# Chern and Stiefel-Whitney classes (Thursday, November 11) :::{.remark} Recall that we were proving the splitting principle: given $E\to X$ of dimension $n$, there is a space $Y$ with $f:Y\to X$ where - $f^* E = \bigoplus L_i$ splits as a direct sum of line bundles. - $f^*: H^*(X) \to H^*(Y)$ is injective. ::: :::{.lemma title="?"} Assuming the exercise from last time that $c_1(L\dual) = - c_1(L)$ \[ c_i(E\dual) = (-1)^i c_i(E) .\] ::: :::{.proof title="?"} It suffices to show this for $E = \bigoplus L_i$. Write $E\dual = \bigoplus L_i\dual$, so \[ c(E\dual) = \prod c(L_i\dual) &= \prod (1- c_1(L_i)) \\ &= 1 - \qty{\sum c_1(L_i)} + \sigma_2(c_1 L_1,\cdots, c_1 L_n) - \cdots \pm \prod c_1(L_i) \\ &= 1 - c_1(E) + c_2(E) \cdots \pm c_1(L_n) .\] ::: :::{.theorem title="?"} For $E\in \VectBundlerk{n}(\CC)\slice X$, the top Chern class equals the Euler class: \[ c_n(E) = e(E) .\] Similarly, for $E\in \VectBundlerk{n}(\RR)\slice X$, \[ w_n(E) \equiv e(E) \mod 2 .\] ::: :::{.proof title="?"} Both classes satisfy the Whitney sum formula, so \[ E &= \bigoplus L_i \implies c(E) = \prod c(L_i) \\ \implies e(E) &= \prod e(L_i) \\ &= \prod (1 + c_1(L_i)) \\ &= 1 + \sigma_1(c_1 L_1, \cdots, c_1 L_n) + \cdots + \prod c_1(L_i) \\ &\da 1 + \sigma_2(c_1 L_1, \cdots, c_1 L_n)+ \cdots + c_n(E) .\] Then $e(E) = \prod e(L_i) = \prod c_1(L_i) = c_n(E)$. Now the claim follows from the splitting principle and naturality of characteristic classes. ::: :::{.exercise title="?"} Show that for any $E\in \VectBundlerk{n}(\CC)\slice{E}$, \[ c_i(E) \equiv w_{2i} (E) \mod 2 .\] ::: :::{.lemma title="?"} For $E\in\VectBundlerk{n}(\RR)\slice X$, Then \[ c_1(E) = c_1(\Extalg^n E) ,\] noting that $\Extalg^n E$ is a line bundle. A similar claim holds for $c_1$. ::: :::{.fact} \[ c_1(L_1\tensor L_2) = c_1(L_1) + c_1(L_2) .\] ::: :::{.remark} ETS this holds for $E = \bigoplus L_i$, in which case $\Extalg^n E = \Tensor_{i=1}^n L_i$. By the above fact, $c_1(\Extalg^n E) = \sum c_1(L_i)$. Since $c_i(E) = \sigma_i(c_1 L_1, \cdots, c_1 L_n)$, we have \[ c_1(E) = \sigma_1(c_1 L_1,\cdots, c_1 L_n) = \sum c_1 L_i .\] :: :::{.remark} Recall that the Euler class is the obstruction to finding an obstruction to extending a section over the $n\dash$skeleton. ::: ## Obstruction Theory :::{.lemma title="?"} $w_1 E$ is the obstruction to orienting $E$ in the following sense: for any $S^1 \mapsvia{f} E$, write $f_*[S]$ for the image of the fundamental class, then \[ \inner{w_1(E)} {f_*[S^1] } = \chi_{f^* E \text{ is orientable}} = \begin{cases} 1 & f^*E \text{ is nonorientable} \\ 0 & f^* E \text{ is orientable}. \end{cases} .\] ::: :::{.remark} Why? For example, consider $E\to S^1$. Trivialize over $S^1\smts{\pt}$, then glue the ends by some element $A\in \GL_n(\RR)$. If $\det(A) > 0$, this will be orientable, and $\det(A) < 0$ will be nonorientable. ::: :::{.proof title="?"