# Tuesday, October 12 ## More Euler Class > Review how to construct the Euler and Thom classes. :::{.remark} Recall that the Euler class is the obstruction to finding a nowhere vanishing section on the $n\dash$skeleton. Given $E\to X \in \VectBundle(X)^{\dim = n}$, we can form the sphere bundle $S^{n-1}\to \SS E \to X$. Define a section $s: X\to \SS E$ over $X\skel{0}$, then inductively if $s$ is defined over $X\skel{i-1}$ for $i [Link to Diagram](https://q.uiver.app/?q=WzAsNSxbMCwwLCIoXFxEZWx0YV5uLCBcXGJkIFxcRGVsdGFebikiXSxbMiwwLCIoXFxEZWx0YV5uIFxcdGltZXMgXFxERF5uLCAoXFxiZCBcXERlbHRhXm4pXFx0aW1lcyBTXntuLTF9KSJdLFs0LDAsIihcXEREXm4sIFNee24tMX0pIl0sWzAsMiwiXFxiZCBcXERlbHRhXm4iXSxbNCwyLCJTXntuLTF9Il0sWzAsMSwiXFxiYXJ7c30iXSxbMSwyLCJcXHBpXzIiXSxbMCwyLCJcXHBzaSIsMCx7ImN1cnZlIjotNSwic3R5bGUiOnsiYm9keSI6eyJuYW1lIjoiZGFzaGVkIn19fV0sWzMsMCwiIiwwLHsic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoiaG9vayIsInNpZGUiOiJ0b3AifX19XSxbMyw0LCJcXHBzaSciLDJdLFs0LDIsIiIsMix7InN0eWxlIjp7InRhaWwiOnsibmFtZSI6Imhvb2siLCJzaWRlIjoidG9wIn19fV1d) We can then define $e_s(\Delta^n) \da \deg \psi$, and we claim that this also equals $\deg \psi'$. Look at the LES of a pair: \begin{tikzcd} \textcolor{rgb,255:red,214;green,92;blue,92}{H_n(\DD^n)=0} &&& \textcolor{rgb,255:red,214;green,92;blue,92}{H_n(\DD^n) = 0} \\ \\ {H_n(\DD^n; S^{n-1})\cong \ZZ} &&& {H_n(\DD^n; S^{n-1})\cong \ZZ} \\ \\ {H_{n-1}(S^{n-1})\cong \ZZ} &&& {H_{n-1}(S^{n-1})\cong \ZZ} \\ \\ \textcolor{rgb,255:red,214;green,92;blue,92}{H_{n-1}(\DD^n) = 0} &&& \textcolor{rgb,255:red,214;green,92;blue,92}{H_{n-1}(\DD^n) = 0} \arrow["{\psi^*}", from=3-1, to=3-4] \arrow[from=1-1, to=3-1] \arrow[from=1-4, to=3-4] \arrow["\cong"', color={rgb,255:red,92;green,214;blue,92}, from=3-1, to=5-1] \arrow["\cong"', color={rgb,255:red,92;green,214;blue,92}, from=3-4, to=5-4] \arrow["{(\psi')^*}"{description}, from=5-1, to=5-4] \arrow[from=5-1, to=7-1] \arrow[from=5-4, to=7-4] \arrow[from=7-1, to=7-4] \arrow[from=1-1, to=1-4] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsOCxbMCwyLCJIX24oXFxERF5uOyBTXntuLTF9KVxcY29uZyBcXFpaIl0sWzAsMCwiSF9uKFxcRERebik9MCIsWzAsNjAsNjAsMV1dLFszLDAsIkhfbihcXEREXm4pID0gMCIsWzAsNjAsNjAsMV1dLFswLDQsIkhfe24tMX0oU157bi0xfSlcXGNvbmcgXFxaWiJdLFszLDIsIkhfbihcXEREXm47IFNee24tMX0pXFxjb25nIFxcWloiXSxbMyw0LCJIX3tuLTF9KFNee24tMX0pXFxjb25nIFxcWloiXSxbMCw2LCJIX3tuLTF9KFxcRERebikgPSAwIixbMCw2MCw2MCwxXV0sWzMsNiwiSF97bi0xfShcXEREXm4pID0gMCIsWzAsNjAsNjAsMV1dLFswLDQsIlxccHNpXioiXSxbMSwwXSxbMiw0XSxbMCwzLCJcXGNvbmciLDIseyJjb2xvdXIiOlsxMjAsNjAsNjBdfSxbMTIwLDYwLDYwLDFdXSxbNCw1LCJcXGNvbmciLDIseyJjb2xvdXIiOlsxMjAsNjAsNjBdfSxbMTIwLDYwLDYwLDFdXSxbMyw1LCIoXFxwc2knKV4qIiwxXSxbMyw2XSxbNSw3XSxbNiw3XSxbMSwyXV0=) We