# Kumar Ch. 8: Demazure Character Formulas (Friday, October 01) :::{.remark} For any $\lambda \in D_Y^0$ define the algebraic line bundle $\mcl^Y(- \lambda)$ over $X^Y = \mcg/P_Y$ to be the following pullback: \begin{tikzcd} {\mcg/P_y} && \eta \\ \\ {\mcx^Y} && {\PP(L^{\max} ( \lambda ))} \arrow["{\iota_{\lambda}}", from=3-1, to=3-3] \arrow[from=1-3, to=3-3] \arrow[from=1-1, to=3-1] \arrow[from=1-1, to=1-3] \arrow["\lrcorner"{anchor=center, pos=0.125}, draw=none, from=1-1, to=3-3] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNCxbMCwwLCJcXG1jZy9QX3kiXSxbMiwwLCJcXGV0YSJdLFsyLDIsIlxcUFAoTF57XFxtYXh9ICggXFxsYW1iZGEgKSkiXSxbMCwyLCJcXG1jeF5ZIl0sWzMsMiwiXFxpb3RhX3tcXGxhbWJkYX0iXSxbMSwyXSxbMCwzXSxbMCwxXSxbMCwyLCIiLDEseyJzdHlsZSI6eyJuYW1lIjoiY29ybmVyIn19XV0=) Let $H^Y = \Gr_k(\CC^n) = G/P^Y$ for $G\da \GL_n$. ::: :::{.definition title="The Tautological Bundle"} Then define a vector bundle \[ \mce \da \ts{ (x, v) \in X^Y \times \CC^n \st v\in x} = \ts{(E, v) \in \Gr_k(\CC^n) \times \CC^n \st v\in E} ,\] and define $\mce \mapsvia{\pi} X^Y = \Gr_k(\CC^n)$ to be projection to the first factor such that 1. $\pi\inv(E) \cong E \in \mods{\CC}^{\dim = k}$ is a $k\dash$dimensional vector space for any $E\in X^Y$. 2. $\pi$ is $G\dash$equivariant: $\pi(g\cdot (x, v)) = g \cdot \pi(x, v)$, where the first action is $g\cdot (x, v) = (gx, gv)$, and $\pi(x, v) = gx$. Moreover $G$ acts on fibers linearly, so $g\cdot(\wait): \pi\inv(x) \to \pi\inv(gx)$ which sends $E\to gE$ as subspaces in $\CC^n$, and we require that this map of subspaces is a $\CC\dash$linear map. ::: :::{.remark} Equivariant bundles on homogeneous spaces are determined by the representation of the stabilizer on the corresponding fiber. We can pick a base point $\spanof_\CC\ts{e_1,\cdots, e_k} \cong \CC^k \in \Gr_k(\CC^n)$, whence $\stab_G(\CC^k) = P$ is all but the lower-left block: ![](figures/2021-10-01_14-10-55.png) Then $\pi\inv(\CC^k) = \CC^k$. We conclude \[ \mce: G \mix{P} \CC^k &\to G/P \\ [g, v] &\mapsto gv .\] ::: :::{.example title="?"} For $k=1$, we're considering $\Gr_1(\CC^n) = \PP^{n-1}$. - $T \subseteq \GL_n$ are diagonal matrices, and $t\actson \tv{x_1, 0, \cdots, 0} = \tv{tx_1, 0, \cdots, 0}$. - $Y = \ts{1\leq i \leq n-1 \st \inner{\lambda}{\alpha_i\dual} = 0} = \ts{2, \cdots, n-1}$. - Taking $\lambda = \tv{1, 0,\cdots, 0}$, we have a character \[ \lambda: T &\to \CC\units \\ \diag(t_1,\cdots, t_n) &\mapsto t_1^1 t_2^0\cdots t_n^0 .\] - $\mce = G\mix{P} \CC^1 = G\mix{P} \CC_{\tv{1, 0, \cdots, 0}} = \mcl(- \lambda)$. Note that since this weight $\lambda$ is dominant (and not antidominant), there are no global sections. ::: :::{.remark} Define \[ \lieh\dual_{\ZZ, Y} \da \ts{ \lambda\in \lieh\dual_\ZZ \st \inner{ \lambda} { \alpha_i \dual} = 0, i\in Y} .