# Stiefel-Whitney and Chern Classes (Tuesday, November 02) :::{.remark} The Stiefel-Whitney classes $w_i \in H^i(X; C_2)$ will be defined for $\VectBundle(X)\slice \RR$ while Chern classes $c_i \in H^{2i}(X; \ZZ)$ will be defined for $\VectBundle(X)\slice \CC$. We setting $w(E) \da \sum_i w_i(E) \in H^*(X; C_2)$, we mentioned several properties: - $w_i(f^* E) = f^* w_i(E)$ - $w(E_1 \oplus E_2) = w(E_1) \cupprod w(E_2)$ - $w_{> \dim E} E = 0$ - $w_1(\gamma)$ is the generator of $H^1(\RP^\infty; C_2) = C_2$ where $\gamma \to \RP^\infty$ is the canonical line bundle. For complex bundles, $c_1(\gamma)$ is the positive generator of $H^2(\CP^\infty; \ZZ) = \ZZ$. These properties characterize the $w_i$ and $c_i$ uniquely. ::: :::{.remark} On why we need $C_2$ coefficients: we're pulling back $\gamma \to \BO_1$ and $\BO_1 \homotopic \RP^\infty$ where $H^1(\RP^\infty; \ZZ) = 0$! For line bundles, we'll automatically have $w_{\geq 2} = 0$ for any such class, so we only have $w_1$ the work with, and this we need to pull back something nonzero to get anything interesting. ::: :::{.corollary title="?"} Some immediate consequences: - $w_i(E \oplus \RR) = w_i(E)$, this if $E$ is trivial then $w_i(E) = 0$ and $w(E) = 1$. Moreover $w(E \oplus \RR) = w(E) w(\RR) = w(E)$ since $w(\RR) = 1$. - If $E$ has $k$ linearly independent nonvanishing sections, then there is a splitting $E = E' \oplus R\sumpower{k}$ where $\dim E' = n-k$. Thus $w_i(E) = 0$ for $i> n-k$. - If $E_1 \oplus E_2$ is trivial, then $w(E_1) \cupprod w(E_2) = 1$. ::: :::{.example title="?"} If $M \subseteq \RR^N$, then $w(\T M) \cupprod w(\nu M) = 1$. If $S^n \subseteq \RR^{n+1}$, then $w(\T S^n) = 1$ since $w(\nu S^n) = 1$. So for example $w(\T S^2) = 1$, but $\T S^2$ has no nonvanishing sections. ::: :::{.remark} Consider inverting a formal power series $\sum_{i\geq 0} a_i$: \[ (1 + a_1 + a_2 + a_3 + \cdots)( 1 - a_1 + (a_1^2 + a_2) + (a_1^3 + 2a_1 a_2 - a_3) + \cdots) = 1 .\] So if $w(E_1)w(E_2) = 1$, we can solve for $w(E_1)$ in terms of $w(E_2)$. ::: :::{.proposition title="?"} Note that $H^*(\RP^n; C_2) = \FF_2[a]/\gens{a^{n+1}}$ where $H^1(\RP^n; C_2) = \gens{a}$. Claim: $w(\T \RP^n) = (1+a)^{n+1}$ ::: :::{.proof title="?"} Let $\gamma\to \RP^n$ be the canonical line bundle, which is a pullback of $\gamma^\infty \to \RP^\infty$ and $\gens{ w_1(\gamma^\infty) } = H^1(\RP^\infty; C_2)$. By the naturality property, $w_1(\gamma) = \alpha$ in $H^1(\RP^n; C_2)$. :::{.lemma title="?"} \[ \T\RP^n = \Hom(\gamma, \gamma^\perp) .\] ::: Recall that $\gamma \subseteq \RP^n \times \RR^{n+1}$ as a subbundle over $\RP^n$, and $\gamma = \ts{ ([\vector x], \lambda \vector x) \st \lambda \in \RR } = \pi\inv[\vector x]$. We can write $\T \RP^n = \T S^n/ (\vector x, \vector v)\sim (- \vector x, - \vector v)$, so \[ \T\RP^n = \ts{ [(x, v), (- \vector x, - \vector v)] \st v\in \T_x S^n } = \ts{ [(x, v), (- \vector x, - \vector v)] \st v\in \T_x S^n \iff \inner{x}{v} = 0 } .\] So define a map \[ \T\RP^n &\to \Hom( \gamma, \gamma^\perp) \\ [(\vector x, \vector v), (-\vector x, \vector v)] &\mapsto \qty{\lambda \vector x \mapsvia{\ell} \lambda \vector v } ,\] and one can check that this is well-defined. \begin{tikzpicture} \fontsize{45pt}{1em} \node (node_one) at (0,0) { \import{/home/zack/SparkleShare/github.com/Notes/Class_Notes/2021/Fall/CharacteristicClasses/sections/figures}{2021-11-02_13-45.pdf_tex} }; \end{tikzpicture} We can thus write \[ \T\RP^n \oplus \RR &= \Hom( \gamma, \gamma^\perp) \oplus \Hom( \gamma, \gamma) \\ &= \Hom( \gamma, \gamma^\perp \oplus \gamma) \\ &= \Hom(\gamma, \RR^{n+1}) \\ &= \Hom(\gamma, \RR)\sumpower{(n+1)} .\] Note that $\Hom( \gamma, \RR) \cong \gamma$, so $w(\T\RP^n \oplus \RR) = w(\gamma)^{n+1} = (1+a)^{n+1}$ and $w(\T\RP^n \oplus \RR) = w(\T\RP^n)$. ::: :::{.corollary title="?"} $w(\T\RP^n) = 1$ iff $n+1=2^r$ for some $r$. ::: :::{.proof title="?"} $\impliedby$: By induction, $(1+a)^{2^r} = 1 + a^{2^r}$, using that $(1+a)^2 = 1 + a^2 + 2a$ and $2a=0$ when we have $C_2$ coefficients. Now write \[ (1+a)^{2^r} = ( (1+a)^{2^{r-1}} )^2 \equalsbecause{IH} (1 + a^{2^{r-1}})^2 = 1 + a^{2^r} .\] Now use that $\dim \T\RP^n = n$, so $(1+a)^{n+1} = 1$ since $a^{2^r} = a^{n+1} = 0$. $\implies$: Suppose $n+1 = m2^r$ with $m$ odd, then \[ (1 + a)^{ m2^{r}} = ((1+a)^{2^r})^m \\ = (1+a^{2^r})^m \\ = 1 + ma^{2^r} + \cdots ,\] where the first nontrivial term doesn't vanish since $a^{2^r}\neq 0$. ::: :::{.lemma title="?"} If $\RP^{2^r}$ admits an immersion into $\RR^N$, then $N\geq 2^{r+1} - 1$. ::: :::{.proof title="?"} Why? \[ w(\T \RP^{2^r}) = (1+a)^{2^r+1} = (1+a)^{2^r}(1+a) \\ = (1+a^{2^r})(1+a) \\ = 1 +a + a^{2^r} + a^{2^r + 1} \\ = 1 +a + a^{2^r} .\] Try to invert this: let $n\da 2^r$, then \[ (1+a+a^n)(1 + a + a^2 + \cdots + a^{n-1}) = 1 .\] Then \[ w(\nu \RP^n) = \sum_{0\leq i \leq n-1} a^i ,\] so $\dim \nu \RP^n \geq n-1$. :::