# Universal Bundles (Thursday, September 16) :::{.definition title="Universal $G\dash$bundles"} A **universal $G\dash$bundle** is a principal $G\dash$bundle $EG \mapsvia{\pi} \B G$ such that $EG$ is weakly contractible, i.e. $\pi_*(EG) = 0$. ::: :::{.remark} We looked at a theorem stating the correspondence \[ \Prin\Bung \slice X \mapstofrom [X, \B G] .\] ::: :::{.proof title="of surjectivity in theorem, continued"} We showed surjectivity of the following map: \[ [X, \B G] &\surjects \Prin\Bung\slice X \\ (f \in [X, \B G]) &\mapsto f^* EG .\] Given a principal $G\dash$bundle $P \mapsvia{\pi} B$, the mixing construction used an action $G\actson F$ to construct the fiber bundle $P\mix{G} F \mapsvia{\pi} B$. Then the data of an equivariant map $f: P\to F$, so $f(pg) = f(p)\cdot g \da g\inv f(p)$ is equivalent to a section $s: B\to P\mix{G} F$. Note that fixing the first coordinate $p$ in $[p, y]$ also fixes the second coordinate. For $b\in B$, we can set $s(b) = [p, y] \sim [pg, g\inv y]$ (noting that these are equivalent in the mixed space), and we can define $f(p) = y$ to get an equivariant map since $f(pg) = g\inv y = g\inv f(p)$ So send $P \mapsvia{\pi} X \in \Prin\Bung\slice X$ to $P\mix{G} EG \to X$. We proved that this has a section $s: X \to P\mix{G} EG$ and any two sections are homotopic, so from this we extract a $G\dash$equivariant map $f:P\to EG$. Modding out the $G$ action yields $h: P/G\to EG/G$. But $P/G\cong X$ and $EG/G\cong \B G$, so $h: X\to \B G$, and moreover $h^* EG \cong P$. ::: :::{.proof title="of injectivity in theorem"} Suppose $h_0, h_1\in [X, \B G]$, then $h_0^* EG \mapsvia{\phi, \cong} h_1^* EG$. We can construct the following section $s_0$: \begin{tikzcd} {(x, y)} && {y \da f_0([x, y])} \\ {h_0^* EG} && EG &&& {h_0^* EG \mix{G} EG} & {[(x, y), y]} \\ &&& \leadsto \\ X && {\B G} &&& X & x \arrow["{f_0}", dashed, from=2-1, to=2-3] \arrow[from=2-3, to=4-3] \arrow["{h_0}"', from=4-1, to=4-3] \arrow[from=2-1, to=4-1] \arrow[from=2-6, to=4-6] \arrow[maps to, from=1-1, to=1-3] \arrow["{s_0}"', curve={height=30pt}, dashed, from=4-6, to=2-6] \arrow[maps to, from=4-7, to=2-7] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsMTEsWzIsMSwiRUciXSxbMiwzLCJcXEIgRyJdLFswLDMsIlgiXSxbMCwxLCJoXzBeKiBFRyJdLFszLDIsIlxcbGVhZHN0byJdLFs1LDEsImhfMF4qIEVHIFxcbWl4e0d9IEVHIl0sWzUsMywiWCJdLFswLDAsIih4LCB5KSJdLFsyLDAsInkgXFxkYSBmXzAoW3gsIHldKSJdLFs2LDMsIngiXSxbNiwxLCJbKHgsIHkpLCB5XSJdLFszLDAsImZfMCIsMCx7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9fX1dLFswLDFdLFsyLDEsImhfMCIsMl0sWzMsMl0sWzUsNl0sWzcsOCwiIiwwLHsic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoibWFwcyB0byJ9fX1dLFs2LDUsInNfMCIsMix7ImN1cnZlIjo1LCJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJkYXNoZWQifX19XSxbOSwxMCwiIiwwLHsic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoibWFwcyB0byJ9fX1dXQ==) We can build another section $s_1$ in the following way: use the isomorphism $\phi: h_0^* EG \to h_1^* EG$ to construct the composite \begin{tikzcd} {(x, y)} && {(x, \phi(y))} && {\phi(y)} \\ \\ {h_0^* EG} && {h_1^* EG} && EG \\ \\ && X && {\B G} \arrow["{f_1}", from=3-3, to=3-5] \arrow["{f_1\circ \phi}", curve={height=-30pt}, from=3-1, to=3-5] \arrow["\phi", from=3-1, to=3-3] \arrow[from=3-5, to=5-5] \arrow[from=3-3, to=5-3] \arrow[from=5-3, to=5-5] \arrow[from=3-1, to=5-3] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsOCxbMCwyLCJoXzBeKiBFRyJdLFsyLDIsImhfMV4qIEVHIl0sWzQsMiwiRUciXSxbMCwwLCIoeCwgeSkiXSxbMiwwLCIoeCwgXFxwaGkoeSkpIl0sWzQsMCwiXFxwaGkoeSkiXSxbMiw0LCJYIl0sWzQsNCwiXFxCIEciXSxbMSwyLCJmXzEiXSxbMCwyLCJmXzFcXGNpcmMgXFxwaGkiLDAseyJjdXJ2ZSI6LTV9XSxbMCwxLCJcXHBoaSJdLFsyLDddLFsxLDZdLFs2LDddLFswLDZdXQ==) So we have \[ s_0(x) &\da [x,y,y] \\ s_1(x) &\da [x,y,\phi(y)] .\] By the lemma, $s_0\homotopic s_1$ through sections, so there is a homotopy \[ s: I\times X &\to I \times h_0^* EG\mix{G} EG \\ (t, x) &\mapsto (t, x, y, z) .