# Thursday, September 09 ## Corollaries of the homotopy bundle lemma :::{.remark} Last time: the bundle homotopy lemma. If $P\to I\times X \in \Prin\Bun(G)$, then there is a bundle isomorphism \begin{tikzcd} {I\times P_0} &&& P \\ \\ {I\times X} &&& {I\times X} \arrow[""{name=0, anchor=center, inner sep=0}, from=1-1, to=3-1] \arrow[""{name=1, anchor=center, inner sep=0}, from=1-4, to=3-4] \arrow["f\cong", shorten <=20pt, shorten >=20pt, Rightarrow, from=0, to=1] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNCxbMCwwLCJJXFx0aW1lcyBQXzAiXSxbMCwyLCJJXFx0aW1lcyBYIl0sWzMsMCwiUCJdLFszLDIsIklcXHRpbWVzIFgiXSxbMCwxXSxbMiwzXSxbNCw1LCJmXFxjb25nIiwwLHsic2hvcnRlbiI6eyJzb3VyY2UiOjIwLCJ0YXJnZXQiOjIwfX1dXQ==) where $\ro{f}{0\times P_0}$ is the identity. ::: :::{.corollary title="?"} If $P\to I\times X \in \Prin\Bun(G)$ then $P_0 \cong P_1$ where $P_i \da \ro{P}{i\times X}$. ::: :::{.corollary title="?"} If $f_0, f_1: Y\to X$ with $P \mapsvia{\pi} X$, then $f_0^* P \cong f_1^* P$ are isomorphic bundles. ::: :::{.corollary title="?"} If $X$ is contractible, then any $P\in \Prin\Bun(G)\slice X$ is trivial. ::: :::{.proof title="?"} Consider the two maps \begin{tikzcd} x && {x_0} \\ X && X \\ x && x \arrow["{f_1}"', shift right=2, curve={height=6pt}, from=2-1, to=2-3] \arrow["{f_0}", shift left=3, curve={height=-6pt}, from=2-1, to=2-3] \arrow[maps to, from=3-1, to=3-3] \arrow[maps to, from=1-1, to=1-3] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNixbMCwxLCJYIl0sWzIsMSwiWCJdLFswLDAsIngiXSxbMiwwLCJ4XzAiXSxbMCwyLCJ4Il0sWzIsMiwieCJdLFswLDEsImZfMSIsMix7Im9mZnNldCI6MiwiY3VydmUiOjF9XSxbMCwxLCJmXzAiLDAseyJvZmZzZXQiOi0zLCJjdXJ2ZSI6LTF9XSxbNCw1LCIiLDIseyJzdHlsZSI6eyJ0YWlsIjp7Im5hbWUiOiJtYXBzIHRvIn19fV0sWzIsMywiIiwyLHsic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoibWFwcyB0byJ9fX1dXQ==) Then $f_0 \homotopic f_1$, and conclude by noting that \[ f_0^*P = X\fiberprod{x_0} P = X\times \pi\inv(x_0) = X\times G \] and $f_1^* P = P$. ::: ## Existence/Uniqueness of Metrics :::{.definition title="Riemannian metrics"} A **Riemannian metric** on a vector bundle $E \mapsvia{\pi} X$ is a continuous map $E\fiberprod{X} E\to \RR$ which restricts to an inner product on each fiber. ::: :::{.proposition title="?"} A Riemannian metric on $E$ corresponds to a restriction of the structure group from $\GL_n(\RR)$ to $\Orth_n(\RR)$. ::: :::{.proposition title="?"} Every vector bundle over a paracompact $X$ has a unique Riemannian metric. ::: :::{.proof title="?"} **Existence:** Cover $X$ by charts and choose a locally finite[^loc_finite] refinement $\mcu = \ts{U_i}_{i\in I}$ and pick a partition of unity $\ts{\chi_i}_{i\in I}$ subordinate to $\mcu$. [^loc_finite]: Here *locally finite* means every point is covered by finitely many opens in the cover. Define an inner product $g_i$ on $\pi\inv(U_i)$ where $\phi_i: \pi\inv(U_i)\to U_i \times \RR^n$ by pulling back the inner product on $\RR^n$, i.e. taking $e_1\mapsvia{\phi_i} (p_1, \vector v_1)$ and $e_2 \mapsvia{\phi}(p_2, \vector v_2)$ and setting \[ g_i(e_1, e_2) \da \inner{\vector v_1}{\vector v_2}_{\RR^n} .