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1 Monday July 6th
1.1 Motivation
We’ll start with X a finite CW complex.

Definition 1.1.1 (CW Complex).
A CW complex is a topological space built by inductively attaching i-dimensional discs
(i-cells) Di :=

{
x ∈ Ri

∣∣∣ ‖x‖ ≤ 1
}
along their boundary ∂Di = Si−1 :=

{
x ∈ Ri

∣∣∣ ‖x‖ = 1
}
.

Definition 1.1.2 (Euler Characteristic).
Define χ(X) =

∑
i∈Z

(−1)i|Ci| where |Ci| is the number of i-cells.

Remark 1.1.1.
Note that a homotopy equivalence between spaces induces an equality between Euler characteristics.
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1.2 Setup

Recall that we can define the cellular chain complex

Ccell
∗ (X,C) := · · · ∂i+1−−−→ Ccell

n (X,C) ∂i−→ · · · → Ccell
0 (X,C)

and Hi(X,C) := ker ∂i/ im(∂)i+1.

Exercise 1.1.1 (?).

∑
(−1)i dimHi(X,C) = χ(X)

In this sense, cellular homology categorifies the Euler characteristic: we’ve replaced a set of objects
with a category. This is an improvement because we may not have maps between the elements of
sets, but we do have maps between objects in a category. We can also talk about things such as
functoriality.

Example 1.1.1.
The euler characteristic is a weaker invariant than homology. Note that

χ(S1) = 0 and χ(S1∐S1) = 0

H0(S1) = C while H0(S1∐S1) = C⊕ C,

so these aren’t distinguished by euler characteristic alone.

Our first goal will be to assign invariants to oriented links L, where homotopy equivalence will
be replaced with isotopy. We’ll assign a Khovanov complex C∗(L,C), a complex of Z-graded
C-vector spaces, along with the Jones polynomial J(L) ∈ Z[t, t−1]. By taking the (graded) Euler
characteristic of the chain complex, we’ll recover J(L).

1.2 Setup

Definition 1.2.1 (Links and Knots).
A link L is a smooth, closed 1-dimensional embedded submanifold of R3. L is a knot if it
consists of one connected component.

We have planar projections:
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1.2 Setup

Figure 1: Planar projection of the Hopf link

Under this correspondence, isotopy of knots will correspond to planar isotopy of the diagrams and
the following 3 Reidemeister moves:

Definition 1.2.2 (Reidemeister Moves).
There are three planar moves that preserve the isotopy class of a planar projection of a knot:

Figure 2: Reidemeister Moves

Example 1.2.1.
How to change knot diagrams using Reidemeister moves:
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1.2 Setup

Figure 3: Changing knot diagrams using Reidemeister moves.

We now want to take an oriented, planar link diagram D and associate to it a polynomial J(D).
We start by defining the Kauffman bracket

Definition 1.2.3 (Kauffman Bracket).
Let Df be D with the orientation forgotten, then 〈Df 〉 ∈ Z[v, v−1] is defined recursively by

Figure 4: Recursive definition of Kaufman bracket

In the last case, the first term is a “0-resolution/0-smoothing” and the second is a “1-
resolution/1-smoothing”.

Definition 1.2.4 (Positive and Negative Crossings).
We have a notion of positive/negative crossings:
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1.2 Setup

Figure 5: Positive and negative crossings.

Definition 1.2.5 (The Jones Polynomial).
We set

J(D) = (−1)n−vn
+−2n− 〈Df 〉 .

Example 1.2.2.

1. J(S1) = v + v−1

2. J(?) = (−1)v−2
(
−v2(v + v−1)

)
= v + v−1.

3. J(?) = v−6 + v−4 + v−2 + 1

Figure 6: Bracket of the Hopf link.

Proposition 1.2.1(Invariance under Reidemeister moves).
The Jones polynomial is invariant under move R1.

1 MONDAY JULY 6TH 6



Proof .
Can be checked in diagrams:

Figure 7: J(D′) = J(D)

�

Remark 1.2.1.
You can now check that

J(D′) = (−1)n−(D)vn+(D)+1 − 2n−.

Exercise 1.2.1 (?).
Check invariance under R2, R3.

2 Tuesday July 7th
Recall that we had recursive rules for computing the Kausffman bracket, and a normalization factor
for the Jones polynomial that made it into an invariant. We’d like a closed formula for these.

We do this by ordering the crossings of the unoriented link 1, · · · , n, then there is a correspondence

{0, 1}n ⇐⇒ Complete resolutions
(α1, · · · , αn) ⇐⇒ αi resolves the ith crossing.

Example 2.0.1.
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Claim:

〈D〉 =
∑

α∈{0,1}n
(−1)|α|v|α|(v + v−1)cα(D),

where |α| is the number of 1-resolutions and cα is the number of circles in the resolution corresponding
to α.

Proof .
Idea: look at resolving the nth crossing locally and apply the recursive relation. Then rewrite
the sum by appending αn = 0 and αn = 1 respectively. Note that we can rewrite the sum as

n∑
r=0

(−1)r
∑
|α|=r

vr(v + v−1)cα(D).

This amounts to summing over the “columns” in the previous diagram:
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Here this yields

(v + v−1)2 + (−1)2v(v + v−1) + v2(v + v−1)2.

�

Note that this formula starts to resemble an Euler characteristic!

Remark 2.0.1.
Problem: The coefficient ∑

vr(v + v−1)cα(D) ∈ Z≥0[v, v−1]

is a Laurent polynomial instead of a natural number, so this can’t immediately be interpreted as a
dimension of a vector space.

Solution: Replace finite-dimensional C-vector spaces by Z-graded vector spaces. The category
consists of objects given by V =

⊕
i∈Z

Vi and linear maps f : V →W such that f(Vi) ⊆Wi for all i.

