# Thursday, October 21 :::{.remark} Recall that if $N^n \leq M^n$ is a submanifold, we have the following diagram: \begin{tikzcd} {u_{\nu N}} & {H^{m-n}(\DD \nu N, \SS \nu N)} && {H^{m-n}(M, M\sm N)} && {H^{m-n}(M)} \\ \\ & {H_n(\DD \nu N)} && {H_n(N)} && {H_n(M)} \\ &&& {[N]} \arrow["\PD", from=3-6, to=1-6] \arrow["\cong", from=3-2, to=3-4] \arrow["{i_*}", from=3-4, to=3-6] \arrow["{j^*}"', from=1-4, to=1-6] \arrow["{\cong, \text{ excision}}"', from=1-2, to=1-4] \arrow["\PD"', from=3-2, to=1-2] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsOCxbMSwwLCJIXnttLW59KFxcREQgXFxudSBOLCBcXFNTIFxcbnUgTikiXSxbMywwLCJIXnttLW59KE0sIE1cXHNtIE4pIl0sWzUsMCwiSF57bS1ufShNKSJdLFs1LDIsIkhfbihNKSJdLFsxLDIsIkhfbihcXEREIFxcbnUgTikiXSxbMywyLCJIX24oTikiXSxbMywzLCJbTl0iXSxbMCwwLCJ1X3tcXG51IE59Il0sWzMsMiwiXFxQRCJdLFs0LDUsIlxcY29uZyJdLFs1LDMsImlfKiJdLFsxLDIsImpeKiIsMl0sWzAsMSwiXFxjb25nLCBcXHRleHR7IGV4Y2lzaW9ufSIsMl0sWzQsMCwiXFxQRCIsMl1d) Then the Thom class $u_{\nu N}\in H^{m-n}(\DD\nu N, \SS \nu N) \to H^{m-n}(\DD \nu N_x, \SS \nu N_x)$ is mapped to the generator specified by the orientations on fibers. ::: :::{.theorem title="?"} For $A^i \transverse B^j \leq X$ are smooth oriented submanifolds intersecting transversally, then \[ \PD([A]) \cupprod \PD([B]) &= \PD([A \capprod B]) \\ H^{n-i}(X) \times H^{n-j}(X) &\to H^{2n-i-j}(X) .\] ::: :::{.remark} Then \[ [( \DD \nu N_x, \SS \nu N_x) \capprod N] = [\ts{x}] ,\] which is the positive generator. So \[ \PD[ (\DD\nu N_x, \SS\nu N_x) ] \cupprod \PD[N] = \PD[x] .\] Now we can cap this to obtain \[ [\DD \nu N, \SS \nu N] \capprod \qty{ \PD[ (\DD\nu N_x, \SS\nu N_x) ] \cupprod \PD[N]} &= \qty{ [\DD\nu N, \SS\nu N] \capprod \PD [\DD\nu N_x, \SS \nu N_x] } \capprod \PD[N] \\ &= [\DD \nu N, \SS \nu N] \capprod \PD[x] \\ &= 1 ,\] where we've used that $\inner{\PD [x]}{ [\DD \nu N, \SS \nu N] }$. So $\PD[N]$ is $j^*$ of the Thom class of $\nu N$. ::: :::{.theorem title="?"} Let $M \in \smooth\Mfd^n$ be closed and oriented and $E \mapsvia{\pi} M$ a $k\dash$dimensional oriented vector bundle. Consider a generic section $s$ of $E$, so $\im(s) \transverse M$ in $E$. Then \[ e(E) = \PD[Z] && Z \da \im(s) \intersect M = s\inv(0) .\] ::: :::{.remark} Recall that $s\inv(0) \leq M$ is a smooth submanifold, and $\ro{ds}{Z}: \nu Z \iso \ro{E}{Z}$, and since this orients $\nu Z$ this orients $Z$ as well. ::: :::{.proof title="?"} Let $N$ be a tubular neighborhood of $Z$ in $M$, such that $N \cong \DD \nu Z$. By the lemma, we have two maps \begin{tikzcd} {H^k(N, N\sm Z)} && {H^k(M, M\sm Z)} && {H^k(M)} \\ {u_{\nu Z}} &&&& {\PD[Z]} \arrow["\cong", from=1-1, to=1-3] \arrow["{j^*}", from=1-3, to=1-5] \arrow["{\text{Lemma}}"', curve={height=30pt}, from=1-1, to=1-5] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNSxbMCwwLCJIXmsoTiwgTlxcc20gWikiXSxbMiwwLCJIXmsoTSwgTVxcc20gWikiXSxbNCwwLCJIXmsoTSkiXSxbMCwxLCJ1X3tcXG51IFp9Il0sWzQsMSwiXFxQRFtaXSJdLFswLDEsIlxcY29uZyJdLFsxLDIsImpeKiJdLFswLDIsIlxcdGV4dHtMZW1tYX0iLDIseyJjdXJ2ZSI6NX1dXQ==) on