may assume that $X$ is $n\dash$dimensional since for $(X, X\skel{n})$ we have \[ H^n(X, X\skel{n}) = 0 \to H^n(X) \injects H^n(X^n) ,\] so anything equal in $H^n(X\skel n)$ must be equal in $H^n(X)$. Fix a positive generator $\gens{x} = H^n(\DD^n, S^{n-1})$ and $\gens{y} = H_n(\Delta^n, \bd \Delta^n)$ to be the fundamental class (positive generator). Then \[ e_s(\Delta^n) = \ip{\bar{s}^* p^* x}{y} .\] Consider the map $(\Delta^n \times \DD^n, \bd \Delta^n \times S^{n-1}) \mapsvia{p} (\DD^n, S^{n-1})$, we have $p(\Delta^n\times S^{n-1}) = S^{n-1}$. Then we claim that $p^*(x) = u$ will be the Thom class. Using the attaching map $i: \Delta^n \to X\skel n$, we obtain \[ H^n(\DD E, \SS E) \mapsvia{i^*} H^n(\Delta^n \times \DD^n, \Delta^n \times S^{n-1}) .\] Use that $\bar{s}: X\to \DD E$ induces an isomorphism $\bar{s}^*: H^n(\DD E)\to H^n(X)$, inducing the same isomorphism as the zero section. So $(s')^* = \bar{s}^*$, i.e. any two sections of the disc bundle will be homotopic and thus induce equal maps in homology. Now doing exactly what we did for the Euler class, we get a diagram: \begin{tikzcd} && {} & \textcolor{rgb,255:red,92;green,92;blue,214}{u} \\ & {H^n(\DD E)} & {} & {H^n(\DD E, \SS E) } && {H^n(\Delta^n \times \DD^n, \Delta^n \times S^{n-1})} \\ & {H^n(X)} \\ \textcolor{rgb,255:red,92;green,92;blue,214}{e} &&& {H^n(X\skel n, X\skel{n-1})} && {H^n(\Delta^n, \bd \Delta^n)} \arrow["{i^*}", from=2-4, to=2-6] \arrow["{i_*}", from=4-4, to=4-6] \arrow["{\bar{s}^*}", from=2-6, to=4-6] \arrow["{\bar{s}^*}"', from=2-4, to=4-4] \arrow["LES"', from=2-4, to=2-2] \arrow["{\bar{s}^*}"', from=2-2, to=3-2] \arrow["LES"', from=4-4, to=3-2] \arrow[color={rgb,255:red,92;green,92;blue,214}, curve={height=18pt}, dashed, maps