# Tuesday February 18th **Markov's inequality:** \begin{align*} P(X\geq a) \leq \frac{ E(X) }{a} \\ P(X\geq a) \leq \frac{ E(\abs X) }{a} \\ P(X^2 \geq a) \leq \frac{ E(X^2) }{a} \\ .\end{align*} For any sequence $X_n\geq 0$, the sequence $S_n = \sum_{i=1}^n X_i$ is monotone increasing, so \begin{align*} E(\sum X_n) = \sum E(X) .\end{align*} **Proposition:** For $b(x)$ a strictly increasing positive function, for any random variable $X\geq 0$ we have \begin{align*} \sum_{n=1}^\infty P(X \geq b(n)) \leq E b\inv(X) \leq \sum_{n=0}^\infty P(X > b(n)) .\end{align*} Note that $\lim_n \int f_n \neq \int \lim_n f_n$ in general. The following condition is necessary and sufficient for convergence: **Definition:** A sequence of random variables $X_n$ is *uniformly integrable* iff 1. $\forall\eps>0$ there exists a $\delta > 0$ such that $\forall A\in F$, $P(A) < \delta \implies \sup_n \int_A \abs{X_n} ~dp < \eps$ 2. $\sup_n E\abs{X_n} < \infty$. **Proposition:** If $X_n^{\pm}$ (positive/negative parts respectively) are uniformly integrable, then $\theset{X_n}$ is uniformly integrable from above/below. **Lemma (Criterion for Integrability):** A measurable function $X$ is integrable $\iff$ for all $\eps,~\exists \delta$ such that \begin{align*} P(A) < \delta \implies \int_A \abs{X} dp < \eps, \quad E\abs{X} \leq \frac 1 \delta .\end{align*} **Proposition (Criterion for Uniform Integrability):** A sequence of random variables $\theset{X_n}$ is uniformly integrable iff $$ \lim_{a\to\infty}\sup_n \int_{\abs{X_n} > a} \abs {X_n} ~dp = 0 .$$