# Tuesday, September 21 :::{.remark} Today: a short discussion on generalizations of $\B G$ to topological groups. ::: :::{.definition title="Topological categories"} A **topological category** is a category where the objects are topological spaces and morphisms form topological spaces in a coherent way, i.e. the following maps should be continuous: - $\mathrm{source}, \mathrm{target}: \Mor_{\cat{C}} \to \Ob(\cat C)$, - $\id: \Ob(\cat C)\to \Mor_{\cat C}$, - Composition: $\cat{C}(x, y) \times \cat{C}(y,z) \to \cat{C}(x, z)$. I.e. it is a category enriched over topological spaces (plus conditions). ::: :::{.example title="?"} If $G\in \Top\Grp$, then $\mcb G$ is a topological category since the morphism space $\Mor(\pt, \pt) = G$ has a topology. Similarly $\mce G$ is a topological category. ::: :::{.remark} We can take nerves of topological categories; this just requires tracking the additional enrichment (i.e. the various topologies). The same proof will yield a principal $G\dash$bundle $\nerve{\mce G} \mapsvia{\pi} \nerve{\mcb G}$, noting that $G$ again acts on $\nerve{\mce G}$. ::: :::{.definition title="Absolute Neighborhood Retract"} A space is called an **absolute neighborhood retract** (ANR) if for any $X\embeds Y$ (as a closed subspace) into a metric space, $X$ is a retract of a neighborhood in $Y$. ::: :::{.example title="?"} Every CW complex is an ANR. This is also true if every point of $X$ has a contractible neighborhood. ::: :::{.lemma title="?"} If $G$ is ANR, then $EG = \nerve{\mce G}\to \nerve{\mcb G} = \B G \in \Prin\Bung$. ::: :::{.proof title="?"} Note that $\B G$ is a $\Delta\dash$complex, so we'll try to build bundle charts by inducting over the skeleta. Each graded piece of the complex is of the form $\Delta^i \times G\cartpower{i}$, so pick an interior point $((x_0, \cdots, x_i), (g_1,\cdots, g_i))$ so $x_i\neq 0$ for every $i$. Define a map \[ \Delta^i \times G\cartpower{i} \times G &\to E G \\ ( (x_0,\cdots, x_i), (g_1, \cdots, g_i), g) &\mapsto (\id(\cdots), (g, gg_1, gg_1g_2, \cdots, gg_1\cdots g_i)) ,\] which corresponds to the sequence of composable morphisms \[ (g \mapsvia{g_1} gg_1 \mapsvia{g_2} g g_1 g_2 \to \cdots \to gg_1\cdots g_i) .\] :::{.exercise title="?"} Show that this is not compatible with the gluing! ::: Write $p: \Delta^i \times G\cartpower{i} \to \BG$ for the quotient attaching map, so we can write the $m\dash$skeleton as $\BG^{(m)} = \Union_{i\leq m} p(\Delta^i \times G\cartpower{i})$. Now suppose $(U_m, \phi_m)$ is a chart for $\ro{\EG}{\BG^{(m)}} \to\BG^{(m)}$, we want to extend this to a chart or $\BG^{(m+1)}$. We have a retraction $r: U_{m+1}\to U_m$ where $U_{m+1} \subseteq \BG^{(m+1)}$ is an open inclusion. We construct a trivialization of $\pi\inv(U_{m+1}) \to U_{m+1}$: \begin{tikzcd} {\pi\inv(p\inv(U_{m+1}))} && {\pi\inv(p\inv(U_m))} && {\pi\inv(U_m)} && {U_m\times G} \\ \\ {p\inv(U_{m+1})} && {p\inv(U_m)} && {U_m} \\ {p\inv(U_{m+1})} &&&& {U_{m+1}} \arrow["{\phi_m}", from=1-5, to=1-7] \arrow["\pi"', from=1-5, to=3-5] \arrow["p", from=3-3, to=3-5] \arrow[from=1-3, to=1-5] \arrow[from=1-3, to=3-3] \arrow["\lrcorner"{anchor=center, pos=0.125}, draw=none, from=1-3, to=3-5] \arrow[hook, from=4-5, to=3-5] \arrow[hook, from=3-1, to=3-3] \arrow["r"', curve={height=18pt}, from=3-3, to=3-1] \arrow[from=1-1, to=3-1] \arrow["{\exists\tilde r}", dashed, from=1-1, to=1-3] \arrow["p", from=4-1, to=4-5] \arrow[Rightarrow, no head, from=3-1, to=4-1] \arrow["\lrcorner"{anchor=center, pos=0.125}, draw=none, from=1-1, to=3-3] \arrow["{\phi_{m+1}}", color={rgb,255:red,92;green,92;blue,214}, curve={height=-30pt}, from=1-1, to=1-7] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsOSxbNCwwLCJcXHBpXFxpbnYoVV9tKSJdLFs2LDAsIlVfbVxcdGltZXMgRyJdLFs0LDIsIlVfbSJdLFsyLDIsInBcXGludihVX20pIl0sWzIsMCwiXFxwaVxcaW52KHBcXGludihVX20pKSJdLFs0LDMsIlVfe20rMX0iXSxbMCwyLCJwXFxpbnYoVV97bSsxfSkiXSxbMCwwLCJcXHBpXFxpbnYocFxcaW52KFVfe20rMX0pKSJdLFswLDMsInBcXGludihVX3ttKzF9KSJdLFswLDEsIlxccGhpX20iXSxbMCwyLCJcXHBpIiwyXSxbMywyLCJwIl0sWzQsMF0sWzQsM10sWzQsMiwiIiwxLHsic3R5bGUiOnsibmFtZSI6ImNvcm5lciJ9fV0sWzUsMiwiIiwxLHsic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoiaG9vayIsInNpZGUiOiJ0b3AifX19XSxbNiwzLCIiLDEseyJzdHlsZSI6eyJ0YWlsIjp7Im5hbWUiOiJob29rIiwic2lkZSI6InRvcCJ9fX1dLFszLDYsInIiLDIseyJjdXJ2ZSI6M31dLFs3LDZdLFs3LDQsIlxcZXhpc3RzXFx0aWxkZSByIiwwLHsic3R5bGUiOnsiYm9keSI6eyJuYW1lIjoiZGFzaGVkIn19fV0sWzgsNSwicCJdLFs2LDgsIiIsMCx7ImxldmVsIjoyLCJzdHlsZSI6eyJoZWFkIjp7Im5hbWUiOiJub25lIn19fV0sWzcsMywiIiwwLHsic3R5bGUiOnsibmFtZSI6ImNvcm5lciJ9fV0sWzcsMSwiXFxwaGlfe20rMX0iLDAseyJjdXJ2ZSI6LTUsImNvbG91ciI6WzI0MCw2MCw2MF19LFsyNDAsNjAsNjAsMV1dXQ==) This extends the chart to $\BG^{(m+1)}$, noting that $p$ is a quotient map and thus preserves open sets. ::: :::{.remark} We can't necessarily extend over the entire $m+1$ skeleton! But here extending it over a retractable neighborhood was enough, so we needed $G$ to be an ANR in order for $\BG$ to be an ANR. Why: consider \[ p\inv(U_m) \subseteq \Union_{i\leq m} \Delta^i \times G\cartpower{i} \subseteq \Union_{i\leq m-1} \Delta^i \times G\cartpower{i} .\] If $G$ is an ANR, use that $\Delta^i$ is an ANR and so their product will be, then pick a neighborhood and apply $p$ to get the required open. ::: ## Building $\BO_n$ and $\EO_n$ :::{.remark} We'll assume all spaces paracompact from this point forward! We have a correspondence \[ \correspond{ \text{$n\dash$dimensional CW complexes } } \mapstofrom \correspond{ \text{$n\dash$dimensional vector bundles } \\ \text{with an $\Orth_n\dash$structure} } \mapstofrom \Prin\Bun(\Orth_n)\slice X \mapstofrom [X, \B\Orth_n] \] Our next goal is to construct $\BO_n$ and $\EO_n$ as spaces. Let $V_n(\RR^k) \da \ts{(\vector v_1, \cdots, \vector v_n) \text{orthonormal} }$. Note that $\Orth_n\actson V_n(\RR^k)$ by \[ \qty{\vector v_1, \cdots, \vector v_n} \cdot A = \qty{\sum_i a_{i, 1} \vector v_i, \sum_i a_{i, 2} \vector v_i, \cdots, \sum_i a_{i, n} \vector v_i} .