# Wednesday, September 29 :::{.remark} Ch. 7 and 8 in Kumar: algebraic vector bundles, particularly line bundles on ind-varieties. Let $\mce \mapsvia{\pi} X$ be an algebraic vector bundle, so there are local trivializations: \begin{tikzcd} \pi\inv(U) \ar[rd, "\pi"] \ar[rr, "\pr_1"] & & U\times \CC^n \ar[ld, ""] \\ & U & \end{tikzcd} i.e. these look like projections onto the first coordinate of an actual product on sufficiently small sets. We write $\mce_x \da \pi\inv(x)$. The key data: transition functions. Our first examples were $\OO_{\PP^n}(k)$, particularly for $n=1$. ::: :::{.remark} Equivariant coherent sheaves yields algebraic representations by taking global sections. Kumar uses character formulas to compute global sections. ::: :::{.definition title="Equivariant vector bundles"} For $G\in \Alg\Grp$ is linear (and e.g. connected reductive), if $\pi$ is $G\dash$equivariant and $G$ maps $\mce_x\to \mce_{gx}$ *linearly*, then $\pi$ yields an **equivariant vector bundle**. ::: :::{.remark} For $G$ connected reductive and $T \subseteq G$ a maximal torus, a character $\lambda \in X^*(T)$ is a map $\lambda: T\to \CC\units$, and using $T \subseteq B \subseteq G$ we get a representation $\lambda: B\to \CC\units$ of the Borel. We then define \[ G\mix{B} \CC_{\lambda} \da (G\times \CC)/B .\] There is a map \begin{tikzcd} {G\times \CC} && {G\mix{B}\CC_{\lambda}} && {[g, z]} \\ \\ G && {G/B} && {gB/B} \arrow["{\pr_1}", from=1-1, to=3-1] \arrow["{\wait/B}", from=3-1, to=3-3] \arrow[from=1-3, to=3-3] \arrow[dashed, from=1-1, to=1-3] \arrow[maps to, from=1-5, to=3-5] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNixbMiwwLCJHXFxtaXh7Qn1cXENDX3tcXGxhbWJkYX0iXSxbMiwyLCJHL0IiXSxbNCwwLCJbZywgel0iXSxbNCwyLCJnQi9CIl0sWzAsMCwiR1xcdGltZXMgXFxDQyJdLFswLDIsIkciXSxbNCw1LCJcXHByXzEiXSxbNSwxLCJcXHdhaXQvQiJdLFswLDFdLFs0LDAsIiIsMix7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9fX1dLFsyLDMsIiIsMix7InN0eWxlIjp7InRhaWwiOnsibmFtZSI6Im1hcHMgdG8ifX19XV0=) Even better, if $Y = \ts{1\leq i\leq \ell \st \inner{\lambda}{\alpha_i\dual} }$ then taking $\lambda \in D_Y^0$ so $\lambda: P \to \CC\units$ yields a map $G\mix{P} \CC_{ \lambda} \mapsvia{\pi} G/P$ where $G/P \contains U_w$. Write $P = LU$ and $P^- = LU^-$ for $L$ the Levi and $U^\pm$ the unipotent radical and its opposite: ![](figures/2021-09-29_14-08-16.png) There is an embedding \[ U^- &\injects G/P\\ u &\mapsto uP/P .\] For $w\in W_Y'$, we have \[ \eta_w: {}^w U^- &\to G/P \\ wuw\inv &\mapsto wuP/P ,\] and ${}^w U^- = wU^- w\inv$ for $w\in W= N_G(T)/T$. ::: :::{.example title="?"