# Thursday, September 23 :::{.remark} Last time: we were trying to construct $\EO_n$ and $\BO_n$, and we defined $V_n(\RR^\infty) = \directlim_{k} V_n(\RR^k)$, where $V_n(\RR^k)$ was the space of $n$ orthonormal vectors in $\RR^k$. There is a map $V_n(\RR^\infty)\to \Gr_n(\RR^\infty)$, which will be our candidate for $\EO_n \to \BO_n$. ::: :::{.lemma title="?"} $V_n(\RR^\infty) \mapsvia{\pi} \Gr_n(\RR^\infty) \in \Prin\Bun(\Orth_n)$. ::: :::{.proof title="?"} We'll show this directly in charts. Let $W\in\Gr_n(\RR^\infty)$ be an $n\dash$dimensional plane, the consider an open neighborhood \[ U_W \da \ts{W' \in \Gr_n(\RR^\infty) \st W^\perp \intersect W' = 0} .\] For any such $W'$, we have a map $W'\to W$ given by orthogonal projection, which is an isomorphism since $W^\perp \intersect W' = 0$. :::{.claim} \[ \pi\inv(U_W) \cong U_W \times \Orth_n .\] ::: Fix some $\alpha\in \pi\inv(U_W)$ (an orthonormal basis for $W$), apply $f\inv$ to get $f\inv( \alpha)$, then apply Gram-Schmidt to get $\tilde a$, an orthonormal basis for $W'$. Define $F_{W'}$ to be this composition; this yields a bijection $\pi\inv(W) \iso \pi\inv(W')$ for all $W'\in U_W$, namely \[ U_w \times \Orth_n &\to \pi\inv(W) \\ (W', A) &\mapsto F_{W'}( \alpha) \cdot A .\] The claim is that this trivializes the bundle, since this constructs a local section using $\Orth_n$ translations: \begin{tikzcd} {s(W')\cdot A} && {(W', A)} \\ {\pi\inv(U_W)} && {U_w \times \Orth_n} \\ \\ {U_W} && {W'} \arrow["\pi", from=2-1, to=4-1] \arrow["s"', curve={height=18pt}, from=4-1, to=2-1] \arrow["\cong", from=2-3, to=2-1] \arrow[dashed, maps to, from=1-3, to=1-1] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNixbMCwxLCJcXHBpXFxpbnYoVV9XKSJdLFsyLDEsIlVfdyBcXHRpbWVzIFxcT3J0aF9uIl0sWzIsMCwiKFcnLCBBKSJdLFswLDAsInMoVycpXFxjZG90IEEiXSxbMCwzLCJVX1ciXSxbMiwzLCJXJyJdLFswLDQsIlxccGkiXSxbNCwwLCJzIiwyLHsiY3VydmUiOjN9XSxbMSwwLCJcXGNvbmciXSxbMiwzLCIiLDAseyJzdHlsZSI6eyJ0YWlsIjp7Im5hbWUiOiJtYXBzIHRvIn0sImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9fX1dXQ==) Summary: pick an orthonormal basis for $W$, say $\alpha$, then $s(W) = \alpha$ and we define $s(W')$ by sending $\alpha$ to a basis for $W'$ by $P\inv$ and the applying Gram-Schmidt to get an orthonormal basis for $W'$. ::: :::{.remark} \envlist - Replace $\Orth_n$ with $U_n$ and $\RR$ with $\CC$ to get $\Gr_n(\CC^\infty) = \B U_n$. - $V_n(\RR^\infty)/ \SO_n = \B \SO_n$ yields the Grassmannian of *oriented* planes. - For $H\leq G$, we have $\E H = \E G$ and $\B H = \E G/H$. ::: > Question: can you get $\B \Spin_n$ this way? :::{.remark} An alternative description of $\EO_n$ and $\BO_n$, due to Milnor-Stasheff: write $\BO_n = \Gr_n(\RR^\infty)$ and define the **canonical bundle** $\gamma$. Recall that every principal $\Orth_n$ bundle is a pullback of the following form: \begin{tikzcd} {P = f^* \EO_n} && {\EO_n = V_n(\RR^\infty)} \\ \\ X && {\BO_n} \arrow["f", from=3-1, to=3-3] \arrow[from=1-1, to=3-1] \arrow[dashed, from=1-1, to=1-3] \arrow[from=1-3, to=3-3] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNCxbMCwwLCJQID0gZl4qIFxcRU9fbiJdLFswLDIsIlgiXSxbMiwwLCJcXEVPX24gPSBWX24oXFxSUl5cXGluZnR5KSJdLFsyLDIsIlxcQk9fbiJdLFsxLDMsImYiXSxbMCwxXSxbMCwyLCIiLDIseyJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJkYXNoZWQifX19XSxbMiwzXV0=) Moreover, $\Prin(\Orth_n)\slice X = [X, \BO_n] = [X, \Gr_n(\RR^\infty)]$. Then $\gamma_n \mapsvia{\pi} \Gr_n(\RR^\infty)$ is the $\RR^n\dash$bundle where $\pi\inv(v) = v = V$, regarded as a plane in $\RR^\infty$. Another description comes from