# Thursday, December 02 :::{.remark} Today: the Hirzebruch signature theorem and exotic $S^7$. We saw that $\Omega_* \tensor \QQ$ is the polynomial algebra on $\QQ[v_1, v_2\cdots]$ where $v_2$ corresponds to $\CP^{2n}$. This was because $\ker\qty{\Omega_n \mapsvia{\ts{p_{I_n}}} \ZZ\cartpower{n} }$ can only be torsion. ::: :::{.definition title="Signature"} For $B$ a symmetric bilinear form, $\signature(B) = \dim V^+ - \dim V^-$, the dimensions of positive/negative definite subspaces respectively, or equivalently the difference in the number of positive and negative eigenvalues. For $M\in \smooth\Mfd^{4n}$, there is a middle-dimensional pairing \[ H^{2n}(M; \ZZ)\tensorpower{\ZZ}{2} &\to \ZZ \\ a\tensor b &\mapsto \inner{a \cupprod b}{[M]} ,\] and we write $\sigma(M)$ for the signature of this form. ::: :::{.theorem title="?"} The signature induces a ring morphism \[ \sigma: (\Omega_*, \disjoint, \times) \to (\ZZ, +, \cdot) ,\] so - $\sigma(M \disjoint N) = \sigma(M) + \sigma(N)$, - $\sigma(M\times N) = \sigma(M) \sigma(N)$, - $\sigma(M) = 0$ if $M = \bd M'$ for some $M'$. ::: :::{.lemma title="?"} If there is a half-dimensional subspace $L \subseteq H^{2n}(M; \QQ)$ such that $\inner{a \cupprod}{[M]} = 0$ for all $a,b\in L$ then $\sigma(M) = 0$. ::: :::{.proof title="?"} Use Poincare duality to get an isomorphism: \begin{tikzcd} {H^{2n}(N; \QQ)} && {H^{2n}(M; \QQ)} && {H^{2n+1}(N, M; \QQ)} \\ \\ && {H_{2n}(M; \QQ)} && {H_{2n}(N; \QQ)} \arrow["{i_*}", from=3-3, to=3-5] \arrow["{\cong, \PD}"', from=1-5, to=3-5] \arrow["\cong", from=1-3, to=3-3] \arrow["{f}", from=1-3, to=1-5] \arrow["{i^*}", from=1-1, to=1-3] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNSxbNCwwLCJIXnsybisxfShOLCBNOyBcXFFRKSJdLFs0LDIsIkhfezJufShOOyBcXFFRKSJdLFsyLDAsIkheezJufShNOyBcXFFRKSJdLFsyLDIsIkhfezJufShNOyBcXFFRKSJdLFswLDAsIkheezJufShOOyBcXFFRKSJdLFszLDEsImlfKiJdLFswLDEsIlxcY29uZywgXFxQRCIsMl0sWzIsMywiXFxjb25nIl0sWzIsMF0sWzQsMiwiaV4qIl1d) Note that $\rank i^* = \rank i_*$ since these spaces are dual, and this has the same rank as $f$ since the sides are isomorphisms. Then $\dim H^{2n}(M) = \dim \im i^* + \dim \coker i^*$ and $\dim \coker i^* = \dim \im i_*$, so $\dim H^{2n}(M) = 2\dim \im i^* \leq 2\dim \im i^*$. Then writing $i^* \alpha = a, i^* \beta = b\in \im i^*$, \[ \inner{ i^*(a\cupprod b)}{[M]} = \inner{ \alpha\cupprod \beta}{i_*[M]} =0 ,\] since $i_*[M] = 0$. Thus $\sigma(M) = 0$. ::: :::{.corollary title="?"} One can compute the signature in terms of Pontryagin numbers, i.e. there is a formula for $\sigma(M)$ in terms of $\ts{p_{I_n}(M)}$. The explicit formula is the **Hirzebruch signature theorem**. ::: :::{.example title="?"} Write $\Omega_4 \tensor \QQ = \gens{\CP^2}$ and consider $M \in \smooth\Mfd^4$. Note $\CP^2$ has only 1 Pontryagin number and $c(\CP^n) = (1+x)^{n+1}$, so we have a formula \[ 1 - p_1(\CP^2) &= c(\CP^2) \cdot c(\bar{\CP^2}) \\ &= (1+x)^3(1-x)^3 \\ &= (1-x^2)^3 \\ &= 1 + -3x^2 + 3x^4 - x^6 \\ &= 1 - 3x^2 ,\] where we've used that $H^{\geq 4} = 0$. So $p_1(\CP^2)= 3x^2$, which implies \[ \inner{ p_1 \CP^2}{[\CP^2]} = \inner{3x^2}{[\CP^2]} = 3 .