We previously had vector spaces categorifying the natural numbers by taking the dimension, so for
graded vector spaces, we take the graded dimension:

Definition 2.0.1 (Graded Dimension).

gr dim
⊕
i∈Z

Vi =
∑
i∈Z

(dimVi)vi ∈ Z≥0[v, v−1].

Goal: We want to associate to an oriented link diagram D a cochain complex of finite-dimensional
graded C-vector spaces Ci(D) ∂−→ Ci+1(D)→ · · ·. Since each chain space decomposes, the differential
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does as well, and we get a large collection of chain complexes

This yields two gradings: the first is homological, the second is “internal”.

Remark 2.0.2.
We want the following:

1. If D,D′ are related by a finite sequence of Reidemeister moves, then

Hi,j(C · , · (D)) = Hi,j(C · , · (D′)) = ker ∂i,j/ im(∂)i−1,j for all i, j.

2. Additionally,

J(D) = χgr(C∗,∗(D)) =
∑
i∈Z

(−1)igr dim(C∗,∗(D))

Note that you can also take the dimension of the homology instead, and at the end of the day this
yields

∑
i,j∈Z

(−1)ivj dim(Hi,j).

Definition 2.0.2 (Homogeneous elements).
For A =

⊕
Ai, B =

⊕
Bi, a ∈ A is called homogeneous of degree k if a ∈ Ak, i.e. it is a sum

of basis elements from only the kth graded piece. In this case we say |a| = k.

Proposition 2.0.1(Bases for various combinations of graded spaces).
We can union bases over all graded pieces to get a basis for the entire space.
For direct sums A ⊕ B, a basis is given by (αi, 0) and (0, βj). We put αi in degree |αi|, in
which case

gr dim(A⊕B) =
∑
k∈Z

dim((A⊕B)k)vk

=
∑
k

dimAkv
k +

∑
dimBkv

k

= gr dim(A) + gr dim(B),
so taking direct sums commutes with taking graded dimensions.
Similarly for tensor products A⊗C B, we get a basis αi ⊗ βj placed in degree |αi|+ |βj |.
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Exercise 2.0.1 (?).
Show that

gr dim(A⊗C B) = gr dim(A) · gr dim(B).

We also have degree shifts by i for any i, denote A(i), where Aj 7→ Aj+i for every j. Thus the kth
graded piece is given by (A(i))k = Ak−i, thus

gr dim(A(i)) = vigr dim(A)

Example 2.0.2 (Important).

H∗(S2;C) =
{
C ∗ = 0, 2
0 else.

Let A := H∗(S2;C)(−1), which now has C in degrees ±1, and gr dimA = v + v−1.

Note that

• (v + v−1)2 corresponds to A⊗2.
• 2v(v + v−1) corresponds to A(1)⊕2.
• v2(v + v−1) corresponds to A⊗2(2).

So we can assemble these into a chain complex and take the Euler characteristic in order to recover
the Kauffman bracket in the earlier example.

Theorem 2.0.1(?).
There exists a unique isotopy invariant of oriented links in R3 called P (D) ∈ C(a, v), a rational
function in two variables, the HOMFLY-PT polynomial. It satisfies

Example 2.0.3 (The Hopf Link).
Yields

P (D) = −a(aia−1) + a2
(
a− a−1

v − v−1

)2

.
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3 Wednesday July 8th
Recall that we assigned a chain complex of graded vector spaces to links, where the chains where
various tensor powers and shifts of A := H∗(S2;C)(−1). We can consider the diagonal embedding

Ss
∆−→ S2 × S2

which induces maps on both cohomology and homology, and applying the Kunneth formula and
the Poincare isomorphism, we get maps

m : H∗(S2)⊗2 → H∗(S2)
δ : H∗(S2)→ H∗(S2)⊗2.

We thus get maps

m : C[x]/(x2)⊗ C[x]/(x2)→ C[x]/(x2)
δ : C[x]/(x2)→ C[x]/(x2)⊗ C[x]/(x2).

See course notes for how to construct differentials out of these, categorifying the bracket, and how
to correct with shifts to categorify the Jones polynomial.

3.1 Lecture 3

Definition 3.1.1 (Geometric Braids).
For n ≥ 1, the geometric braid b on n strands is a topological subspace of R2 × [0, 1] such that

a. b ∼=
∐n

i=1
[0, 1] is a homeomorphism

b. We have

b ∩ (R2 × {0}) = {(1, 0, 0), · · · , (n, 0, 0)}
b ∩ (R2 × {1}) = {(1, 0, 1), · · · , (n, 0, 1)} .

c. The projection R2 × [0, 1] pr2−−→ maps each strand homeomorphically onto [0, 1].

Remark 3.1.1.
Braids can be moved via isotopy, and part (c) prevents the following situation:

Figure 8: Situation to rule out.
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3.1 Lecture 3

There is a purely combinatorial description, namely braid diagrams. Isotopies on the geometric side
will correspond to planar isotopies and Reidemeister moves R2 and R3 (since R1 is ruled out).

Figure 9: Moves 2 and 3.

Theorem 3.1.1(?).
Two braids are isotopic iff their diagrams are related by planar isotopy and a finite sequence
of Reidemeister moves.

Definition 3.1.2 (The Braid Monoid).
Define Bn to be the set of braid diagrams on n strands up to isotopy and Reidemeister moves,
then there is a multiplication given by stacking braid diagrams. This is associative with identity,
so we obtain a monoid:

Figure 10: Braid monoid.

Definition 3.1.3 (Elementary braids).
We define elementary braids:

3 WEDNESDAY JULY 8TH 13



3.1 Lecture 3

Remark 3.1.2.

•
{
σ±i

}n−1

i=1
generates Bn as a monoid, so β ∈ Bn implies

β =
n∏
k=1

σεkik where ik ∈ {1, · · · , n− 1} and εj ∈ {±1} .

