# Thursday, October 28 :::{.remark} The Euler class is *natural* in the following sense: for $E\to X$ with $\dim E = n$ and $X\in \CW$, we can write \begin{tikzcd} {E\cong f^* \gamma_n} && {\gamma_n} \\ \\ X && {\BO_n} \arrow[from=1-1, to=3-1] \arrow["f", from=3-1, to=3-3] \arrow[from=1-3, to=3-3] \arrow[from=1-1, to=1-3] \arrow["\lrcorner"{anchor=center, pos=0.125}, draw=none, from=1-1, to=3-3] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNCxbMCwwLCJFXFxjb25nIGZeKiBcXGdhbW1hX24iXSxbMCwyLCJYIl0sWzIsMiwiXFxCT19uIl0sWzIsMCwiXFxnYW1tYV9uIl0sWzAsMV0sWzEsMiwiZiJdLFszLDJdLFswLDNdLFswLDIsIiIsMSx7InN0eWxlIjp7Im5hbWUiOiJjb3JuZXIifX1dXQ==) Then naturality is the following equality: \[ e(E) = e(f^* \gamma_n) = f^*(e(\gamma_n)) .\] Recall the Thom isomorphism theorem: for an oriented $E\in \VectBundle^n$, we have a disk bundle $\DD E$ and sphere bundle $\SS E$, and \[ H^j(\DD E; \SS E) \cong \begin{cases} 0 & j< n \\ \ZZ & j=n \\ H^{j-n}(\DD E) & j> n \end{cases} ,\] noting that we can take $H^n(\DD E, \SS E) \to H^n (\DD E_x, \SS E_x) \iso H^n(D^n, S^{n-1})$, where the target has a canonical positive generator. The preimage of this generator is $u_E$, the Thom class. The isomorphisms in the range $j>n$ are given by $\wait \cupprod u_E$. We had a claim: \[ H^n(\DD E, \SS E) &\to H^n(\DD E) \cong H^n(X) \\ u_E &\mapsto e(E) .\] ::: :::{.remark} On the **Gysin sequence**: use the bundle $S^{n-1} \injects \SS E \to X$ and the LES \[ \cdots \to H^{j-1}(\SS E) \mapsvia{\delta} H^{j-n}(X) \mapsvia{(\wait) \cupprod e(E)} H^j(X) \to H^j(\SS E) \to \cdots .\] The connecting map $\delta$ comes from the Thom isomorphisms $H^j(\DD E, \SS E)\iso H^{j-n}(\DD E)$ and splicing the LES of the pair $(\DD E, \SS E)$. ::: :::{.proposition title="?"} If $E$ is odd dimensional, then $2 e(E) = 0$. Note that $e(E_1 \oplus E_2) - e(E_1) \cupprod e(E_2)$, and if $E$ has a nonvanishing section then $e(E) = 0$. ::: :::{.remark} So $e(E)$ is the obstruction to finding a nonvanishing section over the $n\dash$skeleton, where $\dim E = n$. Given a nonvanishing section over $X\skel{k-1}$, consider extending it over $X\skel{k}$. We can use the cellular attaching maps to write \begin{tikzcd} {\Delta^k \times S^{n-1}} && {i^* \SS E} && {\SS E} \\ \\ && {\Delta^k} && X \arrow["i", from=3-3, to=3-5] \arrow[from=1-5, to=3-5] \arrow[from=1-3, to=1-5] \arrow[from=1-3, to=3-3] \arrow[from=1-1, to=1-3] \arrow[from=1-1, to=3-3] \arrow["{s: \bd \Delta^k \to S^{n-1} \in \pi_{k}^{S^{n-1}}}", curve={height=-18pt}, dashed, from=3-3, to=1-1] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNSxbMiwyLCJcXERlbHRhXmsiXSxbNCwyLCJYIl0sWzQsMCwiXFxTUyBFIl0sWzIsMCwiaV4qIFxcU1MgRSJdLFswLDAsIlxcRGVsdGFeayBcXHRpbWVzIFNee24tMX0iXSxbMCwxLCJpIl0sWzIsMV0sWzMsMl0sWzMsMF0sWzQsM10sWzQsMF0sWzAsNCwiczogXFxiZCBcXERlbHRhXmsgXFx0byBTXntuLTF9IFxcaW4gXFxwaV97a31ee1Nee24tMX19IiwwLHsiY3VydmUiOi0zLCJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJkYXNoZWQifX19XV0=) - If $s \in \pi_k(S^n)$ and $k [Link to Diagram](https://q.uiver.app/?q=WzAsNyxbMSwwLCJIXnttLW59KFxcREQgXFxudSBOLCBcXFNTIFxcbnUgTikiXSxbMSwyLCJIXnttLW59KE4pIFxcY29uZyBIXnttLW59KFxcREQgXFxudSBOKSJdLFszLDIsIkhee20tbn0oTSkiXSxbNCwyLCJcXFBEW05dIixbMjQwLDYwLDYwLDFdXSxbMywwLCJIXnttLW59KE0sIE1cXHNtIE4pIl0sWzAsMiwiZSh1X3tcXG51IE59KSIsWzI0MCw2MCw2MCwxXV0sWzAsMCwidV97XFxudSBOfSIsWzI0MCw2MCw2MCwxXV0sWzQsMl0sWzIsMSwiXFxyZXMiXSxbNCwwLCJcXHRleHR7ZXhjaXNpb259IiwyXSxbMCwxXSxbNiwzLCIiLDIseyJjdXJ2ZSI6LTEsImNvbG91ciI6WzI0MCw2MCw2MF0sInN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9fX1dLFszLDUsIiIsMix7ImN1cnZlIjotNSwiY29sb3VyIjpbMjQwLDYwLDYwXSwic3R5bGUiOnsiYm9keSI6eyJuYW1lIjoiZGFzaGVkIn19fV1d) So we can compute $e(E)$ for $\T M$ and $\nu N$. ::: :::{.remark} Next topics: Chern and Stiefel-Whitney classes. ::: :::{.theorem title="?"} For $E\to X$ a real vector bundle, there are characteristic classes $w_i(E) \in H^i(X; C_2)$ and $w \da 1 + w_1(E) + w_2(E) + \cdots \in H^*(E)$ , the **Stiefel-Whitney classes**, satisfying the following properties: 1. Naturality: $w_i(f^*(E)) = f^*(w_i(E))$ 2. $w(E_1 \bigoplus E_2) = w(E_1 )\cupprod w(E_2)$ 3. $w_i(E) = 0$ if $i>\dim_\RR E$. 4. If $E\to \RP^\infty$ is the canonical line bundle, then $w_1(E) = \alpha$ for $\gens{\alpha} = H^1(\RP^\infty; C_2)$. Moreover, these properties characterize $w_i(E)$ uniquely. For complex vector bundles, there are $c_i(E) \in H^{2i}(X; \ZZ)$ and $c_(E)$, the **Chern classes**, which satisfy the same properties with $\CC$ instead of $\RR$ and $\gens{\alpha} = H^2(\CP^\infty; \ZZ)$. ::: :::{.remark} Next time: existence and uniqueness. :::