} Let $\PP^1 = G/P$ for $G= \SL_2$. Here $W = \ts{e, s}\cong C_2$ and $S = \ts{s} \supseteq Y$, and we want $Y = \emptyset$. Any $\lambda \in X^*(T)$ needs to be orthogonal to $\alpha\dual$. We can take a realization $\SL_2(\CC, \ts{2}, \ts{1})$ which yields $X^*(T) = \ZZ$. So $\inner{ \lambda}{ \alpha\dual} = 0 \iff 1\cdot \lambda \neq 0$, forcing \( \lambda\neq 0 \) for this to be a flag variety. For $\lambda = k$, we have $\lambda \cdot \matt{t}{0}{0}{t\inv} = t^k$. We get a line bundle $G\mix{B} \CC_{\lambda} \mapsvia{\pi} G/B=\PP^1$, how does this compare to $\OO_{\PP^1}(k)$? The flag varieties look like the following: \begin{tikzpicture} \fontsize{45pt}{1em} \node (node_one) at (0,0) { \import{/home/zack/SparkleShare/github.com/Notes/Class_Notes/2021/Fall/FlagVarieties/sections/figures}{2021-09-29_14-17.pdf_tex} }; \end{tikzpicture} Here $s, e$ are the two $T\dash$fixed points. We have $U_s \intersect U_e \cong \CC\units$, and we'll replace $U_s \to {}^s U^-$ and $U_e \to {}^{e}U^- = U^-$. The transition functions read: \begin{tikzcd} {{}^{s}U^- \times \CC} && {\pi\inv(U_s)} && {\pi\inv(U_e)} && {U^-\times \CC} \\ \\ & {U_s} &&&& {U_e} \arrow["\pi", from=1-3, to=3-2] \arrow["{\pr_1}"', from=1-1, to=3-2] \arrow["\cong", from=1-1, to=1-3] \arrow["\cong", from=1-5, to=1-7] \arrow["{\pr_1}", from=1-7, to=3-6] \arrow["\pi"', from=1-5, to=3-6] \arrow["{\text{on }U_e \intersect U_s}"', from=1-3, to=1-5] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNixbMiwwLCJcXHBpXFxpbnYoVV9zKSJdLFswLDAsInt9XntzfVVeLSBcXHRpbWVzIFxcQ0MiXSxbNCwwLCJcXHBpXFxpbnYoVV9lKSJdLFs2LDAsIlVeLVxcdGltZXMgXFxDQyJdLFsxLDIsIlVfcyJdLFs1LDIsIlVfZSJdLFswLDQsIlxccGkiXSxbMSw0LCJcXHByXzEiLDJdLFsxLDAsIlxcY29uZyJdLFsyLDMsIlxcY29uZyJdLFszLDUsIlxccHJfMSJdLFsyLDUsIlxccGkiLDJdLFswLDIsIlxcdGV4dHtvbiB9VV9lIFxcaW50ZXJzZWN0IFVfcyIsMl1d) We have $U_s \intersect U_e \cong \CC\units$, so what map $\CC\units \selfmap$ do we get? Consider $U^-B/B \intersect sU^-B/B$, so \[ u_{\alpha} (x) = \matt 1 x 0 1 && u_{-\alpha}(x) = \matt 1 0 x 1 .\] Then and $u_{-\alpha}(x) = s u_\alpha(-x)s\inv$, so \[ u_{-\alpha}(x) B &= u_{- \alpha}(y) B \\ s u_{\alpha}(-x)s\inv B &= s u_{- \alpha}(y) B \\ u_{ \alpha}(-x) s\inv B &= u_{-\alpha} B .\] Now check that \[ \matt 1 {-x} 0 1 \matt 0 {-1} 1 0 = \matt 1 0 y 1 \matt a b 0 {a\inv}&& \text{for some }\matt a b 0 {a\inv}\in B \\ \\ \matt {-x} {-1} {1} 0 = \matt a b {ay} {yb+a\inv} ,\] so we have $-x=y\inv$. Thus \[ T_{es}U_s\units \times \CC &\to U_e\units \times \CC \\ (x, z) &\mapsto (x\inv, x^{-k} z) \\ \\ T_{se}U_e\units \times \CC &\to U_s\units \times \CC \\ (x, z) &\mapsto (x\inv, x^{-k} z) .\] > These computations are hard, even in the case of $\SL_2$! > Perhaps a motivation for having character formulas. We then identify $G\mix{B} \CC_{ \lambda} \mapsvia{\pi} G/B$ with $\OO(-k)$, and $\mcl( \lambda) = G\mix{B} \CC_{\lambda}$. :::