• σ+
i σ
−
i = σ−i σ

+
i = 1 for all i, thus every braid b has a two-sided inverse given by reversing the

σiks and swapping ±, so Bn is a group.

We can describe this group completely algebraically as BArtin
n , the group generated by {σi}n−1

i=1 with
relations

σiσj = σjσi for |i− j| ≥ 2
σiσi+1σi = σi+1σiσi+1 for i ∈ {1, · · · , n− 2} .

Proposition 3.1.1(?).
There is an isomorphism

BArtin
n

∼=−→ Bn

σi 7→ σ+
i

σ−1
i 7→ σ−i .

Proof .

Well defined: Need to check that the map preserves the relations, this is a consequence of
changing height of crossings by planar isotopy:

Figure 11: Changing heights of crossings.
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3.1 Lecture 3

Figure 12: Changing heights of crossings.

• Surjectivity: clear by definition of map.
• Injectivity: omitted.

�

Remark 3.1.3.
Importantly, we have a way of going from braids to knots and links. Let Dor be the set of oriented
planar link diagrams, then define a map

Bn → Dor

b 7→ b̂

where b̂ is given by “closing” the braid:

Theorem 3.1.2(?).
Every oriented link in R3 is isotopic to a closed braid.

Remark 3.1.4.
In fact, there is a map ∐

n≥1
� Dor/ ∼

b 7→ b̂

where the RHS is the equivalence relation generated by planar isotopy and Reidemeister moves.
This is not injective, since many braids can map onto the unknot.
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4 Thursday July 9th
Problem: the map sending links to the Artin braid group is surjective but not injective, so we need
to mod out by some form of equivalence in the domain.

We have a directed system of inclusions Bn ↪→ Bn+1, so we can consider the group
∐

n≥1
Bn. The

equivalence relation we’ll take is Markov equivalence ∼M :

Theorem 4.0.1(?).
b ∼M b′ ⇐⇒ ?

Proof .
For the reverse direction

For the forward direction, see Kassel-Tuvaev’s “Braid Groups” for a full rigorous proof.
�

Definition 4.0.1 (?).
For any set E, a Markov function is a family of maps {fn : Bn → E}n≥1 such that

1. fn(αβ) = fn(βα) for all α, β ∈ Bn
2. fn+1(in(β)σ−1

n ) = fn(β) = fn+1(in(β)σn) for all n ≥, β ∈ Bn.

Question: where does the skein relation come from?

Take Fq a finite field of size q and set G = GL(n,Fq). Define C(G) = {G→ C} which is a C-vector
space with an associative multiplication given by

(f ∗ f ′)(g) :=
∑
n∈G

f(n)f ′(n−1g)

Define

C
(
B�G�B

)
=
{
f : G→ C

∣∣∣ f(bg) = f(g) = f(gb)
}
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the set of bi-invariant functions. This is closed under ∗ with a unit defined by setting

δg(h) = 1 [h = g]

δ0 = 1
|B|

∑
g∈B

δg.

There is an augmentation map

ε :
(
B�G�B

)
→ C

f 7→
∑
g∈G

f(g) ∈ C.

which is a C-algebra morphism. Can we write down a basis?

Recall that the symmetric group is generated by adjacent transpositions, say s1, · · · , sn−1, so we
can write

Sn ∼=
〈
s1, · · · , sn−1

∣∣∣ s2
i = 1, sisj = sjsi, sisi+1si = si+1sisi+1

〉
.

Need to check that elements in Sn satisfy these relations, check cardinality, etc.

For any w ∈ Sn, we can consider its length `(w) defined as the smallest number of adjacent
transpositions need to write w as a product of adjacent transpositions. We define the Bruhat cell
BwB :=

{
bwb−1

∣∣∣ b, b′ ∈ B} where B is a permutation matrix for w.

Figure 13: Example of a permutation matrix for si

Exercise 4.0.1 (?).
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4.1 Multiplicative Structure

Proposition 4.0.1(?).
The functions

δw : G→ C

δw(g) = 1
|B|

1 [g ∈ BwB]

as w ranges over Sn form a basis for
(
B�G�B

)
.

Proof .
Use the Bruhat decomposition G =

∐
w∈Sn

BwB.
�

4.1 Multiplicative Structure
There is a multiplicative structure, since

(δsi ∗ δsi)(g) :=
∑
h∈G

δsi(h)δsi(h−1g)

=
∑

h∈GsiB

1
|B|

δsi(h−1g)

=
∑
h∈S

1
|B|2

S =
{
h ∈ BsiB

∣∣∣ h−1g ∈ BsiB
}

= |BsiB ∩ gBsiB|
|B|2

.

To express this in terms of our basis, check where BsiB ∩ gBsiB 6= ∅. If h is in this intersection,
then h = bsib = gb′′sib

′′′, so

g = bsib
′(b′′′)−1si(b′′)−1 ∈ BsiBsiB ⊂ Pi

4 THURSDAY JULY 9TH 18



4.1 Multiplicative Structure

where Pi is a parabolic subgroup of G defined by

We can identify Pi = BsiB ∪ B (i.e. add in upper triangular matrices). We can thus write
δsi ∗ δsi = αδsi + βδ0 where δ0 = δe and α, β ∈ C.

Let 1 be the identity matrix, then

|BsiB|
|B|2

= (δsi ∗ δsi)(1) = αδsi + βδ0(1).

where the first term is in B and thus equals zero, and the second term equals 1
|B| , so this equals

β
1
|B|

, thus β = |BsiB|
|B|

. Similarly, we get α = |BsiB|
|B|

− 1.

A counting argument shows

|B| = (q − 1)nqq2 · · · qn−1 = (1− 1)nq
n(n−1)

2 .

Similarly

|BsiB| = (q − 1)nq
n(n−1)

2 +1 =⇒ |BsiB|
|B|

= 1.

Thus

(δsi ∗ δsi) = (q − 1)δsi + qδ0.

