# Bordism (Tuesday, November 30) :::{.definition title="Bordism"} Let $M_1, M_2\in \smooth\Mfd^n$ be closed, then $M_1$ is **bordant** to $M_2$ iff $\exists W\in \smooth\Mfd^{n+1}$ with $\bd W = M_1 \disjoint M_2$. ::: :::{.remark} This defines an equivalence relation on $\smooth\Mfd^n$, and yields a ring $(\prod_n \mcn^n, \disjoint, \cross)$. We'll add extra structure to get refinements of this ring, for which we'll need a bit about stable normal bundles and the Whitney embedding theorem. ::: :::{.theorem title="Whitney Embedding"} Any $M\in \smooth\Mfd^n$ (possibly with boundary) embeds in $\RR^{2n+1}$, and any two such embeddings into $\RR^{2n+3}$ are isotopic. ::: :::{.remark} Moreover if $i, i': M\embeds \RR^n$ with $n\geq 2n+3$, then the normal bundles $\nu M, (\nu M)'$ are bundle isomorphic. ::: :::{.corollary title="?"} Every such $M$ has a stable normal bundle $\nu_M$ which is well-defined up to adding trivial line bundles. ::: :::{.remark} Note that adding trivial line bundles yields a tower $\BO_1 \to \BO_{2}\to \cdots$, where the classifying maps of $E$ and $E \oplus L$ are classified by maps to $\BO_k$ and $\BO_{k+1}$ respectively. We can define lifts of extra structures by looking for commutative towers over $X_k$ for e.g. $X = \BO, \Spin$, etc: \begin{tikzcd} & \cdots && {X_k} && {X_{k+1}} && \cdots \\ \\ & \cdots && {\BO_k} && {\BO_{k+1}} && \cdots \\ M \arrow[from=1-2, to=1-4] \arrow[from=1-4, to=1-6] \arrow[from=1-6, to=1-8] \arrow[from=3-2, to=3-4] \arrow[from=3-4, to=3-6] \arrow[from=3-6, to=3-8] \arrow[from=1-4, to=3-4] \arrow[from=1-6, to=3-6] \arrow["{\nu_M}"{description}, curve={height=6pt}, from=4-1, to=3-4] \arrow[curve={height=24pt}, from=4-1, to=3-6] \arrow[curve={height=12pt}, dashed, from=4-1, to=1-4] \arrow[curve={height=12pt}, dashed, from=4-1, to=1-6] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsOSxbMSwwLCJcXGNkb3RzIl0sWzMsMCwiWF9rIl0sWzUsMCwiWF97aysxfSJdLFs3LDAsIlxcY2RvdHMiXSxbMywyLCJcXEJPX2siXSxbNSwyLCJcXEJPX3trKzF9Il0sWzcsMiwiXFxjZG90cyJdLFsxLDIsIlxcY2RvdHMiXSxbMCwzLCJNIl0sWzAsMV0sWzEsMl0sWzIsM10sWzcsNF0sWzQsNV0sWzUsNl0sWzEsNF0sWzIsNV0sWzgsNCwiXFxudV9NIiwxLHsiY3VydmUiOjF9XSxbOCw1LCIiLDEseyJjdXJ2ZSI6NH1dLFs4LDEsIiIsMSx7ImN1cnZlIjoyLCJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJkYXNoZWQifX19XSxbOCwyLCIiLDEseyJjdXJ2ZSI6Miwic3R5bGUiOnsiYm9keSI6eyJuYW1lIjoiZGFzaGVkIn19fV1d) ::: :::{.definition title="Structures"} An $X\dash$structure on $M$ is a family of lifts for large $k$: \begin{tikzcd} && {X_k} \\ \\ M && {\BO_k} \arrow[from=1-3, to=3-3] \arrow["{\nu_M^k}"', from=3-1, to=3-3] \arrow[dashed, from=3-1, to=1-3] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsMyxbMiwwLCJYX2siXSxbMCwyLCJNIl0sWzIsMiwiXFxCT19rIl0sWzAsMl0sWzEsMiwiXFxudV9NXmsiLDJdLFsxLDAsIiIsMCx7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9fX1dXQ==) We also require these to be compatible with the morphism $\BO_k\to \BO_{k+1}$ and $X_k\to X_{k+1}$. ::: :::{.example title="?"