\] For any \( \lambda\in \lieh\dual_\ZZ \) take \( \lambda_1, \lambda_2 \in D_Y^0 \) such that \( \lambda= \lambda_1 - \lambda_2 \), i.e. we can write any weight as a difference of dominant weights: \begin{tikzpicture} \fontsize{45pt}{1em} \node (node_one) at (0,0) { \import{/home/zack/SparkleShare/github.com/Notes/Class_Notes/2021/Fall/FlagVarieties/sections/figures}{2021-10-01_14-21.pdf_tex} }; \end{tikzpicture} Set \[ \mcl( \lambda) \da \mathcal{L} ^Y( - \lambda_2) \tensor \mcl( - \lambda_1)\dual .\] For example, given $T \subseteq G$ and \( \lambda\in X(T) \), we have \[ \mathcal{L} (\lambda) = G\mix{P} \CC_{ - \lambda} .\] ::: :::{.remark} Given $w\in W$, define \[ \mcl_w( \lambda) \da P_{i_1}\mix{B} P_{i_2} \mix{B} \cdots \mix{B} P_{i_n} \mix{B} \CC_{ - \lambda} .\] ::: :::{.claim} Let - ${w} = (s_{i_1}, \cdots, s_{i_n})$ - $i_{\lambda}: \mcg/P_Y \to \PP(L^{\max} ( \lambda))$ - $m_w: Z_w \to \mcg/P_Y$ Then \[ \mcl_{w} (\lambda) = m_{w}\dual \mathcal{L} ^Y(\lambda) .\] ::: :::{.proof title="?"} Define \[ f: \mcl_{w}( \lambda) &\to Z_w = P_{i_1}\mix{B} P_{i_2} \mix{B} \cdots \mix{B} P_{i_n} \mix{B} \CC_{ - \lambda} \\ [p_1,p_2, \cdots, p_n, z] &\mapsto [p_1, p_2, \cdots, p_n B/B] \\ \\ g: \mcl_{w}( \lambda) &\to \mcl^Y( \lambda) \\ [p_1,p_2, \cdots, p_n, z] &\mapsto [p_1 \cdot p_2 \cdots p_n, z] .\] :::{.exercise title="?"} Check that these maps are well-defined. ::: Using the universal property of pullbacks, we get a diagram: \begin{tikzcd} {\mcl_w(\lambda)} \\ \\ && {m_w^* \mcl^Y(\lambda) = Z_w \fiberprod{G/P} \mcl^Y(\lambda)} && {\mcl^Y(\lambda)} \\ \\ && {Z_w} && {G/P} \arrow["\pi", from=3-5, to=5-5] \arrow["{m_w}"', from=5-3, to=5-5] \arrow[from=3-3, to=5-3] \arrow[from=3-3, to=3-5] \arrow["g", curve={height=-24pt}, from=1-1, to=3-5] \arrow["f", curve={height=24pt}, from=1-1, to=5-3] \arrow["{\exists \varphi}", dashed, from=1-1, to=3-3] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNSxbMiw0LCJaX3ciXSxbNCw0LCJHL1AiXSxbNCwyLCJcXG1jbF5ZKFxcbGFtYmRhKSJdLFsyLDIsIm1fd14qIFxcbWNsXlkoXFxsYW1iZGEpID0gWl93IFxcZmliZXJwcm9ke0cvUH0gXFxtY2xeWShcXGxhbWJkYSkiXSxbMCwwLCJcXG1jbF93KFxcbGFtYmRhKSJdLFsyLDEsIlxccGkiXSxbMCwxLCJtX3ciLDJdLFszLDBdLFszLDJdLFs0LDIsImciLDAseyJjdXJ2ZSI6LTR9XSxbNCwwLCJmIiwwLHsiY3VydmUiOjR9XSxbNCwzLCJcXGV4aXN0cyBcXHZhcnBoaSIsMCx7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9fX1dXQ==) The claim is that $\phi$ is an isomorphism, we'll show this by explicitly construction its inverse algebraic morphism. We have $\phi([p_1, \cdots, p_n, z]) = ( [p_1, \cdots, p_n B/B] \times [ p_1p_2\cdots p_n, z] )$. Define \[ \psi: m_w^* \mcl^Y( \lambda) &\to \mcl_w( \lambda) \\ [p_1, \cdots, p_nB/B] \times [g, z] &\mapsto [p_1, \cdots, p_n, p_n\inv\cdots p_1\inv gz] ,\] where $p_1\inv\cdots p_1\inv g\in P$. This will clearly be an inverse, it remains to show it's well-defined. Note that \[ p_1\cdots p_n P/P = gP/P \implies f\inv p_1\cdots p_n \in P ,\] which follows from chasing the fiber product diagram around the two sides. ::: :::{.exercise title="?"} Check that this is well-defined by showing a different representative has the same image. Then compose $\phi, \psi$ in both orders. :::