\] But this is a section of a principle $EG\dash$bundle over a CW complex, which yields a $G\dash$equivariant map \[ f: I \times h_0^* EG &\to EG \\ (t, x, y) &\mapsto z .\] Then - At $t=0$, we have $(0, x)\mapsto (0, x,y,y)$, so $f(0, x, y) = y$, - At $t=1$, we have $(1, x)\mapsto (1, x,y,\phi(y))$, so $f(1,x,y) = \phi(y)$. Since $f$ is $G\dash$equivariant, we can quotient both sides by $G$ to get a map \[ h: I\times X &\to \B G \\ (0, x) &\mapsto h_0(x) \\ (1, x) &\mapsto h_1(x) .\] ::: :::{.exercise title="?"} Try this proof yourself! ::: :::{.remark} The same proof shows the following: ::: :::{.lemma title="?"} If $F\to E \mapsvia{\pi} B$ is a fiber bundle and $B\in \CW$, if $\pi_{0\leq i\leq n}(F) = 0$ then we can inductively build sections over skeleta $B_{(k)}$ fir $k\leq n$ to construct a section over $B_{(n+1)}$. Moreover, any two sections over the $n\dash$skeleton are homotopic. ::: :::{.proposition title="?"} If $P \mapsvia{\pi} B \in \Prin\Bung\slice X$ and $\pi_{0\leq i \leq n} P = 0$ (so $B$ is a "weak universal bundle") then $[X, B] \surjects \Prin\Bung\slice X$ for any $X\in \CW$ with $\dim(X) \leq n+1$, and it is bijective if $\dim X \leq n$. Here the map is again $h \mapsto h^* P$. ::: ## Existence of Universal Bundles :::{.theorem title="Milnor, 1966"} For any group $G \in \Top\Grp$, there is a universal bundle $EG\to \B G$. ::: :::{.remark} Uniqueness up to homotopy: \begin{tikzcd} {h_*E'} & E && {E'} & {h'_*E} \\ \\ & B && {B'} \arrow["f", from=1-2, to=1-4] \arrow["h"', from=3-2, to=3-4] \arrow[from=1-2, to=3-2] \arrow[from=1-4, to=3-4] \arrow["{f'}"', curve={height=30pt}, from=1-4, to=1-2] \arrow["{h'}", curve={height=-30pt}, from=3-4, to=3-2] \arrow["\sim"', from=1-1, to=1-2] \arrow["\sim"', from=1-5, to=1-4] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNixbMSwwLCJFIl0sWzEsMiwiQiJdLFszLDAsIkUnIl0sWzMsMiwiQiciXSxbMCwwLCJoXypFJyJdLFs0LDAsImgnXypFIl0sWzAsMiwiZiJdLFsxLDMsImgiLDJdLFswLDFdLFsyLDNdLFsyLDAsImYnIiwyLHsiY3VydmUiOjV9XSxbMywxLCJoJyIsMCx7ImN1cnZlIjotNX1dLFs0LDAsIlxcc2ltIiwyXSxbNSwyLCJcXHNpbSIsMl1d) Then since $(h'h\inv)^* E \cong E$, $h' h\inv \homotopic \id$ and $h (h')\inv \homotopic \id$, so we get a homotopy equivalence $B \homotopic B'$. ::: :::{.exercise title="?"} Show $E \homotopic E'$. ::: :::{.remark} We'll prove this theorem using Segal's construction. For discrete groups $G$, the construction is covered in Hatcher 1B. Hatcher constructs $K(G, 1)$, a space with $\pi_1 = G$ and contractible universal cover. Then the universal cover $\hat X\to X$ is a principle $G\dash$bundle, and since $\hat X$ is contractible, it is universal: \begin{tikzcd} && {\tilde X\homotopic \pt} \\ &&& {\in \Prin\Bung\slice X \text{ universal}} \\ {K(G, 1)} && X \arrow["\pi", from=1-3, to=3-3] \arrow[from=3-1, to=3-3] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNCxbMCwyLCJLKEcsIDEpIl0sWzIsMiwiWCJdLFsyLDAsIlxcdGlsZGUgWFxcaG9tb3RvcGljIFxccHQiXSxbMywxLCJcXGluIFxcUHJpblxcQnVuZ1xcc2xpY2UgWCBcXHRleHR7IHVuaXZlcnNhbH0iXSxbMiwxLCJcXHBpIl0sWzAsMV1d) ::: :::{.definition title="Nerve of a category"} Given a category $\cat C$, the **nerve** $\nerve{\cat{C}}$ is the following $\Delta\dash$complex: - $0\dash$simplices are objects of $\cat{C}$ - $n\dash$simplices for $n\geq 1$ are sequences of composable morphisms \[ x_0 \mapsvia{f_0} x_1 \mapsvia{f_1} \cdots \mapsvia{f_{n-1}} x_n .\] - Gluing data for 1-simplices: for $x_0 \mapsvia{f} x_1$, set $\bd_1(f) = x_1, \bd_0(f) = x_0$. - Gluing data for $n\dash$simplices: the $i$th boundary maps are given by dropping vertex $i$: \[ \bd_i(f_1, \cdots, f_n) = \begin{cases} (f_2, f_3, \cdots, f_n) & i=0 \\ (f_1, f_2, \cdots, f_{i+1} \circ f_{i}, \cdots, f_n) & i=0 \\ (f_1, f_2, \cdots, f_{n-1}) & i=n. \end{cases} \] \begin{tikzpicture} \fontsize{45pt}{1em} \node (node_one) at (0,0) { \import{/home/zack/SparkleShare/github.com/Notes/Class_Notes/2021/Fall/CharacteristicClasses/sections/figures}{2021-09-16_13-50.pdf_tex} }; \end{tikzpicture} :::