# Starting Kumar (Friday, August 27) ## 1.1: Definition of Kac-Moody Algebras :::{.definition title="Realization"} Let $A\in \Mat(\ell\times\ell, \CC)$ be rank $r$. A **realization** of $A$ is a triple $(\lieh, \pi, \pi\dual)$ where $h\in\mods{\CC}$, $\pi = \ts{\alpha_1, \cdots, \alpha_\ell} \subseteq \lieh\dual$ are column vectors, and \( \ts{ \alpha_1\dual, \cdots, \alpha_\ell\dual } \subseteq \lieh \) are row vectors are indexed sets satisfying 1. $\pi, \pi\dual$ are linearly independent sets. 2. $\alpha_j( \alpha_i\dual) = a_{i, j}$ 3. $\ell - r = \dim_\CC(\lieh) - \ell$ ::: :::{.proposition title="?"} There exists a realization of $A$ that is unique up to isomorphism. Moreover, realizations of $A, B$ are isomorphic iff $B$ is similar to $A$ via a permutation of the index set. ::: :::{.proof title="?"} Assume $A$ is of the form \[ A = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix} ,\] where $A_1$ is $r\times \ell$ block where $\rank A_1 = r$ and $A_2$ is $l-r\times \ell$ Set \[ C \da \begin{bmatrix} A_1 & 0 \\ A_2 & I_{\ell-r} \end{bmatrix}\in \Mat(\ell \times (2\ell - r)) .\] For $\lieh = \CC^{2\ell - r}$, set $\alpha_1, \cdots, \alpha_\ell$ to be the first $\ell$ coordinate functions $\alpha_1\dual,\cdots$ as the rows of $C$. This is a realization. Conversely, given a realization $(\lieh, \pi, \pi\dual)$, we can produce a matrix: complete $\pi$ to a basis of $\lieh\dual$. This can done in such a way that $\alpha_j(\alpha_i\dual) = [A_1, B; A_2, D\inv]\in \Mat(\ell \times 2\ell -r$. Using column operations, i.e. multiplication on the right, this can be mapped to $[A_1, 0; A_2, I]$. ::: :::{.definition title="Free Lie algebra generated by a vector space"} Let $V\in \mods{\CC}$ and $T^\bullet(V)$ be its (associative) tensor algebra. Set $[ab] = ab-ba$ and take $F(V) \subseteq T(V)$ to be the free Lie algebra generated by $T^1(V)$. We call $F(V)$ the **free Lie algebra generated by $V$**. There is a universal property: for any linear hom $\theta: V\to \liesl$, there is a commuting diagram \begin{tikzcd} V && {\mathfrak{s}} \\ \\ & {F(V)} \arrow["\theta", from=1-1, to=1-3] \arrow["F"', from=1-1, to=3-2] \arrow["{\exists\tilde \theta}"', dashed, from=3-2, to=1-3] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsMyxbMCwwLCJWIl0sWzIsMCwiXFxtYXRoZnJha3tzfSJdLFsxLDIsIkYoVikiXSxbMCwxLCJcXHRoZXRhIl0sWzAsMiwiRiIsMl0sWzIsMSwiXFxleGlzdHNcXHRpbGRlIFxcdGhldGEiLDIseyJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJkYXNoZWQifX19XV0=) Note that $U(F(V)) = T(V)$. This can be constructed as \[ \lieh \oplus \gens{e_1, \cdots, e_\ell} \bigoplus \gens{f_1, \cdots, f_\ell} / \sim \\ \\ \sim \da \begin{cases} [e_i f_i] = \delta_{ij} \alpha_i\dual & i, j = 1,\cdots, \ell \\ [hh'] = 0 & h,h'\in\lieh \\ [he_i = \alpha_i(h)e_i & \\ [hf_i = \alpha_i(h)f_i & i=1,\cdots,\ell, h\in \lieh \end{cases} .