to, from=1-4, to=4-1] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsMTAsWzMsMSwiSF5uKFxcREQgRSwgXFxTUyBFKSAiXSxbNSwxLCJIXm4oXFxEZWx0YV5uIFxcdGltZXMgXFxERF5uLCBcXERlbHRhXm4gXFx0aW1lcyBTXntuLTF9KSJdLFszLDMsIkhebihYXFxza2VsIG4sIFhcXHNrZWx7bi0xfSkiXSxbNSwzLCJIXm4oXFxEZWx0YV5uLCBcXGJkIFxcRGVsdGFebikiXSxbMiwxXSxbMiwwXSxbMywwLCJ1IixbMjQwLDYwLDYwLDFdXSxbMSwxLCJIXm4oXFxERCBFKSJdLFsxLDIsIkhebihYKSJdLFswLDMsImUiLFsyNDAsNjAsNjAsMV1dLFswLDEsImleKiJdLFsyLDMsImlfKiJdLFsxLDMsIlxcYmFye3N9XioiXSxbMCwyLCJcXGJhcntzfV4qIiwyXSxbMCw3LCJMRVMiLDJdLFs3LDgsIlxcYmFye3N9XioiLDJdLFsyLDgsIkxFUyIsMl0sWzYsOSwiIiwyLHsiY3VydmUiOjMsImNvbG91ciI6WzI0MCw2MCw2MF0sInN0eWxlIjp7InRhaWwiOnsibmFtZSI6Im1hcHMgdG8ifSwiYm9keSI6eyJuYW1lIjoiZGFzaGVkIn19fV1d) More directly, we can map the LESs to get a commutative square: \begin{tikzcd} {H^n(\DD E, \SS E)} && {H^n(X\skel n, X\skel{n-1})} \\ \\ {H^n(\DD E)} && {H^n(X\skel n)} \arrow["{\bar{s}^*}", from=1-1, to=1-3] \arrow["{\bar{s}^*}", from=3-1, to=3-3] \arrow[from=1-1, to=3-1] \arrow[from=1-3, to=3-3] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNCxbMCwwLCJIXm4oXFxERCBFLCBcXFNTIEUpIl0sWzAsMiwiSF5uKFxcREQgRSkiXSxbMiwwLCJIXm4oWFxcc2tlbCBuLCBYXFxza2Vse24tMX0pIl0sWzIsMiwiSF5uKFhcXHNrZWwgbikiXSxbMCwyLCJcXGJhcntzfV4qIl0sWzEsMywiXFxiYXJ7c31eKiJdLFswLDFdLFsyLDNdXQ==) In other words, regard $e\in H^n_\cell(X)$, so $e$ corresponds to $[c]\in \Hom_{\mods{\ZZ}}(C^n(X), \ZZ)$. We then claim that for $c\in H^n(X\skel n, X\skel{n-1})$, we have $e_s(\Delta^n) = i^* c(\Delta^n, \bd\Delta^n)$ using $i: (\Delta^n, \bd \Delta^n)\to (X\skel n, X\skel{n-1})$. Final diagram: \begin{tikzcd} && {} & \textcolor{rgb,255:red,92;green,92;blue,214}{u} && \textcolor{rgb,255:red,92;green,92;blue,214}{p^*x = i^* u} \\ & {H^n(\DD E)} & {} & {H^n(\DD E, \SS E) } && {H^n(\Delta^n \times \DD^n, \Delta^n \times S^{n-1})} \\ \textcolor{rgb,255:red,92;green,92;blue,214}{e} & {H^n(X)} \\ &&& {H^n(X\skel n, X\skel{n-1})} && {H^n(\Delta^n, \bd \Delta^n)} & \textcolor{rgb,255:red,92;green,92;blue,214}{\bar{s}^* p^* x = \bar{s}^* i^* u} \arrow["{i^*}", from=2-4, to=2-6] \arrow["{i_*}", from=4-4, to=4-6] \arrow["{\bar{s}^*}", from=2-6, to=4-6] \arrow["{\bar{s}^*}"', from=2-4, to=4-4] \arrow["LES"', from=2-4, to=2-2] \arrow["{\bar{s}^*}"', from=2-2, to=3-2] \arrow["LES"', two heads, from=4-4, to=3-2] \arrow[color={rgb,255:red,92;green,92;blue,214}, curve={height=30pt}, dashed, maps to, from=1-4, to=3-1] \arrow[color={rgb,255:red,92;green,92;blue,214}, dashed, maps to, from=1-4, to=1-6] \arrow[color={rgb,255:red,92;green,92;blue,214}, curve={height=-30pt}, dashed, maps