\] Using that $\sigma(\CP^2) = 1$, we can deduce $\sigma(M) = p_1(M)/3$ by considering eigenvalues of the intersection pairing. ::: :::{.example title="?"} Consider $M^8$ and $\Omega_8 \tensor \QQ = \gens{\CP^4, \CP^2\times \CP^2}$. Then $\Sigma(\CP^4) = \sigma(\CP^2\cartpower{2}) = 1$, what are the Pontryagin numbers? Write $v_2 = \CP^2, v_2^2 = \CP^2 \times \CP^2, v_4 = \CP^4$,then \[ 1 - p_1(v_4) + p_2(v_4) &= c(v_4)c(\bar v_4) \\ &= (1+x)^5(1-x)^5 \\ &= (1-x^2)^5 \\ &= 1-5x^2 + 10x^4 ,\] so $p_1(v_4) = 5x^2$ and $p_2(v_4) = 10x^4$. Then \[ \inner{p_1^2 v_4}{[v_4]} &= \inner{25x^4}{[v_4]} = 25 \\ \inner{p_2 v_4}{[v_4]} &= \inner{10x^4}{[v_4]} = 10 .\] Similarly, \[ 1 + p_1(v_4^2) + p_2(v_4^2) = (1+ 3x^2)(1+3y^2) = 1 + 3x^2 + 3y^2 + 9x^2y^2 ,\] so \[ \inner{p_1^2 v_2^2}{[v_2^2]} = \inner{(3x^2 + 3y^2)^2 }{[v_2^2]} = \inner{9x^4 + 9y^4 + 18x^2 y^2 }{[v_2^2]} = 18 ,\] since the cohomology ring is $\FF[x]/\gens{x^2} \tensor \FF[y]/\gens{y^2}$, and a similar calculation shows \[ \inner{p_2(v_2^2)}{[v_2^2]} = 9 .\] Summarizing, where we abuse notation and identity classes with numbers, - $p_1^2(v_4) = 25$, - $p_2(v_4) = 10$, - $p_1^2(v_2^2) = 18$, - $p_2(v_2^2) = 9$. Writing $\sigma = ap_1^2 + b p_2$, \[ 1 = \sigma(v_4) &= 25 a + 10 b \\ 1 = \sigma(v_2^2) &= 18a + 9b .\] This yields $b = {1\over 9}-2a$ and $1 = 25a + 10\qty{{1\over 9} - 2a}$ yields $a=-1/45$ and $b=7/45$. Thus \[ \sigma = {1\over 45}\qty{2p_2 - p_1^2} .\] ::: :::{.theorem title="Thom"} \[ \Omega_7 = 0 .\] ::: :::{.definition title="?"} Given $M^7$ with $H^3(M) = H^4(M)$ and suppose $M = \bd B^*$. Let $i: H^4(B; M) \to H^4(B)$ and define \[ \lambda(M) \da 2 \inner{ (i\inv p_1 \T B)^2 }{[B]} - \sigma(B) .\] Here $\sigma(B)$ is the signature of \[ H^4(B, M ; \QQ)\tensorpower{\ZZ}{2} &\to \ZZ \\ a\tensor b &\mapsto \inner{a \cupprod b}{[B]} .\] ::: :::{.proposition title="?"} $\lambda(M)$ is independent of $B$. ::: :::{.remark} Let $C \da B_1 \glue{M} B_2$ where $\bd B_i = M$, then there is a relation expressing $\inner{p_1(C)^2}{[C]}$ in terms of pairings of $p(B_i)$ against $[B_i]$, and $\sigma(C) = \sigma(B_1) - \sigma(B_2)$. We have \[ 45\sigma(C) + \inner{p_1(C)^2}{[C]} &\equiv 0 \mod 7 \\ \implies -40\sigma(C) + \inner{p_1(C)^2}{[C]} &\equiv 0 \mod 7 \\ \implies \sigma(C) + 2\inner{p_1(C)^2}{[C]} &\equiv 0 \mod 7 \\ \implies (\sigma(B_1) - \sigma(B_2) ) - 2 \qty{ \inner{(i\inv p_1 B_1)^2 }{[B_1]} \cdots } &= \lambda_{B_1}(M) - \lambda_{B_2}(M) .\] ::: :::{.remark} If the $\lambda$s differ, the manifolds can not be diffeomorphic. Constructing $S^7$s: take $S^3$ bundles over $S^4$. Pick any map $S^3\injects \SO_4(\RR) \subseteq \Homeo(S^3)$ to get clutching data, which are elements of $\pi_3(\SO_4) = \ZZ\cartpower{2}$. Label these bundles with parameters $(m, n) \in \ZZ\cartpower{2}$ so that $\xi_{1, 0}$ corresponds to lifting $[S^3, \SO_3]$ to $[S^3, \SO_4]$ fixing the $x\dash$axis, and $\xi_{1, 1}$ is the canonical for $\HH\PP^1$. If $M_k$ is the total space of $\xi_{k, 1}$, then $\lambda(M_k) \equiv k^2-1 \mod 7$, so aren't diffeomorphic. Then one can show that the $M_k$ are homeomorphic by finding a Morse function with exactly 2 critical points. :::