# Thursday, October 14 :::{.remark} Some background from smooth manifolds: a map $f:M\to N$ of manifolds is **smooth** if for any smooth charts $(U, \phi_U)$ and $(V, \psi_V)$ on $M, N$ respectively, the transition map $\psi_V \circ f \circ \phi_U \inv\RR^m\to\RR^n$ is smooth. ::: :::{.exercise title="?"} \envlist 1. Any smooth map $f:M\to N$ induces a bundle map $df: \T M\to f^* \T N$. 2. There is a canonical isomorphism $\T \RR^n \to \RR^n\times \RR^n$. 3. Let $(U, \phi_U)$ be a chart on $M$, then show that there are trivializing charts for $\T M$: \[ d\phi_U: \ro{\T M}{U} \to \ro{ \phi_U^* }{ \T \RR^n }{U} \cong U \times \RR^n .\] In particular, the following diagram commutes: \begin{tikzcd} {\ro{\T M}{U}} && {U\times \RR^n} \\ \\ U \arrow["\pi", from=1-1, to=3-1] \arrow["{d\phi_U}", from=1-1, to=1-3] \arrow[from=1-3, to=3-1] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsMyxbMCwwLCJcXHJve1xcVCBNfXtVfSJdLFswLDIsIlUiXSxbMiwwLCJVXFx0aW1lcyBcXFJSXm4iXSxbMCwxLCJcXHBpIl0sWzAsMiwiZFxccGhpX1UiXSxbMiwxXV0=) ::: :::{.exercise title="?"} Show that there is a canonical isomorphism \[ T_p M \iso \Der(M, \RR) \leq C^\infty(M, \RR) ,\] where a derivation at $p$ is a smooth functional $v: C^\infty(M, \RR)\to \RR$ such that $v(fg) = v(f) g(p) + f(p) v(g)$. ::: :::{.remark} $N \subseteq M$ is a **smooth submanifold** if for any $p\in N$ there exists a smooth chat $(U, \varphi)$ on $M$ such that $p\in U$ and $\phi(U \intersect N) \subseteq \RR^k \times\ts{0} \subseteq \RR^n$. ::: :::{.exercise title="?"} Show that this is equivalent to $N = f(\tilde N)$ where $\tilde N$ is some smooth manifold and $f:\tilde N\to M$ is a smooth embedding and $d_p f: \T_p \tilde N\injects F_{f(p)} M$ is injective for all $p\in \tilde N$. ::: :::{.definition title="?"} Given a Riemannian metric on $\T M$ and a smooth submanifold $N \subseteq M$, let $\nu N$ denote $(\T N)^\perp \subseteq \ro{ \T M}{N}$ for the orthogonal complement of $\T N$. This is a vector bundle $\nu N \to N$. ::: :::{.exercise title="?"} Show that up to a canonical isomorphism, this is independent of the choice of Riemannian metric. ::: :::{.definition title="?"} Given a curve $\gamma: I\to M$, then $\gamma'(t) \in \T_{\gamma(t)} M$ is the following derivation: \[ \gamma'(t) . f \da \lim_{h\to 0} { f(\gamma(t+h)) - f(\gamma(t)) \over h} .\] A **vector field** on $M$ is a section of $\T M$, and a vector field along $\gamma$ is a section of $\gamma^* \T M$: \begin{tikzpicture} \fontsize{43pt}{1em} \node (node_one) at (0,0) { \import{/home/zack/SparkleShare/github.com/Notes/Class_Notes/2021/Fall/CharacteristicClasses/sections/figures}{2021-10-14_13-15.pdf_tex} }; \end{tikzpicture} ::: :::{.example title="?"} $\gamma'(t)$ is a vector field along $\gamma$. ::: :::{.remark} A **Lie group** is a group $G$ with the structure of a smooth manifold where multiplication and inversion are smooth self-diffeomorphisms. ::: :::{.definition title="?"