the mixing construction: $\gamma_n = V_n(\RR^\infty) \mix{\Orth_n} \RR^n \to \Gr_n(\RR^\infty)$. \begin{tikzcd} {[\vector v_1, \cdots, \vector v_n] \times [t_1,\cdots, t_n]} && {\sum t_i \vector v_i} \\ {V_n(\RR^\infty) \times \RR^n} && {\gamma_n} \\ \\ {\Gr_n(\RR^\infty)} \arrow["{\pi'}", from=2-1, to=4-1] \arrow["\pi"', from=2-3, to=4-1] \arrow["{\exists \cong}"', from=2-1, to=2-3] \arrow[maps to, from=1-1, to=1-3] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNSxbMCwxLCJWX24oXFxSUl5cXGluZnR5KSBcXHRpbWVzIFxcUlJebiJdLFsyLDEsIlxcZ2FtbWFfbiJdLFswLDAsIltcXHZlY3RvciB2XzEsIFxcY2RvdHMsIFxcdmVjdG9yIHZfbl0gXFx0aW1lcyBbdF8xLFxcY2RvdHMsIHRfbl0iXSxbMiwwLCJcXHN1bSB0X2kgXFx2ZWN0b3Igdl9pIl0sWzAsMywiXFxHcl9uKFxcUlJeXFxpbmZ0eSkiXSxbMCw0LCJcXHBpJyJdLFsxLDQsIlxccGkiLDJdLFswLDEsIlxcZXhpc3RzIFxcY29uZyIsMl0sWzIsMywiIiwyLHsic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoibWFwcyB0byJ9fX1dXQ==) ::: :::{.definition title="Subbundles"} $E' \leq E$ is a **subbundle** iff there is an embedding $E' \embeds E$ over $X$: \begin{tikzcd} {E'} && E \\ \\ & X \arrow["{\pi'}"', from=1-1, to=3-2] \arrow["\pi", from=1-3, to=3-2] \arrow["f", hook, from=1-1, to=1-3] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsMyxbMCwwLCJFJyJdLFsyLDAsIkUiXSxbMSwyLCJYIl0sWzAsMiwiXFxwaSciLDJdLFsxLDIsIlxccGkiXSxbMCwxLCJmIiwwLHsic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoiaG9vayIsInNpZGUiOiJ0b3AifX19XV0=) We also require that restrictions to fibers $f_x: \ro{E'}{x} \to \ro{E}{x} \in \Mat(m\times n; \RR)$ is a linear map to an $n\dash$dimensional subspace $\ro{E}{x}$, where $\dim_\RR \ro{E'}{x} = n$ and $\dim_\RR \ro{E}{x} = m$. ::: :::{.lemma title="?"} Every vector bundle $E \mapsvia{\pi} X$ with $X\in \CW$ compact is a subbundle of a trivial bundle. ::: :::{.proof title="?"} Take $\ts{(U_i, \phi_i)}_{i=1}^m\covers X$ a finite cover by charts, and choose a subordinate partition of unity $\ts{\chi_i}_{i=1}^m$ such that $\supp \chi_i \subseteq U_i$. Then define \[ \psi: E &\to \RR^{nm} = \RR^n \times \RR^n \times \cdots \times \RR^n \\ v &\mapsto \tv{\chi_1(v) \phi_1(v), \chi_2(v) \phi_2(v), \cdots, \chi_m(v) \phi_m(v)} .\] This exhibits $(E \to X) \leq (X\times \RR^{nm} \to X)$ as a subbundle. ::: :::{.lemma title="?"} Every $(E\to X)\in \VectBunrk{n}\slice X$ for $X\in \CW$ compact is a pullback of the canonical bundle along some map $f:X\to \BO_n$. ::: :::{.example title="?"} For $E \mapsvia{\pi} X$ and $f: X\to \BO_n$, \(\psi: E\to \RR^{nm} \subseteq \RR^\infty \) and we can take $f(x) \da \psi(\pi\inv(x)) \in \Gr_n(\RR^\infty)$ to get $f^* \gamma_n \cong E$. ::: :::{.lemma title="?"} If $f^* \gamma_n \cong E$ and $g^* \gamma_n \cong E$, then $f \homotopic g$. ::: :::{.proof title="?"} Corresponding to $f^* \gamma_n \cong E$ we get a map $\tilde f: E\to \RR^{\infty}$ which restricts to an embedding on all fibers, and similarly $g^*\gamma_n \cong E$ yields $\tilde g: E\to \RR^\infty$. So take \[ L_t: \RR^\infty &\to \RR^\infty \\ \vector x &\mapsto (t-1)\tv{x_1,x_2,\cdots} + t\tv{x_1, 0, x_2, 0, x_3, 0, \cdots} ,\] which is a homotopy between identity and the self-embedding that maps into only odd coordinates. Composing $L_t \circ \tilde f$ yields a homotopy between $\tilde f$ and a map $F'$ whose image has only odd coordinates. Similarly, we can construct a $G_t$ for $\tilde g$ to get a homotopy between $\tilde g$ and a map $G'$ whose images has only even coordinates. Now take a linear homotopy $F'\to G'$, this yields a homotopy through embeddings (where we've first made them "transverse"). :::