In particular, δsi is a unique with inverse q−1δsi − (1− q−1)δ0.

Claim: More generally, for si ∈ Sn, w ∈ Sn with `(siw) > `(w), we have δsi ∗ δw = δsiw.

Proof .
Omitted, see Bump “Hecke Algebras”.

�
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Upshot: we have a group morphism

ϕ : Bn → C
(
B�G�B

)×
σi 7→ δsi .

Need to check that this is well-defined using the braid relations, comes from

δsi ∗ δsj = δsisj = δsjsi = δsj ∗ δsi

5 Friday July 10th
5.1 The Iwahori-Hecke Algebra

Definition 5.1.1 (Iwahori-Hecke Algebra).
For n ≥ 1 and R a commutative ring with q, z ∈ R×, define the Iwahori-Hecke algebra HR

n (q, z)
is the associative unital R-algebra〈

Ti
∣∣∣ R〉where the relations R are defined by

TiTj = TjTi |i− j| ≥ 2
TiTi+1Ti = Ti+1TiTi+1

T 2
i = zTiq1

where 1 is the unit of the algebra. The first relation is the braid relation, the other two are
quadratic or skein relations.

Theorem 5.1.1(Basis of the Hecke Algebra).

1. For all w ∈ Sn, there exists a unique Tw ∈ HR
n (q, z) such that whenever w =

∏
sik is a

minimal expression as a product of simply transpositions, then Tw =
∏

Tik .
2. The set

{
Tw

∣∣∣ w ∈ Sn} is an R-module basis of HR
n (q, z) (the standard basis).

Remark 5.1.1.

1. HR
n (q, z) is a two-parameter generalization of C(B�G�B), and in fact there is an R-algebra

isomorphism

HC
n (q, q − 1) ∼= C(B�G�B)

Tw 7→ δw.

2. There is an R-algebra isomorphism HR
n (1, 0) ∼= R[Sn], so we interpret this as a deformation

of the group algebra R[Sn].

3. There is an R-algebra isomorphism
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5.1 The Iwahori-Hecke Algebra

HR
n (q, z) ∼= HR

n (q, z) ∼= R[Bn]/
〈
T 2
i − zTi − q · 1

〉
as a quotient of the group algebra on the braid group.

There is also an R-algebra morphism

ιn : HR
n (q, z)→ HR

n+1(q, z)
Ti 7→ Ti.

Theorem 5.1.2(?).
There exists a unique collection of R-linear maps for n ≥ 1:

Trn : HR
n (q, z)→ R.

This is uniquely determined by the properties

Trn(ab) = Trn(ba) ∀a, b ∈ HR
n (q, z)

Trn+1(ι(a)Tn) = Trn(a) = Trn+1(ι(a)T−1
n ) ∀a ∈ HR

n (q, z)

Trn+1(ι(a)) = 1− q
z

Trn(a) ∀a ∈ HR
n (q, z)

Tr1(1) = 1− q
z

.

Proof .
See KT, slightly technical. Just have to do it and show uniqueness.

�

Remark 5.1.2.
Note that a function from the braid group satisfying the first two conditions gives a Markov function.

Example 5.1.1.
Take n = 3. Let 1 ∈ HR

3 (q, z).

Tr3(1) ∈ H3 = 1− q
z

Tr2(1) ∈ H2

=
(1− q

z

)2
Tr1(1) ∈ H1

=
(1− q

z

)3
.
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5.1 The Iwahori-Hecke Algebra

Now consider T1. Using the fact that a = 1 =⇒ ι(a) = 1,

Tr3(T1) = 1− q
z

Z Tr2(T1)

= Z Tr1(1)
= Z2

= Tr3(T2) Z

= 1− q
z

.

Now using relation 2 twice,

Tr3(T1T2) = Tr2(T1) = Tr1(1) = Z = Tr3(T2T1).

Now using the quadratic relation,

Tr3(T2T1T2) = Tr3(T1T
2
2 )

= Tr3(zT1T2 + qT1)
= zTr3(T1T2) + qTr1(T1) by R-linearity
= zZ = qZ2.

Theorem 5.1.3(?).
The family {Trn ◦wn : Bn → R}n≥1 defined by

is a Markov function.

Proof .
Clear, because the first two relations are defined precisely to do this.

�

Remark 5.1.3.
Taking R = C(a, v) with q = a−2 and z = a−1(v − v−1) precisely recovers the HOMFLY-PT
polynomial! More precisely, if D is an oriented link diagram with b ∈ Bn and b̂ = D, then
P (D) = Trn(wn(b)).
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5.2 Categorifying the Hecke Algebra

T 2
i − zTi − q1 = 0

·T−1
i−−−→ Ti − z1− qT−1

i = 0
=⇒ Ti − a−1(v − v−1)1− a−2T−1

i = 0
=⇒ aTi − (v − v−1)1− a−1T−1

i = 0.

Note that since HOMFLY was a unique invariant, it suffices to check that this polynomial satisfies
the skein relations and takes the correct value on the unknot.

To see that it takes the right value on the unknot, we can compute

Tr1(w1(1)) = Tr1(1) = 1− q
z

= 1− a−2

a−1(v − v−1) = a−1(a− a−1)
a−1(v − v−1) = a− a−1

v − v−1 .

Then to check that it satisfies the skein relations, given an oriented link diagram, write the various
resolutions at closures of braids:

aTrn ◦wn(ασ1β)− a−1 Trn ◦wn(ασ−1
i β)− (v − v−1) Trn ◦wn(αβ)

= aTrn (wn(α)Tiwn(β))− a−1 Trn
(
wn(a)T−1

i wn(β)
)
− (v − v−1) Trn (wn(α)wn(β))

= Trn
(
a(wn(α)Tiwn(β))− a−1

(
wn(a)T−1

i wn(β)
)
− (v − v−1)(wn(α)wn(β))

)

= Trn
(
wn(α)

(
aTi − a−1T−1

i − (v − v−1)
)
wn(β)

)
= 0.