to, from=1-6, to=4-7] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsMTIsWzMsMSwiSF5uKFxcREQgRSwgXFxTUyBFKSAiXSxbNSwxLCJIXm4oXFxEZWx0YV5uIFxcdGltZXMgXFxERF5uLCBcXERlbHRhXm4gXFx0aW1lcyBTXntuLTF9KSJdLFszLDMsIkhebihYXFxza2VsIG4sIFhcXHNrZWx7bi0xfSkiXSxbNSwzLCJIXm4oXFxEZWx0YV5uLCBcXGJkIFxcRGVsdGFebikiXSxbMiwxXSxbMiwwXSxbMywwLCJ1IixbMjQwLDYwLDYwLDFdXSxbMSwxLCJIXm4oXFxERCBFKSJdLFsxLDIsIkhebihYKSJdLFswLDIsImUiLFsyNDAsNjAsNjAsMV1dLFs1LDAsInBeKnggPSBpXiogdSIsWzI0MCw2MCw2MCwxXV0sWzYsMywiXFxiYXJ7c31eKiBwXiogeCA9IFxcYmFye3N9XiogaV4qIHUiLFsyNDAsNjAsNjAsMV1dLFswLDEsImleKiJdLFsyLDMsImlfKiJdLFsxLDMsIlxcYmFye3N9XioiXSxbMCwyLCJcXGJhcntzfV4qIiwyXSxbMCw3LCJMRVMiLDJdLFs3LDgsIlxcYmFye3N9XioiLDJdLFsyLDgsIkxFUyIsMix7InN0eWxlIjp7ImhlYWQiOnsibmFtZSI6ImVwaSJ9fX1dLFs2LDksIiIsMix7ImN1cnZlIjo1LCJjb2xvdXIiOlsyNDAsNjAsNjBdLCJzdHlsZSI6eyJ0YWlsIjp7Im5hbWUiOiJtYXBzIHRvIn0sImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9fX1dLFs2LDEwLCIiLDAseyJjb2xvdXIiOlsyNDAsNjAsNjBdLCJzdHlsZSI6eyJ0YWlsIjp7Im5hbWUiOiJtYXBzIHRvIn0sImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9fX1dLFsxMCwxMSwiIiwwLHsiY3VydmUiOi01LCJjb2xvdXIiOlsyNDAsNjAsNjBdLCJzdHlsZSI6eyJ0YWlsIjp7Im5hbWUiOiJtYXBzIHRvIn0sImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9fX1dXQ==) ::: ## Computations on Smooth Manifolds :::{.remark} Recall that a smooth structure on a manifold $M$ is a collection $(U, \phi_U)$ where $U \subseteq M$ is open, $\phi_U: U\to \RR^n$ is a homeomorphism onto an open subset of $\RR^n$, and for all $U, V$ we have \[ \psi_{VU} \da \phi_V\inv \circ \phi_U: \phi_U(U \intersect V) \to \phi_V(U \intersect V) \in C^\infty ,\] so there are all diffeomorphisms of open subsets of $\RR^n$. A smooth atlas is maximal if not contained in any other smooth atlas, and two atlases are compatible if their union is again a smooth atlas. We say two smooth structures are equivalent if they are compatible. ::: :::{.exercise title="?"} Show that any smooth manifold has a unique maximal smooth atlas. ::: :::{.remark} Recall that for $f: \RR^n\to \RR^m$, $df\in \Mat(m\times n; \RR)$ is given by $(df)_{ij} = \dd{f_i}{x_j}$. For any $p\in U \intersect V$, we have $d_{\phi_U(p)} \psi_{VU} \in \GL_n(\RR)$, so we get a map $d\psi_{VU}: U \intersect V\to \GL_n(\RR)$. By the chain rule they satisfying the cocycle definition, so these glue to a vector bundle $\T M\to M$. ::: :::{.exercise title="?"} Show that every other definition of $\T M$ coincides with this one. :::