# Monday July 6th We define $e(n\theta) \definedas e^{2\pi i n \theta}$ where $n\in \ZZ$ and $\theta \in \RR/\ZZ$, i.e. $\theta \in [0, 1]$. Note that $e(n(\theta + t)) = e(n\theta)$ for $t\in \ZZ$. We'll define a Fourier series as a sum $\sum_{n\in \ZZ} f(n) e(n\theta)$, which may or may not converge. We'll restrict our attention to coefficient functions $f$ which are supported on finite subsets $A\subset \ZZ$, in which case the sum is a bona fide function. Note that if the phase $n$ is zero, then $\int_0^1 e(n\theta) \,d\theta = \int_0^1 \cos(2\pi n \theta) + i\sin(2\pi n \theta)$. But these are periodic functions, which integrates to zero unless the integrand is constant. Thus \begin{align*} \int_0^1 e(n\theta) \, d\theta = \one{n = 0} .\end{align*} See notes for the following formulas: 1. Fourier coefficient formula 2. Parseval's identity 3. Plancherel's formula Proving (1): \begin{align*} \int_0^1 f(\theta) \bar G(\theta) \,d\theta &= \int_0^1 \sum_{\abs n \leq N} a_n e(n\theta) \bar{\sum_{\abs m \leq N} b_m e(m\theta)} \,d\theta \\ &= \sum_{\abs n \leq N} \sum_{\abs m \leq N} \int_0^1 e(n\theta) \bar{e(m\theta)} \,d\theta \\ &= \sum_{\abs n \leq N} \sum_{\abs m \leq N} \int_0^1 e(n\theta) e(-m\theta) \,d\theta\\ &= \sum_{\abs n \leq N} \sum_{\abs m \leq N} \one{n = m} \\ &= \sum_{\abs n \leq N} a_n \bar{b_n} .\end{align*} We used the following properties - $e(n\theta) e(m\theta) = e((n+m)\theta)$. - $\bar{e(m\theta)} = e(-m\theta)$. Proof that $(\hat {F \cdot G})(t) = \sum_{n+m = t} a_n b_m$: \begin{align*} f(\theta) \cdot G(\theta) &= \sum_{\abs n \leq N} a_n e(n\theta) \sum_{\abs m \leq N} b_m e(m\theta) = \sum_{n, m} a_n b_m e((n+m)\theta) \\ &= \sum_t e(t\theta) \sum_{n+m = t} a_n b_m .\end{align*} Write $F_a(\theta) = \sum_{n} \one(n) e(n\theta)$, then $F_A(\theta)^2 = \sum_{s} \one_A \ast \one_A (s) e(s\theta) = \sum_{n+m = s} \one_A(n) \one_A(m)$, where each coefficient counts the number of ways of writing $a+b=s$ with $a, b\in A$. Exercise : Let $F(\theta) = \sum_{p\leq N \text{ prime}} e(p\theta)$. Show that $\int_0^1 \abs{F(\theta)}^2 e(-2\theta) \, d\theta$, expand, and use the orthogonality relations to show that this counts the number of twin primes. Two important trigonometric polynomials: 1. The Dirichlet kernel $D_N(\theta) = \sum_{\abs n \leq N} e(n\theta)$ 2. The Fejer kernel $K_N(\theta) = \sum_{\abs n \leq N} \qty{1 - {\abs n \over N+1} }e(n\theta)$. Exercise : Use the fact that the Dirichlet kernel is a geometric series to find a closed formula. Sketch of the two kernels: ![](figures/image_2020-07-06-14-27-31.png) To show the Fejer kernel is positive, show it's a square: \begin{align*} K_N(\theta) = {1\over N+1} { \sin(\pi(N+1)\theta)^2 \over \sin(\pi \theta)^2 } .\end{align*} To show it integrates to 1, just expand: \begin{align*} \int_0^1 K_N(\theta) \, d\theta &= \int_0^1 \sum_{\abs n \leq N} e(n\theta) \qty{1 - {\abs n \over N+1}} \\ &= \int_0^1 e(0\theta)\, d\theta = 1 .\end{align*} To show it detects zero, use the fact that the numerator is bounded, the denominator is bounded away from $\theta = 0, 1$, and we're taking $N\to \infty$. ![](figures/image_2020-07-06-14-31-35.png) Proving Fejer's theorem: Assume $\theta = 0$, then \begin{align*} F \ast K_N(\theta) &= \int_0^1 F(\theta - \tau) K_N(\tau) \, d\tau \\ &= \int_0^1 F(-\tau) K_N(\tau) \, d\tau \\ \implies F_\ast K_N(0) - F(0) &= \int_0^1 \qty{F(-\tau) - F(0) }K_N(\tau) \, d\tau \quad\text{since }\int K_n = 1 .\end{align*} - Using continuity, the first term can be made small for $\tau$ small. - Since $K_N$ is a good kernel, $K_N(\tau)$ is small for $\tau$ large. So write this as \begin{align*} \int_0^t \qty{F(-\tau) - F(0) } K_N(\tau) \, d\tau + \int_{1-t}^1 \qty{F(-\tau) - F(0) } K_N(\tau) \, d\tau + \int_{t}^{1-t} \qty{F(-\tau) - F(0) } K_N(\tau) \, d\tau .\end{align*} - By continuity, for $t$ small enough, the first integral is bounded by $\eps \int_0^t K_N(\tau) \leq \eps \int_0^1 K_N(\tau) = \eps$. - Note $K_N(\tau)$ is a bounded function \todo{Figure out how this should go.}