the other hand, since $Z \injectsvia{i} M$, we get \begin{tikzcd} {\ro{E}{Z}} && E \\ \\ & N \arrow["\iota", from=1-1, to=1-3] \arrow["{\ro{ds}{Z}}", from=3-2, to=1-1] \arrow["s"', from=3-2, to=1-3] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsMyxbMCwwLCJcXHJve0V9e1p9Il0sWzIsMCwiRSJdLFsxLDIsIk4iXSxbMCwxLCJcXGlvdGEiXSxbMiwwLCJcXHJve2RzfXtafSJdLFsyLDEsInMiLDJdXQ==) :::{.exercise title="?"} Show $\ro{ds}{Z} \homotopic s$ are homotopic sections. ::: Then $(\ro{ds}{Z})^* \circ i^* (u_E) = u_{\nu Z}$, so $u_{\nu Z} = s^* u_E$, and we have \begin{tikzcd} \textcolor{rgb,255:red,92;green,92;blue,214}{u_E} &&&& \textcolor{rgb,255:red,92;green,92;blue,214}{u_{\nu Z}} \\ & {H^k(E, E\sm M)} && {H^k(M, M\sm Z)} \\ \\ & {H^k(E)} && {H^k(M)} \\ \textcolor{rgb,255:red,92;green,92;blue,214}{?} &&&& \textcolor{rgb,255:red,92;green,92;blue,214}{\PD[Z]} \\ &&&& \textcolor{rgb,255:red,92;green,92;blue,214}{e(E)} \arrow["{\text{LES}}", from=2-2, to=4-2] \arrow["{s^*}", from=2-2, to=2-4] \arrow["{s^*, \cong}", from=4-2, to=4-4] \arrow[from=2-4, to=4-4] \arrow[color={rgb,255:red,92;green,92;blue,214}, dashed, from=1-1, to=1-5] \arrow[color={rgb,255:red,92;green,92;blue,214}, dashed, from=1-5, to=5-5] \arrow[color={rgb,255:red,92;green,92;blue,214}, dashed, from=5-1, to=6-5] \arrow[color={rgb,255:red,92;green,92;blue,214}, dashed, from=1-1, to=5-1] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsOSxbMSwxLCJIXmsoRSwgRVxcc20gTSkiXSxbMSwzLCJIXmsoRSkiXSxbMCwwLCJ1X0UiLFsyNDAsNjAsNjAsMV1dLFswLDQsIj8iLFsyNDAsNjAsNjAsMV1dLFszLDEsIkheayhNLCBNXFxzbSBaKSJdLFs0LDAsInVfe1xcbnUgWn0iLFsyNDAsNjAsNjAsMV1dLFszLDMsIkheayhNKSJdLFs0LDQsIlxcUERbWl0iLFsyNDAsNjAsNjAsMV1dLFs0LDUsImUoRSkiLFsyNDAsNjAsNjAsMV1dLFswLDEsIlxcdGV4dHtMRVN9Il0sWzAsNCwic14qIl0sWzEsNiwic14qLCBcXGNvbmciXSxbNCw2XSxbMiw1LCIiLDAseyJjb2xvdXIiOlsyNDAsNjAsNjBdLCJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJkYXNoZWQifX19XSxbNSw3LCIiLDAseyJjb2xvdXIiOlsyNDAsNjAsNjBdLCJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJkYXNoZWQifX19XSxbMyw4LCIiLDAseyJjb2xvdXIiOlsyNDAsNjAsNjBdLCJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJkYXNoZWQifX19XSxbMiwzLCIiLDEseyJjb2xvdXIiOlsyNDAsNjAsNjBdLCJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJkYXNoZWQifX19XV0=) Since the diagram commutes, we get $e(E) = \PD[Z]$. ::: :::{.remark} The Euler class for a bundle $E\to X\in \CW$ is the obstruction to finding a nowhere vanishing section on $X\skel{n}$ for $n\da \dim E$, and $e(E) = 0$ iff there is a nowhere vanishing section on $X\skel{n}$. For a smooth manifold $M$ and $E \mapsvia{\pi} M$ with $\dim M = n, \dim E = k$ and $s:M\to E$ a section, then $\PD[s\inv(0)] = e[E]$ since $\dim s\inv(0) = n-k$. If $E = \T M$, then $e(\T M) = 0$ implies $\chi(M) = 0$ and there exists a nowhere vanishing vector field. :::