5.2 Categorifying the Hecke Algebra
Idea: to categorify HOMFLY-PT, we will try to categorify the Hecke algebra. This doesn’t quite
make sense yet: what does it mean to categorify an entire algebra instead of just a number?
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5.2 Categorifying the Hecke Algebra

Definition 5.2.1 (Additive Categories).
A category A is additive iff

1. The homs A(X,Y ) is a Z-module for all X,Y ∈ A
2. A(X,Y )×A(Y,Z)→ A(X,Z) where (f, g) 7→ g ◦ f is Z-bilinear.
3. ∃0 ∈ A, an object that is both initial and terminal.
4. For all X,Y ∈ A, there exists a coproduct X ⊕ Y

Definition 5.2.2 (Initial Objects).
Recall that an object I is initial in A iff for every X there exists a unique I → X, and terminal
iff there exists a unique X → I.

Definition 5.2.3 (Coproduct).
Recall that a coproduct of X,Y is an object X ⊕ Y with two morphism ιX : X → X ⊕ Y, ιY :
Y → X ⊕ Y satisfying the appropriate universal property.

Example 5.2.1.
R-bimodules over R a ring.

Definition 5.2.4 (Essentially Small).
An additive category A is essentially small iff the isoclasses [X] of objects form a set.

Definition 5.2.5 (Split Grothendieck Group).
Assume A is additive and essentially small. Then we can define a free abelian group on

F (A) :=
{

[X]
∣∣∣ X ∈ A}

along with a subgroup

N(A) := {[X ⊕ Y ]− [X]− [Y ]} .

Define the split Grothendieck group as the following:

K⊕0 := F (A)/N(A)

Remark 5.2.1.
Note that this starts to look like categorification: we can express direct sums in terms of sums in a
module. Notation: mod denotes finitely generated, Mod denotes full categories.

Example 5.2.2.
A = k-mod, the category of finite-dimensional k-vector spaces. There is a well-defined group
morphism defined on generators

ϕ : F (A) � Z
[V ] 7→ dimk(V )

5 FRIDAY JULY 10TH 24



which is surjective since −[V ] exists in the domain and [kn] 7→ n for all n.

Note that this will factor through K⊕0 (A) = F (A)/N(A) via a map ϕ iff N(A) ⊆ kerϕ. We can
check

ϕ([V ⊕W ]− [V ]− [W ]) = dim(V ⊕W )− dim(V )− dim(W ) = 0.

Claim: ϕ is actually injective.

Proof .
Suppose

0 = ϕ
(∑

λi[Vi]
)

=
∑

λiϕ([Vi]) =
∑

λi dim(Vi).

We can now check ∑
λi[Vi] =

∑
λi dim(Vi)[k] = [k]

∑
λi dim(Vi),

where we use the fact that if dimV = n, then [V ] = [kn] = n[k].
�

Definition 5.2.6 (Categorification).
Let G be an abelian group, then A categorifies G iff K⊕0 (A) ∼= G.

6 Monday July 13th
6.1 Ring structure on K⊕0 (id).

Definition 6.1.1 (Monoidal Categories).
A monoidal category is a tuple (C, · ⊗ · , 1, α, `, r) such that

• C is a category
• · ⊗ · : C × C → C is a bifunctor.
• 1 ∈ C
• Natural isomorphisms

αX,Y,Z : (X ⊗ Y )⊗ Z
∼=−→ X ⊗ (Y ⊗ Z)

for all X,Y, Z ∈ C (associators).
• Natural isomorphisms

`X : 1⊗X
∼=−→ X

rX : X ⊗ 1
∼=−→ X

and for all X ∈ C.
Along with coherence axioms: for all W,X, Y, Z ∈ C,
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6.1 Ring structure on K⊕0 (id).

Remark 6.1.1.
If C is additive, we require · ⊗ · to be biadditive, i.e. X ⊗ · and · ⊗ Y are additive functors. In
particular,

X ⊗ (V ⊕W ) ∼= (X ⊗ V )⊕ (X ⊗W )

and similarly

(V ⊕W )⊗ Y ∼= (V ⊗ Y )⊕ (W ⊗ Y ).

Example 6.1.1.
R-mod with R a commutative unital ring, take ⊗ := ⊗R with 1 the “regular left R-module” RR
with R acting on the left by multiplication. Similarly, R-bimodules, take 1 = RRR.

Proposition 6.1.1(?).
If A is additive and (A,⊗, 1, α, `, r) is monoidal, then setting [X] · [Y ] := [X ⊗ Y ] defines a
ring structure on K⊕0 (A) = F (A)/N(A).

Proof .

• This is well-defined on F (A).
• Unital: Check [X][1] = [X ⊗ 1] = [X] = [1⊗X] = [1][X]
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6.1 Ring structure on K⊕0 (id).

• Associativity:

([X][Y ])[Z] = [X ⊗ Y ][Z]
= [(X ⊗ Y )⊗ Z]
= [X ⊗ (Y ⊗ Z)]
= [X][Y ⊗ Z] = X([Y ][Z]).

• Distributive: Check.
Therefore F (A) is a unital ring.

• Check N(A) ⊆ F (A) is a two-sided ideal (use the isomorphism from the earlier remark.)
�

Example 6.1.2.
The group morphism ϕ : K⊕0 (k-mod)

∼=−→ Z is in fact a ring morphism.

• Check

ϕ([V ][W ]) = ϕ([V ⊗k W ])
= dim(V ⊗k W )
= dim(V ) dim(W )
= ϕ([V ])ϕ([W ]).

• Check ϕ([k]) = dim k = 1.

For A an additive category, for all i ∈ Z there exist additive functors

(i) : A → A
X 7→ (i)(X) = X(i).