} Given a Lie group $G$ and smooth principal $G\dash$bundle $P \mapsvia{\pi} M^n$, a **connection** on $P$ is a choice of subspaces $\xi_p \subseteq T_p P$ for all $p\in P$ such that $d\pi: \xi_p \to \T_{\pi(p)} M$ is an isomorphisms for all $p$, where $\xi_p$ is the horizontal subspace: \begin{tikzpicture} \fontsize{45pt}{1em} \node (node_one) at (0,0) { \import{/home/zack/SparkleShare/github.com/Notes/Class_Notes/2021/Fall/CharacteristicClasses/sections/figures}{2021-10-14_13-25.pdf_tex} }; \end{tikzpicture} ::: :::{.remark} Given a connection, curves $\gamma$ in $M$ can be lifted to curves $\tilde \gamma$ in $P$ in such a way that tangents of $\tilde \gamma$ are projected to tangents of $\gamma$: ::: :::{.definition title="?"} Given a connection on $P$ and a smooth path $\gamma: I\to M$, a horizontal lift $\tilde \gamma$ of $\gamma$ is a path $\tilde \gamma: I\to P$ such that $\tilde \gamma'(t) \in \xi_{\tilde \gamma(t)}$ and $\pi \circ \tilde \gamma = \gamma$. \begin{tikzpicture} \fontsize{45pt}{1em} \node (node_one) at (0,0) { \import{/home/zack/SparkleShare/github.com/Notes/Class_Notes/2021/Fall/CharacteristicClasses/sections/figures}{2021-10-14_13-32.pdf_tex} }; \end{tikzpicture} ::: :::{.lemma title="?"} Given a smooth path \( \gamma \) and $\tilde \gamma(0)$, there is a unique horizontal lift $\tilde \gamma$ starting at $\tilde \gamma(0)$. ::: :::{.remark} Consider $\Frame(\T M)$, then recall that $\TM = \Frame(\T M) \mix{\GL_n(\RR)} \RR^n$ by the mixing construction. Given a connection on $\Frame(\T M)$, we can parallel transport vectors in $\T M$ along curves. This comes from taking $[F_0, v_0]$ and evolving $F_0$ along $F_t \da \tilde \gamma(t)$, choosing pairs $[F_t, v_0]$ for all $t$, and ending at $[F_t, v_0]$. ::: :::{.exercise title="?"} Show that parallel transport yields a well-defined map $\T_{\gamma(0)}M \to \T_{\gamma(1))}M$. ::: :::{.theorem title="?"} Given a Riemannian metric on $\T M$, there is a canonical connection $\nabla$, the **Levi-Cevita** connection, which is torsionfree (i.e. $\nabla_X Y - \nabla_Y X = [X, Y]$) for $X, Y$ vector fields and $\nabla_X Y$ denotes parallel transporting $Y$ along $X$. ::: :::{.definition title="?"} A curve $\gamma$ is a **geodesic** if $\gamma'(t)$ is parallel. ::: :::{.theorem title="?"} For any $v\in \TM$, there is a unique geodesic $\gamma_v$ with $\gamma_v'(0) = v$. ::: :::{.definition title="Exponential map"} There is a map \[ \exp: T_p M &\to M \\ v &\mapsto \gamma_v(1) .\] This is well-defined for $v$ of small norm, and for all $v$ if $M$ is closed. ::: :::{.theorem title="?"} If $N \leq M$ is a submanifold, then $\exp$ defines a diffeomorphism from a neighborhood of the zero section in $\nu N$ to a neighborhood of $N$. \begin{tikzpicture} \fontsize{45pt}{1em} \node (node_one) at (0,0) { \import{/home/zack/SparkleShare/github.com/Notes/Class_Notes/2021/Fall/CharacteristicClasses/sections/figures}{2021-10-14_14-04.pdf_tex} }; \end{tikzpicture} :::