# Pontryagin Classes (Tuesday, November 23) ## Complexification :::{.question} How to we get integral cohomology classes when we don't have a complex structure? ::: :::{.definition title="Complexification"} Given a real vector bundle $E$, its **complexification** is defined as \[ E\tensor_\RR \CC \da \Disjoint_{x\in X} E_x\tensor_\RR \CC .\] Then $\dim_\RR E\tensor_\RR \CC = 2\dim_\RR E$. ::: :::{.remark} In terms of transition functions (i.e. Čech cohomology data), this is the inclusion $\GL_n(\RR) \injects \GL_n(\CC)$. We can now consider the Chern classes $c_i(E\tensor \CC)$. ::: :::{.definition title="Conjugate bundle"} Given a complex vector bundle $E$, there is a **conjugate bundle** $\bar{E}$ with the complex structure $i_{\bar E}\cdot V\da -i_{E}\cdot V$. This corresponds to conjugating Čech cohomology data, i.e. replacing transition functions $f_{ij}$ with $\bar{f_{ij}}$. ::: :::{.lemma title="?"} For any real vector bundle $E$, \[ E\tensor \CC \cong \bar{\EE\tensor \CC} .\] ::: :::{.proof title="?"} The transition functions for the former are in $\GL_n(\RR)$, which is fixed under conjugation. ::: :::{.remark} Note that $E\tensor \CC \cong E \oplus E$, and we can map \[ \RR\sumpower{2}\tensor \CC &\iso \CC\sumpower{2} \\ (x\oplus y) \tensor \gens{1, i} &\mapsto (x, ix) \oplus (y, iy) .\] ::: :::{.exercise title="?"} Show that if $E$ is a complex vector bundle, \[ E\tensor \CC \cong E \oplus \bar{E} ,\] and \[ c_i(\bar E) = (-1)^i c_i(E) .\] ::: ## Pontryagin Classes :::{.lemma title="?"} For $i$ odd, $c_i(E\tensor \CC)$ is 2-torsion. ::: :::{.proof title="?"} On one hand, \[ E\tensor \CC \cong \bar{E\tensor \CC} \implies c_i(E\tensor \CC) = c_i(\bar{E\tensor \CC}) = (-1)^i c_i(E\tensor \CC) .\] So if $i$ is odd, $c_i = -c_i$ and thus $2c_i = 0$. ::: :::{.definition title="Pontryagin classes"} The **$i$th Pontryagin class** is \[ p_i(E) = (-1)^{i} c_{2i} (E\tensor \CC) \in H^{4i}(X) .\] ::: :::{.remark} Suppose $R$ is a coefficient ring where 2 is invertible (or not a zero divisor). Some properties of the $p_i$: a. $p_i$ is natural, so $p_i (f^* E) = f^* p_i(E)$. b. $p_{i> \dim(E)/2}$. c. $p(E \bigoplus E') = p(E) \cupprod p(E')$. Why? Note $p(E) = 1 - c_2 + c_4 - c_6 + \cdots$, so multiplying two such things yields \[ p(E) p(E') = 1 - (c_2 + c_2') + (c_4 + c_2c_2' + c_4') - (c_6 + c_4 c_2' + c_2 c_4' + c_6') - \cdots = p(E \oplus E') .\] d. If $\dim_\RR E = 2n$ then $p_n(E) = e(E)^2$. Why? \[ p_n(E) = (-1)^n c_{2n}(E\tensor \CC) = (-1)^n e(E\tensor \CC) = (-1)^n (-1)^{2n(2n+1) \over 2} = (-1)^{n + n(2n+1)} e(E)^2 = (-1)^{n(2n+2)}e(E)^2 = e(E)^2 .\] e. If $E$ is a complex line bundle, \[ c(E \oplus \bar E) = c(E\tensor \CC) = 1 - p_1(E) + p_2(E) - \cdots = c(E) c(\bar E) = (1 + c_1(E) + c_2(E) + \cdots)(1 - c_1(E) + c_2(E) - \cdots) .\] ::: :::{.example title="?"} We can compute $p(\T \CP^5)$. Recall that $c(\T \CP^n) = (1+a)^{n+1}$ where $\gens{a} = H^2(\CP^n; \ZZ)$ is the positive generator. So $c(\T\CP^5) = (1+a)^6 = 1 + {6\choose 1}a + {6\choose 2}a + \cdots$. Using (e) above, we have $c(E) c(\bar E)= (1+a)^6(1-a)^6 = (1-a^2)^6 = 1-6a^2 + 15a^4$. So $p(\T \CP^5) = 1 + 6a^2 + 15a^4$. ::: :::{.corollary title="?"} If $\CP^5\injects \RR^N$ immerses, then $p(\nu \CP^5) = {1\over 1 + 6a^2 + 15a^4} = 1 - 6a^2 + 21a^4$. So $p_2(\nu \CP^5) \neq 0$, so $\dim(\nu)/2 \geq 2 \implies \dim(\nu) \geq 4$ and this forces $n\geq 14$. Note that here we used that $p_i(E) = 0$ for $i > \dim E/2$. ::: :::{.theorem title="?"} \[ H^*(\BSO_{2n+1}; R) &\iso R[p_1,\cdots, p_n] \\ H^*(\BSO_{2n}; R) &\iso R[p_1,\cdots, p_{n-1}, e] \\ H^*(\BO_{2n+1}; R) &\iso H^*(\BO_{2n}; R) \iso R[p_1,\cdots, p_{n}] \\ ,\] where $p_i$ are the Pontryagin classes for the respective canonical bundles. :::