# Thursday, September 16 :::{.remark} Let $G\in \Grp$, and consider the following two categories. $\B G$ will be the category: - $\Ob(\B G) = \ts{\pt}$. - $\Mor_{\B G}(\pt, \pt) = \ts{g\in G}$, i.e. there is one morphism for every group element, with composition $g_1 \circ g_2 \da g_1g_2$ given by group multiplication. $E G$ will be the category: - $\Ob(EG) = \ts{g\in G}$, one object for each element of $G$, - $\Mor(g, h)=\ts{g\inv h}$, a single (conveniently labeled!) morphism for each ordered pair $(g, h)$. Note that $G\actson EG$: \begin{tikzcd} {g_0} && {g_1} \\ \\ {gg_0} && {gg_1} \arrow[""{name=0, anchor=center, inner sep=0}, "{g_0\inv g_1}", from=1-1, to=1-3] \arrow[""{name=1, anchor=center, inner sep=0}, "{g\cdot g_0\inv g_1}", from=3-1, to=3-3] \arrow[shorten <=9pt, shorten >=9pt, Rightarrow, from=0, to=1] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNCxbMCwwLCJnXzAiXSxbMiwwLCJnXzEiXSxbMCwyLCJnZ18wIl0sWzIsMiwiZ2dfMSJdLFswLDEsImdfMFxcaW52IGdfMSJdLFsyLDMsImdcXGNkb3QgZ18wXFxpbnYgZ18xIl0sWzQsNSwiIiwwLHsic2hvcnRlbiI6eyJzb3VyY2UiOjIwLCJ0YXJnZXQiOjIwfX1dXQ==) This induces an action on $\nerve{EG} \in \Top$, where the 0-simplices correspond to elements of $G$. and $n\dash$simplices are chains \[ g_0 \mapsvia{g_0\inv g_1} g_1 \mapsvia{g_1\inv g_2} g_2 \to \cdots \to g_n .\] Acting on this by $G$ yields \[ gg_0 \mapsvia{g_0\inv g_1} gg_1 \mapsvia{g_1\inv g_2} gg_2 \to \cdots \to gg_n ,\] noting we leave the morphism labeling unchanged, and that uniqueness of morphisms makes the simplicial boundary map behave nicely. ::: :::{.exercise title="?"} Show that \[ \nerve{EG}/G = \nerve{\B G} .\] ::: :::{.remark} Note that \[ \nerve{\B G} &= \Delta^0 \disjoint \Delta^1 \times G \disjoint \Delta^2 \times G\cartpower{2} \disjoint \Delta^3 \times G\cartpower{3}\cdots \\ \nerve{E G} &= \Delta^0 \times G \disjoint \Delta^1 \times G\cartpower{2} \disjoint \Delta^2 \times G\cartpower{3}\cdots ,\] where the gluing data for $\nerve{\B G}$ is given by \[ \bd_n: \Delta^n \times G\cartpower{n} &\to \Delta^{n-1} \times G\cartpower{n-1} \\ (\vector x, \vector g) &\mapsto (\vector x\sm\ts{x_n}, \vector g \sm\ts{g_n}) \] and for $\nerve{EG}$ is \[ \bd_n: \Delta^n \times G\cartpower{n+1} &\to \Delta \times G\cartpower{n} \\ (\vector x, \vector g) &\mapsto (\vector x\sm\ts{x_n}, \vector g \sm\ts{g_n}) .\] The action $G\actson EG$ is the following: \[ g\cdot (\vector x, \vector g) \mapsto (\vector x, \tv{gg_0, gg_1,\cdots, gg_n} ) .\] ::: :::{.example title="?"} Take $G = C_4, G' = C_2\prodpower{2}$, and $[ (x_0, x_1, x_2), (a, a^2)] \in \Delta^2 \times G\prodpower{2}$. Then its faces are \[ [(0, x_1, x_2), (a, a^2)] &\sim [(x_1, x_2), (a^2)] \\ [(x_0, 0, x_2), (a, a^2)] &\sim [(x_0, x_2), (a)] \\ [(x_0, x_1, 0), (a, a^2)] &\sim [(x_0, x_1), (a)] \\ .\] These describe a 2-simplex mapping into $\B C_4$ by $a \to a^2 \to a^3$, yielding the relation $a\cdot a^2 = a^3$. One can check that in $\B G$, these groups yield distinct higher simplices: ![](figures/2021-09-16_16-59-53.png) ::: :::{.lemma title="?"} If $\cat C$ has an initial or terminal object, then $\nerve{\cat C}$ is contractible. ::: :::{.remark} This clearly holds for $E G$, since every object is initial and terminal. ::: :::{.proof title="?"} Suppose $y\in \cat C$ is terminal and any other object $x\in \cat C$, denote $f_x: x\to y$ the unique morphism. Then for any sequence ending in $y$, deformation retract to $y$: $x_0 \mapsvia{f_0} \to x_1 \mapsvia{f_1} \cdots \mapsvia{f_x} y \leadsto y$. If a sequence doesn't end in $y$, add it on: $x_0 \mapsvia{f_0} x_1 \cdots \to x_n {\color{green} \mapsvia{f_{x_n}} y} \leadsto y$. ::: :::{.corollary title="?"} $\nerve{EG}$ is contractible, and the quotient $\nerve{EG}\to \nerve{\B G}$ is a universal $G\dash$bundle. ::: :::{.exercise title="?"} Construct $E G$ and $\B G$ for $G = C_4, C_2\cartpower{2}$ and explicitly compare their 3-skeleta. :::