Remark 6.1.2.
These satisfy (j) ◦ (i) = (i+ j) and (0) = idA, so they will correspond to degree shifts.

Proposition 6.1.2(?).
Setting vi[X] := [X(i)] defines a Z[v, v−1]-module structure on K⊕0 (A).

Proof .

• Check that this is well-defined on F (A); the module axioms will follow from the above
remark.

• Check that is descends to the quotient, i.e

vi([X ⊕ Y ]− [X]− [Y ]) = vi]X ⊕ Y − vi[X]− vi[Y ]
= [(X ⊕ Y )(i)]− [X(i)]− [Y (i)]
= [X(i)⊕ Y (i)]− [X(i)]− [Y (i)].
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6.2 Some technical tools

�

Exercise 6.1.1 (?).
Show thatK⊕0 (k-grmod) ∼= Z[v, v−1] where [v] 7→

∑
k∈Z

dim(Vn)vn is an isomorphism of Z[v, v−1]-modules

(and in fact an isomorphism of Z[v, v−1]-algebras).

Remark 6.1.3.
For (A,⊗, 1, α, `, r) a monoidal category with additive functors (i) as above, if

(i) ◦ (X ⊗ · ) ∼= (X ⊗ · ) ◦ (i)
(i) ◦ ( · ⊗ Y ) ∼= ( · ⊗ Y ) ◦ (i)

using the fact that

(X ⊗ Y )(i) ∼= X ⊗ (Y (i)) ∼= (X(i))⊗ Y.

Thus K⊕0 (A) is a Z[v, v−1]-algebra.

Recall that HR
n (q, q − 1) taking R = Z[v, v−1] with q = v−2 and q − 1 = z was the Iwahari-Hecke

algebra, generated by {Ti}i≤n−1 and the braid/skein relations.

Substitute Hsi = vTi (Soergel’s correction) to obtain a new presentation of HZ[v,v−1]
n (v−2, v−2 − 1).

The generators are now
{
Hsi

∣∣∣ i ≤ n− 1
}
and

HsiHsi+1Hsi = Hsi+1HsiHsi+1

HsiHsj = HsjHsi |i− j| ≥ 2
H2
si = v2T 2

i

= v2
(
(v−2 − 1)Ti + v−21

)
= (1− v−2)Ti + 1
= (v−1 − v)Hsi + 1.

Notation: we’ll abbreviate H(Sn) = HZ[v,v−1]
n (v−2, v−2 − 1). There is a standard basis

Hw := Hsi1
· · ·Hsir = v`(w)Tw w ∈ Sn, w = si1 · · · sir , `(w) = r.

where w is written as a minimal length reduced expression.

6.2 Some technical tools
(1) The Bruhat order.

This is a partial order on the symmetric group Sn where w′ ≤ w iff there exists a word for w′
obtained by deleting some si from the reduced expression for w.
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6.2 Some technical tools

Example 6.2.1.
For S3:

(2) The Bar involution.

There is a ring morphism

H(Sn)→ H(Sn)
h 7→ h.

uniquely determined by Hsi = Hs−1
i

(which incidentally equals Hsi + (v − v−1)1) and v = v−1.

Theorem 6.2.1(KL-Soergel).
For all w ∈ Sn there exists a unique Cw ∈ H(Sn) such that

1. Cw = Cw, self-duality
2. Cw = Hw +

∑
x<w

hx,wHx ∈ vZ[v], upper triangularity.

Definition 6.2.1 (?).{
Cw

∣∣∣ w ∈ Sn} is the KL-basis of H(Sn).

This is a basis because we can refine ≤ to a total order, then write a change-of-basis matrix from
the standard basis to this:
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6.2 Some technical tools

The elements hx,w ∈ Z[v, v−1] are called the KL-polynomials where we set hw,w = 1 and hx,w = 0
when x 6≤ w.

Example 6.2.2.
Note Ce = He and

Cs1 = Hs1 + v1
Cs2 = Hs2 + v1.

Thus (2) is satisfied, and (1) follows from

Csi = Hsi + v1

= Hs1 + v1
= Hs−1

i
+ v−11

= Hsi + (v − v−1)1 + v−11
= Hsi + v1.

Can also check that

Cs1s2 = Cs1s2 automatically self-dual
= (Hs1 + v)(Hs2 + v)
= Hs1Hs2 + vHs2 + vHs1 + v2.

Similarly expand Cs2s1 = Hs2s1 + vHs1 + vHs2 + v2.

Finally compute

Cs2Cs1Cs2 = (Hs2s1 + vHs1 + vHs2 + v2)(Hs2 + v)
= Hs2s1s2 + vHs1s2 + vH2

s2 + v2Hs2 = vHs2s1 + v2Hs1 + v2Hs2 + v4.

Note that coefficients need to be contained in vZ[v] but we still need self-duality.
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7 Tuesday July 14th
Remark 7.0.1.

• The KL basis can be complicated – you can compute them recursively, but may need to
subtract off “constant coefficients” to obtain self-dual elements.

• There are no closed formulas in general.
• For any P ∈! + qZ≥0[q] there exists an m ∈ Z such that vmP (v−2) occurs as a KL-polynomial.
• The KL Positivity Conjecture: hx,w ∈ Z≥0[v], and in fact these non-negative coefficients

can be realized as the graded dimension of the local intersection cohomology of Schubert
varieties.

7.1 Why care about KL Positivity?
Set

g = sl(n,C) =
{
A ∈ Cn×n

∣∣∣ Tr(A) = 0
}

with [AB] = AB −BA.

The case of finite-dimensional representations is well understood, since everything decomposes into
simple modules. In the infinite case, we consider the principal block of category O, denoted O0(g).