} If $E$ is a line bundle, define $\tilde w_1(E) \in H^1(X)$ by the following \[ \inner{\tilde w_1(E)}{ f_* [S^1] } = \chi_{f^* E \text{ nonorientable}} .\] This is natural under pullback, consider the following diagram: \begin{tikzcd} {f^* h^* E} && {h^*E} && E \\ \\ {S^1} && Y && X \arrow[from=1-3, to=1-5] \arrow[from=1-5, to=3-5] \arrow[from=1-3, to=3-3] \arrow[from=1-1, to=1-3] \arrow["f", from=3-1, to=3-3] \arrow["h", from=3-3, to=3-5] \arrow[from=1-1, to=3-1] \arrow["\lrcorner"{anchor=center, pos=0.125}, draw=none, from=1-1, to=3-3] \arrow["\lrcorner"{anchor=center, pos=0.125}, draw=none, from=1-3, to=3-5] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNixbMiwwLCJoXipFIl0sWzQsMCwiRSJdLFs0LDIsIlgiXSxbMCwyLCJTXjEiXSxbMiwyLCJZIl0sWzAsMCwiZl4qIGheKiBFIl0sWzAsMV0sWzEsMl0sWzAsNF0sWzUsMF0sWzMsNCwiZiJdLFs0LDIsImgiXSxbNSwzXSxbNSw0LCIiLDAseyJzdHlsZSI6eyJuYW1lIjoiY29ybmVyIn19XSxbMCwyLCIiLDAseyJzdHlsZSI6eyJuYW1lIjoiY29ybmVyIn19XV0=) We have \[ &\inner{ \tilde w_1 h^* E}{ f_* [S^1] } &= \inner{ \tilde w_1 h^* E}{ (h\circ f)_* [S^1] } \\ &= \inner{ h^*\tilde w_1 h^* E}{ f_* [S^1] } \\ &= \tilde w_1 (h^* E) \\ &= h^* \tilde w_1(E) .\] We need to show $\tilde w_1(\gamma) = w_1(\gamma)$ where $\gamma\to \RP^\infty$ is the canonical. Write $H^1(\RP^\infty; C_2) = C_2 = \gens{a}$, so $w_1( \gamma) = a$. Take the pullback: \begin{tikzcd} {i^*\gamma} && \gamma \\ \\ {\RP^1 \cong S^1} && {\RP^\infty} \arrow["i", from=3-1, to=3-3] \arrow[from=1-3, to=3-3] \arrow[from=1-1, to=3-1] \arrow[from=1-1, to=1-3] \arrow["\lrcorner"{anchor=center, pos=0.125}, draw=none, from=1-1, to=3-3] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNCxbMiwwLCJcXGdhbW1hIl0sWzAsMCwiaV4qXFxnYW1tYSJdLFsyLDIsIlxcUlBeXFxpbmZ0eSJdLFswLDIsIlxcUlBeMSBcXGNvbmcgU14xIl0sWzMsMiwiaSJdLFswLDJdLFsxLDNdLFsxLDBdLFsxLDIsIiIsMSx7InN0eWxlIjp7Im5hbWUiOiJjb3JuZXIifX1dXQ==) Then $i^* \gamma$ is not orientable since locally this looks like a Mobius band, so we have \[ \inner{\tilde w_1( \gamma)}{ i_* [\RP^1] } = 1 .\] Now $w_1(E) = w_1(\Extalg^n E)$ and we have to bundles: \begin{tikzcd} {f^*(\Extalg^n E)} && {f^* E} \\ \\ & {S^1} \arrow[from=1-1, to=3-2] \arrow[from=1-3, to=3-2] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsMyxbMCwwLCJmXiooXFxFeHRhbGdebiBFKSJdLFsyLDAsImZeKiBFIl0sWzEsMiwiU14xIl0sWzAsMl0sWzEsMl1d) These are either simultaneously orientable or simultaneously nonorientable, by considering $\det A_1, \det A_2$ for the gluing maps between trivializations. So \( w_1(E) = \inner{\Extalg^n E}{f_* [S^1] } = \chi_{f^* \Extalg^n E \text { nonorientable}} \). ::: :::{.theorem title="?"} $w_k(E)$ is the mod 2 reduction of the obstruction to extending $n-k+1$ linearly independent sections of $E$ over $X\skel{k}$ when $\dim_\RR E = n$. ::: :::{.remark} For $k=n$, $w_n(E)$ corresponds to 1 linearly independent section of $X\skel{n}$ since $e(E) \equiv w_n(E) \mod 2$. For $k=1$, $w_1(E)$ corresponds to $n$ linearly independent sections over $X\skel{1}$. :::