\] Then define \[ g_p(\wait, \wait) \da \sum_i \chi_i(p) g_i(\wait, \wait) .\] **Uniqueness:** Consider two inner products $g_0(\wait, \wait), g_1(\wait, \wait)$ on the bundle $E \mapsvia{\pi} X$, then define \[ g_t(\wait, \wait) = tg_0(\wait, \wait)+ (1-t)g_1(\wait, \wait) .\] Then $I\times E \mapsvia{\id, \pi} I\times X$ is a bundle, and $g_t$ is a Riemannian metric on $I\times E$. Consider its corresponding principal bundle \[ P\to I\times X \in \Prin\Bun(\Orth_n(\RR)) \] These correspond to restricting $I\times E$ to $0, 1$, yielding $P_0, P_1$ with Riemannian metrics $g_0, g_1$. But $P_0 \cong P_1$ are isomorphic principal bundles, and using the correspondence between bundles with metric and bundles with structure group $\Orth_n$, this shows the two bundles with metric are isomorphic. ::: :::{.definition title="Universal $G\dash$bundles"} A **universal $G\dash$bundle** is a principal $G\dash$bundle $\pi: EG\to \B G$ such that $\pi_i EG = 0$ for all $i$ (so $EG$ is *weakly contractible*). ::: :::{.example title="?"} \envlist - $\qty{\RR \to S^1}\in \Prin \Bun(\ZZ)\slice{S^1}$ since all of the regular covers are principal bundles. Since $\RR$ is contractible, this is the universal $\ZZ\dash$bundle, so $S^1 \homotopic \B \ZZ$. - $\qty{S^\infty \to \RP^\infty} \in \Prin\Bun(C_2)$ is a universal $C_2\dash$bundle, so $\RP^\infty \homotopic \B C_2$ - $\qty{S^\infty \to \CP^\infty}$ is a universal $S^1 = U_1$ bundle, so $\CP^\infty \homotopic \B U_1 \homotopic \B S^1 \homotopic \B \CC\units$: \begin{tikzcd} {F_z = \ts{\lambda z \st \lambda \neq 0}} &&& {\tv{z_1, \cdots, z_n}} \\ \CC\units && {\CC^n} \\ \\ && {\CP^{n-1}} & {z \da \tv{z_1: \cdots : z_n}} \arrow[from=2-1, to=2-3] \arrow[from=2-3, to=4-3] \arrow[maps to, from=1-4, to=4-4] \arrow[maps to, from=1-1, to=1-4] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNixbMiwxLCJcXENDXm4iXSxbMiwzLCJcXENQXntuLTF9Il0sWzAsMSwiXFxDQ1xcdW5pdHMiXSxbMywwLCJcXHR2e3pfMSwgXFxjZG90cywgel9ufSJdLFszLDMsInogXFxkYSBcXHR2e3pfMTogXFxjZG90cyA6IHpfbn0iXSxbMCwwLCJGX3ogPSBcXHRze1xcbGFtYmRhIHogXFxzdCBcXGxhbWJkYSBcXG5lcSAwfSJdLFsyLDBdLFswLDFdLFszLDQsIiIsMCx7InN0eWxlIjp7InRhaWwiOnsibmFtZSI6Im1hcHMgdG8ifX19XSxbNSwzLCIiLDAseyJzdHlsZSI6eyJ0YWlsIjp7Im5hbWUiOiJtYXBzIHRvIn19fV1d) ::: :::{.theorem title="?"} If $X\in \CW \subseteq \Top$ and $EG \mapsvia{\pi} \B G \in \Bun_G$ is universal, then there is a bijection \[ \Prin\Bun(G)\slice X &\mapstofrom [X, \B G] \\ f*EG &\mapsfrom f .\] ::: :::{.lemma title="?"} If $E \mapsvia{\pi} X$ is a fiber bundle with fiber $F$ and $X$ is weakly contractible then 1. $\pi$ admits a section, and 2. Any two sections are homotopic (through other sections). ::: :::{.proof title="of lemma, part 1"} **Step 1:** build a section inductively. - Define a section over the 0-skeleton arbitrarily. - Inductively, suppose the section is defined on the $n-1$ skeleton, so it's defined over every $n\dash$cell boundary $\bd e^n$. - Write $\ro{E}{e_n} = e^n\times F$, which is contractible since $e_n$ is contractible. - Then $s:\bd e^n = S^{n-1} \to F$ with $\pi_n(F) = 0$, so the section extends: \begin{tikzcd} && {\ro{E}{e^n}} && {e^n\times F} \\ && {} \\ {\bd e^n} && {e^n} \arrow[from=1-3, to=3-3] \arrow["\cong", from=1-3, to=1-5] \arrow["{\pr_1}", from=1-5, to=3-3] \arrow[from=3-1, to=3-3] \arrow["s", from=3-1, to=1-3] \arrow["{\exists \tilde s}", curve={height=-12pt}, dashed, from=3-3, to=1-3] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNSxbMiwwLCJcXHJve0V9e2Vebn0iXSxbNCwwLCJlXm5cXHRpbWVzIEYiXSxbMiwxXSxbMiwyLCJlXm4iXSxbMCwyLCJcXGJkIGVebiJdLFswLDNdLFswLDEsIlxcY29uZyJdLFsxLDMsIlxccHJfMSJdLFs0LDNdLFs0LDAsInMiXSxbMywwLCJcXGV4aXN0cyBcXHRpbGRlIHMiLDAseyJjdXJ2ZSI6LTIsInN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9fX1dXQ==) **Step 2:** Build the homotopy between sections inductively cell-by-cell as in part (1). ::: :::{.proof title="of theorem"} We want to show that the assignment $f\mapsto f^* EG$ is bijective. **Surjectivity**: Note that $EG$ has a left $G\dash$action defined by $g\cdot e \da eg\inv$. Recall that we can use the mixing construction: \begin{tikzcd} F && P && EG && {P\fiberprod{G} EG} \\ &&& {} & {} & {} \\ && X &&&& X \arrow["\pi", from=1-3, to=3-3] \arrow[from=1-7, to=3-7] \arrow[from=1-7, to=3-7] \arrow[from=1-5, to=1-7] \arrow["{\text{mixing}}", squiggly, from=2-4, to=2-6] \arrow[from=1-1, to=1-3] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsOSxbMiwwLCJQIl0sWzIsMiwiWCJdLFs2LDAsIlBcXGZpYmVycHJvZHtHfSBFRyJdLFs2LDIsIlgiXSxbNCwwLCJFRyJdLFszLDFdLFs0LDFdLFs1LDFdLFswLDAsIkYiXSxbMCwxLCJcXHBpIl0sWzIsM10sWzIsM10sWzQsMl0sWzUsNywiXFx0ZXh0e21peGluZ30iLDAseyJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJzcXVpZ2dseSJ9fX1dLFs4LDBdXQ==) Sections of the mixed bundle biject with $G\dash$equivariant maps $P\to EG$. Writing $s(x) = [P, e] \sim [Pg, g\cdot e] \da [Pg, g\inv e]$, so given $p\in \pi\inv(x)$ we can send $p\mapsto e\in EG$ such that $[p, e]\in s(x)$. This is essentially currying an argument. Conversely, given a $G\dash$equivariant map \[ P\to EG\\ p\mapsto e ,\] we can define $s(x) \da [p, e]$ where $x = \pi(p)$. This is well-defined: if $x = \pi(pg)$, then $s(x) = [pg, eg] = [p, e]$. Now note that $EG$ is weakly contractible, so $EG\to P\fiberprod{G} EG \to X$ has a section $s: X\to P\fiberprod{G}EG$ and this we get a $G\dash$equivariant map $P\to EG$ which induces a map $P/G \mapsvia{h} EG/G$, where $P/G = X$ and $EG/G = \B G$. \begin{tikzcd} P &&&& {h^* EG} && EG \\ &&&&& {} \\ &&&& X && {\B G} \arrow["h", from=3-5, to=3-7] \arrow[from=1-7, to=3-7] \arrow[from=1-5, to=1-7] \arrow[from=1-5, to=3-5] \arrow["f", curve={height=-30pt}, from=1-1, to=1-7] \arrow["{\exists p \mapsvia{\sim} (\pi(p), f(p))}", dashed, from=1-1, to=1-5] \arrow["\pi"', from=1-1, to=3-5] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNixbNiwwLCJFRyJdLFs2LDIsIlxcQiBHIl0sWzQsMiwiWCJdLFswLDAsIlAiXSxbNCwwLCJoXiogRUciXSxbNSwxXSxbMiwxLCJoIl0sWzAsMV0sWzQsMF0sWzQsMl0sWzMsMCwiZiIsMCx7ImN1cnZlIjotNX1dLFszLDQsIlxcZXhpc3RzIHAgXFxtYXBzdmlhe1xcc2ltfSAoXFxwaShwKSwgZihwKSkiLDAseyJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJkYXNoZWQifX19XSxbMywyLCJcXHBpIiwyXV0=) :::{.exercise title="?"} Show that this map is an isomorphism. ::: :::