There is a correspondence

The KL-multiplicity conjecture states

[∆(w) : L(x)] = hx,w(1),

where the LHS counts how often L(x) occurs as a subquotient in a composition series for ∆(w).
Determining the characters ch L(w) can be done using translation functors, and corresponds to
determining the characters of all simple highest weight modules (not necessarily finite-dimensional),
and is a vast generalization of Weyl’s character formula.

This was the birth of geometric representation theory, and the proof involved D-modules, perverse
sheaves, and Deligne’s proof of the Weil conjectures.

Goal: categorify Hn(Sn), the associative unital Z[v, v−1]-algebra given by
〈{
Hi

∣∣∣ i ≤ n− 1
}〉

subject to

Hsi+1HsiHsi+1 = Hsi+1HsiHsi+1

HsiHsj = HsjHsi |i− j| ≥ 2
H2
si = (v−1 − v)Hsi + 1.
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7.1 Why care about KL Positivity?

Or equivalently, setting Csi = Hsi + v,

Csi+1CsiCsi+1 + Csi = Csi+1CsiCsi+1 + Csi+1

CsiCsj = CsjCsi |i− j| ≥ 2
C2
si = (v−1 − v)Hsi + 1.

Remark 7.1.1.
The presentation above can be “lifted” to a categorical level. So we want to find a category A which
is additive, monoidal, graded, and abelian such that

• K⊕0 (A) ∼= H(Sn) is an isomorphism of Z[v, v−1]-algebras.
• There are objects Bsi such that

1. Bsi ⊗Bsi ∼= Bsi(1)⊕Bsi(−1)
2. Bsj ⊗Bsi ∼= Bsi ⊗Bsj for |i− j| ≥ 2
3. Bsi ⊗Bsi+1 ⊗Bsi ⊕Bsi+1

∼= Bsi+1 ⊗Bsi ⊗Bsi+1 ⊕Bsi .

Question 1: What are the objects Bsi? Set R = C[x1, · · · , xn] with |xi| = 2, yielding a graded
C-algebra where si permutes xi, xi+1. We can look at the invariant ring,

Rsi :=
{
f ∈ R

∣∣∣ sif = f
}

and note that R and any of its shifts are modules over this ring. So set,

Bsi := R⊗Rsi R(−1)

which is a graded R-bimodule.

Proposition 7.1.1(?).
We have an isomorphism of R-bimodules satisfying the desired relations.

Claim: R ∼= Rsi(2)⊕Rsi as graded Rsi-bimodules.

Proof .
It suffices to show that every f ∈ R can be written uniquely as

f = g(xi − xi+1) + h with g, h ∈ Rsi .

Uniqueness: If f = g′(xi − xi+1) + h′ then

g′(2xi − 2xi+1) = f − sif
= g(xi − xi+1)− g(xi+1 − xi)
= g(xi − xi+1 − xi+1 + xi)
= g(2xi − 2xi+1).
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7.2 Soergel’s Dream

Since this is an integral domain, g = g′, and

h = f − g(xi − xi+1) = f − g′(xi − xi+1) = h′.

Existence: xk ∈ Rsi is si invariant if k 6= i, i+ 1, and

xi = 1
2(xi − xi+1) + 1

2(xi + xi+1) ∈ Rsi(· · ·) +Rsi

xi+1 = −1
2(xi − xi+1) + 1

2(xi + xi+1) ∈ Rsi(· · ·) +Rsi

.

So every f ∈ R can be expressed as a polynomial in xi − xi+1 with coefficients in Rsi . Since
(xi − xi+1)2 ∈ Rsi , any polynomial in xi − xi+1 with coefficients in Rsi can be written as
g(xi − xi+1) + h with g, h ∈ Rsi . This proves the claim.
We can now check

Bsi ⊗R Bsi = (R⊗Rsi R)⊗R (R⊗Rsi R)(−2)
∼= R⊗Rsi R⊗Rsi R(−2)
∼= R⊗Rsi (Rsi(2)⊕Rsi)⊗Rsi R(−2)
∼= R⊗Rsi (Rsi(2))⊗Rsi R(−2)⊕R⊗Rsi (Rsi)⊗Rsi R(−2)
∼= R⊗Rsi R⊕R⊗Rsi R(−2)
∼= Bsi(1)⊕Bsi(−1).

�

7.2 Soergel’s Dream
Come up with a purely algebraic proof of the KL conjecture (without using machinery from
geometric representation theory). Consider the center of category O, Z(O0), the endomorphism
ring of the identity functor. It can be shown that this is isomorphic to the coinvariant ring
C[x1, · · · , xn+1]/C[x1, · · · , xn+1]Sn . Thus invariant theory is “hidden” in the category O0(g).

Proved originally, but used some decomposition theory. Recent proof from Elias Williams?
Using hodge structures.

Question: What is the category A?

Definition 7.2.1 (Bott-Samelson Bimodules).
TakeR-gr dim, the category of graded R-bimodules, which is finitely generated as both left/right
R-modules. This is additive, monoidal, and graded, but this category is too big. So we carve
out a smaller subcategory.
For w ∈ Sn, write the formal word w = si1 · · · sir a reduced expression for w. Note that this
depends on which reduced expression is used. Now define

BS(w) :=
j≤r⊗

R
sij Bsij BS(∅) = R

∼= R⊗Rsi1 R⊗ · · · ⊗Rsir R
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7.2 Soergel’s Dream

where the isomorphism is canonical. This is the Bott-Samelson bimodule.

Definition 7.2.2 (?).

• A Soergel bimodule is a direct summand of a finite sum of grading shifts of Bott-Samelson
bimodules.

• The category SBim of Soergel bimodules is the strictly full subcategory of R-gr dim
consisting of Soergel bimodules.

• Equivalently, the smallest full subcategory of R-gr dim consisting of R,Bsi and closed
under ⊗R,⊕, (i) and taking direct summands.

Remark 7.2.1.
The category SBim is additive, monoidal, and graded, but not abelian.