\] There is a projection \begin{tikzcd} {F_{\vector v_1} = V_{n-1}(\RR^{k-1})} && {V_n(\RR^k)} & {(\vector v_1, \cdots, \vector v_1)} \\ \\ && {V_1(\RR^k)} & {\vector v_1} \arrow[from=1-1, to=1-3] \arrow[from=1-3, to=3-3] \arrow[maps to, from=1-4, to=3-4] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNSxbMiwwLCJWX24oXFxSUl5rKSJdLFsyLDIsIlZfMShcXFJSXmspIl0sWzMsMCwiKFxcdmVjdG9yIHZfMSwgXFxjZG90cywgXFx2ZWN0b3Igdl8xKSJdLFszLDIsIlxcdmVjdG9yIHZfMSJdLFswLDAsIkZfe1xcdmVjdG9yIHZfMX0gPSBWX3tuLTF9KFxcUlJee2stMX0pIl0sWzQsMF0sWzAsMV0sWzIsMywiIiwwLHsic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoibWFwcyB0byJ9fX1dXQ==) We'll use the fact that $V_1(\RR^k)$ is $(k-2)\dash$connected, since it's homotopy equivalent to $S^{k-1}$. ::: :::{.lemma title="?"} $V_n(\RR^{k})$ is $(k-n-1)\dash$connected. ::: :::{.proof title="?"} Induct on $n$ using the homotopy LES for the fiber bundle: \begin{tikzcd} && \cdots && {\pi_{i+1} V_{n-1} \RR^{k-1} \cong \pi_{i+1}(S^{k-1})} \\ \\ {\pi_i V_{n-1} \RR^{k-1} = 0} && \textcolor{rgb,255:red,92;green,92;blue,214}{\pi_i V_{n} \RR^{k}} && {\pi_i V_{1} \RR^{k} \cong \pi_iS^{k-2} = 0} \\ { \substack{(k-n-1)\dash\text{connected} \\ i\leq k-n-1} } && {\therefore\text{zero}} && {i\leq k-n-1 \implies i\leq k-3 } \arrow[from=1-5, to=3-1] \arrow[from=3-1, to=3-3] \arrow[from=3-3, to=3-5] \arrow[from=1-3, to=1-5] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsOCxbMCwyLCJcXHBpX2kgVl97bi0xfSBcXFJSXntrLTF9ID0gMCJdLFsyLDIsIlxccGlfaSBWX3tufSBcXFJSXntrfSIsWzI0MCw2MCw2MCwxXV0sWzQsMiwiXFxwaV9pIFZfezF9IFxcUlJee2t9IFxcY29uZyBcXHBpX2lTXntrLTJ9ID0gMCJdLFs0LDAsIlxccGlfe2krMX0gVl97bi0xfSBcXFJSXntrLTF9IFxcY29uZyBcXHBpX3tpKzF9KFNee2stMX0pIl0sWzAsMywiKGstbi0xKVxcZGFzaFxcdGV4dHtjb25uZWN0ZWR9IFxcXFwgaVxcbGVxIGstbi0xIl0sWzIsMywiXFx0aGVyZWZvcmVcXHRleHR7emVyb30iXSxbNCwzLCJpXFxsZXEgay1uLTEgXFxpbXBsaWVzIGlcXGxlcSBrLTMgXFxcXCJdLFsyLDAsIlxcY2RvdHMiXSxbMywwXSxbMCwxXSxbMSwyXSxbNywzXV0=) ::: :::{.remark} Using the inclusions $V_n(\RR^k) \injects V_n(\RR^{k+1})$, we can define $V_n(\RR^\infty) = \colim_k V_n(\RR^k) = \Union_{k\geq 0}V_n (\RR^k)$. We equip it with the **weak topology**, i.e. $U \subseteq V_n(\RR^\infty)$ is open iff $U \intersect V_n(\RR^k)$ is open for all $k$. ::: :::{.lemma title="?"} \[ \pi_* V_n(\RR^\infty) = 0 .\] ::: :::{.proof title="?"} By compactness, any sphere $S^m$ maps to $V_n(\RR^k)$ for some large $k$, and using $V_n(\RR^k) \injects V_n(\RR^\ell)$ with $\ell-n-1 > m$ where $\pi_n V_n(\RR^\ell) = 0$ to make the map nullhomotopic. ::: :::{.definition title="?"} \[ V_n(\RR^\infty) / \Orth_n = \Gr_n(\RR^\infty) .\] ::: :::{.remark} It will turn out that $\EO_n = V_n(\RR^\infty)$, sometimes referred to as the *Stiefel manifold* of $n\dash$frames in $\RR^\infty$. :::