} Some examples: - $\BSO_k$ for orientation, - $V_k$ (the Stiefel manifold) for framings. ::: :::{.definition title="$X\dash$bordism"} Given $M_i$ with $X\dash$structures, we say $N$ is an **$X\dash$bordism** if - $\bd N = M_1 \disjoint M_2$ - There is an $X\dash$structure on $N$ that restricts to the $X\dash$structures on $M_1$ and $M_2$. ::: :::{.remark} For orientations, we get a bordism ring $\Omega_n$, and for framings we get $\Omega_n^{\Fr}$. ::: :::{.theorem title="Identification of framed bordism group"} \[ \Omega_n^{\Fr} \cong \pi_n^s ,\] the stable homotopy groups of spheres $\colim_k \pi_{n+k} S^n$ (which stabilize for $k>n+1$). ::: :::{.definition title="Stiefel-Whitney numbers"} Given $M\in \smooth\Mfd^n$ and $I \da \ts{r_1,\cdots, r_n}$ such that $\sum_{1\leq k \leq n} kr_k = n$, consider $W_n \da \prod_{1\leq k \leq n} w_k(\T M)^{r_k} \in H^n(M; C_2)$. We can evaluate this to get \[ w_I(M) \da \inner{W_n}{[M]} \in C_2 .\] Note that the condition on $I$ guarantees that $W_n\in H^n$. ::: :::{.remark} For $n=3$, the only possibilities for $I$ are - $(3,0,0) \leadsto W_n = w_1^3(\T M)$ - $(1, 1, 0 \leadsto W_n = w_1(\T M)w_2(\T M) )$ - $(0,0,1) \leadsto W_n = w_3(\T M)$ ::: :::{.definition title="Pontryagin number"} Given an *oriented* $M \in \smooth\Mfd^n$, the **Pontryagin number** of $M$ is given by taking $I \da\ts{r_1,\cdots, r_{n\over 4}}$ such that $4r_1 + 8r_2 + \cdots + nr_{n\over 4} = n$, setting $P_n \da \prod_k p_k(\T M)^{r_k}$, and evaluating \[ p_I(M) \da \inner{P_n}{[M]} .\] ::: :::{.corollary title="?"} If any Pontryagin number is nonzero, then $M$ can not admit an orientation reversing diffeomorphism. ::: :::{.proof title="?"} Use that \[ P_I(-M) = \inner{\prod p_1 \TM }{[-M]} = -P_I(M) ,\] but also \[ P_I(M) &= \inner{\prod p_i \T M}{[M]} \\ &= \inner{f^* \qty{ \prod p_i \T M} }{[M]} \\ &= \inner{\prod p_i \T M}{[f_* M]} \\ &= \inner{\prod p_i \T M}{[- M]} \\ &= P_I(-M) .\] ::: :::{.example title="?"} Some examples: - $P_I(\CP^{2n}) \neq 0$ by a computation. - $P_I(\CP^{2n+1}) = 0$ since conjugating the complex structure $J\mapsto -J$ is an orientation reversing diffeomorphism. ::: :::{.theorem title="Pontryagin, Thom"} $M=0$ in $\mcn_n$ iff $w_I(M) = 0$ for all $I$. ::: :::{.proof title="?"} $\implies$: Easy, a simple algebraic topology calculation. $\impliedby$: Difficult and omitted! ::: :::{.corollary title="?"} There is an injective group morphism \[ \mcn_n (\mcn_{I_1}, \cdots, \mcn_{I_k}) \to C_2\cartpower{k} .\] ::: :::{.theorem title="Pontryagin-Thom"} If $M=0$ in $\Omega_n$, then $P_I(M) = 0$ for all $I$. Conversely, if $P_I(M)=0$ for all $I$ then $M$ is torsion in $\Omega_n$, so there is some $k$ such that $M\disjointpower{k} = \bd W$ for some $W$. ::: :::{.remark} Milnor and Wall: the only torsion in $\Omega_n$ is order 2, and an oriented manifold $M$ is 0 in $\Omega_n \iff w_I(M), P_I(M) = 0$ for all $I$. For a proof (for at least the first statement), see Milnor-Stasheff. ::: :::{.remark} We can kill torsion to get an injective map \[ \Omega_n \tensor \QQ \mapsvia{(P_{I_1}, \cdots, P_{i_k} ) } \ZZ\cartpower{k} .\] ::: :::{.theorem title="Pontryagin-Thom"} The ring $\mcn_n$ is a polynomial ring over $\FF_2$ with one generator in each dimension: \[ \mcn_n \cong \FF_2[\ts{v_i \st i\neq 2^i-1}] .\] ::: :::{.theorem title="Pontryagin-Thom"} The ring $\Omega_* \tensor \QQ$ is polynomial ring over $\QQ$ generated by $\CP^n$ for $n=1,2,\cdots$: \[ \Omega_* \cong \cong \QQ[v_1,v_2,\cdots] && \abs{v_i} = i .\] :::