Definition 7.2.3 (Indecomposable).
Recall that a module X is indecomposable ⇐⇒ X ∼= A⊕B implies A ∼= 0 or B ∼= 0.

Definition 7.2.4 (Krull-Schmidt).
A category C is Krull-Schmidt ⇐⇒ every object decomposes uniquely into a finite direct
sum of indecomposable objects.

Theorem 7.2.1(?).

1. SBim is Krull-Schmidt.

Note that such uniqueness here means that if
r⊕
i=1

Xi
∼=

s⊕
i=1

Yi then r = s and there is

some permutation π ∈ Sr such that Xπ(i) ∼= Yi.
2. There is a bijection

Sn 
 {Indecomposable Soergel bimodules} /Isomorphism and shifts

w 7→ Bw.

Moreover
{
S[Bw]

∣∣∣ w ∈ Sn} form a basis of K⊕0 (SBim) as Z[v, v−1]-modules.
3. There is a Z[v, v−1]-algebra morphism

c : H(Sn)
∼=−→ K⊕0 (SBim)

Csi 7→ [Bsi ].

Remark 7.2.2.
This implies both the KL positivity and multiplicity conjectures. The KL basis corresponds to the
basis given by the indecomposable Soergel bimodules.
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8 Wednesday July 15th
Let R be a unital (not necessarily commutative) ring, then we can consider two categories:

• R-mod: the category of left R-modules
• mod: the category of right R-modules

Let X ∈ mod a consider the functor

X ⊗R · : R-mod→ Z-mod
Y 7→ X ⊗R Y.

Given a short exact sequence, we obtain a right-exact sequence, i.e. this functor is right-exact

4! Warning 8.1: The induced map X ⊗R A→ X ⊗R B need not be injective.

Then f∗ is not injective, since (id⊗Z (·2))(T ⊗ 1)) = T ⊗ 2 = 2T ⊗ 1 = 0.

Recall that this has derived functors TorRi (X, · ) which vanish if either component is projective and
yields a LES.

Definition 8.0.1 (Flat Modules).
An R-module X is flat if X ⊗R · is exact.

Recall that free =⇒ projective =⇒ flat.

Construction of TorRi (X,Y ):

1. R-mod has enough projectives, so take a projective resolution of Y :

P∗ := (· · · → P2 → P1 → P0 → Y → 0)

with each Pj projective.

2. Apply X ⊗R · to P∗:

X ⊗R ·P · : · · · → X ⊗R P2 → X ⊗R P1 → X ⊗R P0 → 0.

Note that this is a chain complex, but not exact in general.

3. Define

TorRi (X,Y ) := Hi(X ⊗R P · ),

i.e. take kernels mod images.

Note that choices were made, is this independent (up to natural isomorphism) of the chosen
projective resolution P · ?
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Lemma 8.1(?).
Let f : Y → Y ′ ∈ R-mod, and let P · , P ′· be respective projective resolutions. Then there
exists a map of chain complexes f̃ : P · → P ′· such that

where all of the squares commute, and f̃ is unique up to chain homotopy.

So take f = idY : Y → Y , by the lemma there is a map of chain complexes ĩd : P · → P ′· , and
applying X ⊗R · yields a map of chain complexes X ⊗R P · → X ⊗R P ′· . Since homotopic maps
yield the same map in homology, we get maps Hi(X ⊗R P · )→ Hi(X ⊗R P ′· ), and it can be checked
that these maps are isomorphisms for every i by using the lemma again but reversing all of the
maps.

Remark 8.0.1.
For A ∈ mod-Z, A is torsionfree ⇐⇒ TorZ1 (A,B) = 0 for every other B ∈ Z-mod. As a special
case, for k a field and R a k-algebra, R ⊗k Rop is a k-algebra when equipped with the product
(a⊗ b) · (a′ ⊗ b′) = (aa′)⊗ (bb′). This is called the enveloping algebra of R

Note: has nothing to do with universal enveloping algebras in Lie theory.

There is an isomorphism of categories

R⊗R Rop-mod
∼=−→ R-bimod

(r1 ⊗ r2) ·m←[ r1 ·m · r2 ∈ RMR.

The point of this is that we may not be able to make sense of projective resolutions on the RHS,
but we can think of them as usual modules over the enveloping algebra instead.

4! Warning 8.2: Some care must be taken with the monoidal structure. The monoidal structur
in the LHS is ⊗R⊗RRop , whereas it is ⊗R in the RHS.

Definition 8.0.2 (Hochschild Homology).
Define the ith Hochschild homology of R as the functor

HHi(R, · ) := TorR⊗RR
op

i (R, · ) : R-Bimod→ k-mod.

Remark 8.0.2.
Note that this lands in k-modules instead of Z-modules. Moreover, everything works in the graded
setting and yields a functor R-grBimod→ k-grMod.

How does this relate to the HOMFLY-PT polynomial? Recall that we had a trace

H(Sn) Tr−→ Z[v, v−1],
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and we think of HH as the categorification of the trace on the Hecke algebra. It has trace-like
behavior, namely

HH · (R,M ⊗R N) ∼= HH · (R,N ⊗RM) ∈ k-Mod,

which is similar to Tr(ab) = Tr(ba).

Example 8.0.1.
Consider HH · (C[t],C[t]) with |t| = 2.

1. Write a free resolution of C[t] as a C[t]⊗C C[t]-module:

2. Apply C[t]⊗C[t]⊗CC[t] · .

Note that the image is equal to

f ⊗ (tg ⊗ h) · (1⊗ 1)− f ⊗ (g ⊗ th) · (1⊗ 1) = tgfh⊗ 1⊗ 1− gfth⊗ 1⊗ 1 = 0,

so this is in fact the zero map.

We thus have

3. Read off

HH0(C[t],C[t]) ∼= C[t]
HH1(C[t],C[t]) ∼= C[t](2).
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