, let $M \subset V'$ be a smooth submanifold and $[M] \in H_k(M)$ the fundamental class. Considering $h: H_k(M) \to H_k(W, V)$, the image \begin{align*} h([M]) = \sum_{i=1}^\ell \qty{ S_R (q_i) \cdot_V [M] } \cdot D_L(q_i) .\end{align*} Corollary : If $\bd_{\lambda+1}: C_{\lambda+1} \to C_\lambda$, then \begin{align*} \bd (q_j') = \sum \qty{ S_R(q_j) \cdot S_L(q_j) } \cdot q_i .\end{align*} This implies the claim. $\qed$ Proof (of Lemma): : Assume $\ell = 1$, then we have a diagram of the form \begin{center} \begin{tikzcd} H_\lambda(M)\ar[drr] \ar[dd] \ar[ddddrrddd, bend right=75] & \\ & & H_\lambda(V',V'\setminus S_R)\ar[dd, "h_1"] \\ H_\lambda(V') \ar[urr, "h_0"]\ar[dd, "i_*"] & \\ & & H_{\lambda}(V\union D_L, V \union \qty{D_L\setminus \theset{q} }) \ar[dd, "h_2"] \\ H_\lambda(W)\ar[rrddd] & \\ & & H_\lambda(V\union D_L, V) \ar[dd] \\ \\ & & H_\lambda(W, V) \\ \end{tikzcd} \end{center} We have $H_\lambda(V') \ni h_0([M]) = (S_R \cdot M) \cdot \Phi(\alpha)$ where $\alpha \in H_0(S_R)$ is the canonical generators and \begin{align*} \Phi: H_0(S_R) \to H_\lambda (V, V'\setminus S_R) \end{align*} is the Thom isomorphism. Thus $h_3 h_2 h_1(\Phi(\alpha)) = D_L(p)$.