\] Then set $\tilde \lieg(A) \da F(V)/\sim$ We'll find that this only depends on the realization of $A$. ::: :::{.definition title="Generalized Cartan Matrices"} A matrix $A = (\alpha_{ij})$ is a **generalized Cartan matrix (GCM)**: - $\alpha_{ii} = 2$ - $\alpha_{ij} \leq 0, i\neq j$ - $\alpha_{ij} = 0$ if $\alpha_{ji} =0$ ::: :::{.definition title="Kac-Moody Lie Algebras"} The **Kac-Moody Lie algebra** is defined by $\lieg \da \lieg(A) \da \tilde\lieg(A)/\sim$, where we mod out by the **Serre relations**: \[ (\ad e_i)^{1 - a_{ij}}(e_j) &= 0\\ (\ad f_i)^{1 - a_{ij}}(f_j) &= 0 .\] ::: :::{.remark} \envlist - There is an injection $\lieh \injects \lieg$, so we refer to $\lieh$ as the **Cartan subalgebra**. - The $e_i, f_i$ are **Chevalley generators**. - The **nilradicals** are $\lien \da \gens{\ts{e_1,\cdots,e_\ell}}$ and $\lien^- \da \gens{ \ts{f_1, \cdots, f_\ell}}$. - $\lieb \da \lieh \oplus \lien$ is the **standard Borel**. - $\lieb^- \da \lieh \oplus \lien$ - $\tilde \lien, \tilde \lien^-, \tilde \lieb, \tilde \lieb^-$ can similarly be defined for $\tilde \lieg$. ::: :::{.remark} A big theorem from algebraic groups: a connected reductive group $G$ corresponds to a root datum$(\lieg, \ts{\alpha_i}_{i\leq \ell}, \ts{ \alpha_i\dual }_{i\leq \ell} )$ where $\alpha_i, \alpha_i\dual \in \ZZ^n$ such that $a_{ij} \da \inner{\alpha_i}{\alpha_i\dual}$ form a Cartan matrix $A \da (a_{ij})$. ::: :::{.example title="?"} Consider pairs of $K, G$ where $G$ is the complexification of $K$: - $\Sp_n \leadsto \Sp_{2n}(\CC)$, $Z(G) = \ZZ/2$ for $n\geq 1$ - $\SU_n \leadsto \SL_n(\CC)$, $Z(G) = \ZZ/4n$ for $n\geq 3$ - $\Spin_n \leadsto \Spin_n(\CC)$, $Z(G) = (\ZZ/2)^2$, $n\geq 8$ even - $F_4$, $Z(G) = \ZZ/4$ for $n\geq 7$ odd - $G_2$ - $E_6$ - $E_7$ - $E_8$ Here we take the simply connected groups for the last 5, and the last 4 have cyclic centers. ::: :::{.theorem title="?"} There exist 1. Simple, simply connected, connected groups $G_1, \cdots, G_k$, 2. A finite central subgroup $F \subseteq \prod G_i \times T'$ where $T'$ is a (not necessarily maximal) torus, such that $G\cong (\prod G_i \times T')/F$. All connected reductive groups arise this way! ::: :::{.example title="?"} Let $G\da\GL_n = \SL_n \cdot \CC\units$, and they intersect at roots of unity, so \[ \GL_n = (\SL_n \times \CC\units) / \gens{\zeta_n I_n, \zeta_n\inv} .\] The map (in the reverse direction) is $(g, z)\mapsto gz$, and if $gz= I$ in $\GL_n$ then $g = \zeta_n^k I_n$ and $z = \zeta_k\inv$. ::: :::{.remark} Assume $G$ is semisimple, simply connected, and connected. Then 1. The equivariant cohomology is \[ H^*_T(G/B; \QQ) \cong S_\QQ \tensor_{S_\QQ^W} S_\QQ \] 2. The equivariant \(\K\dash\)theory \[ K^T(G/B) = A(T) \tensor_{A(T)^W}A(T) \] Note that \[ W &= N_G(T)/T \\ S &= S(\lieh\dual), && \pi \subseteq \lieh\dual \\ A(T) &= \ZZ[X(T)] .\] ::: :::{.remark} Think about semisimple, simply connected, and connected groups most of the semester. :::